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EDITORIAL COMMENT
Empagliflozin and Protecting
Microvascular Support of
Heart Mechanics
SGLT2 Inhibition or More?*
Chris Sorel Mantsounga, PHD,a,b Alan R. Morrison, MD, PHDa,b
A pproximately 6.5 million adults in the United
States have heart failure (HF), representing a
major cause of morbidity and mortality (1).

HF is traditionally divided into 2 subtypes, HF with
preserved ejection (HFpEF) and HF with reduced
ejection fraction (HFrEF), with each accounting for
about 50% of HF cases. Although HFpEF and HFrEF
can display similar clinical presentations during acute
HF exacerbations, they are often associated with
different risk factors, pathophysiological processes,
and responses to therapy (2). Many therapies with un-
equivocal benefit in HFrEF have failed to show effi-
cacy for HFpEF. This is, in part, why the recent
findings of EMPA-REG OUTCOME (Empagliflozin,
Cardiovascular Outcomes, and Mortality in Type 2
Diabetes) have generated tremendous enthusiasm.
EMPA-REG OUTCOME was a randomized, double-
blind, placebo-controlled trial of 7,020 patients with
type 2 diabetes mellitus, and it demonstrated that
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the primary endpoint, a composite of myocardial
infarction, stroke, and cardiovascular death, was
significantly reduced (hazard ratio [HR]: 0.86; 95%
confidence interval [CI]: 0.74 to 0.99) over a median
follow-up of 3.1 years (3). The composite outcome
was largely driven by a 38% relative risk reduction
of cardiovascular death (HR: 0.62; 95% CI: 0.49 to
0.77) and a 32% relative risk reduction in all-cause
mortality (HR: 0.68; 95% CI: 0.57 to 0.82). Of interest,
there was a 35% relative risk reduction in hospitaliza-
tion for HF (HR: 0.65; 95% CI: 0.50 to 0.85), support-
ing favorable hemodynamic effects of the drug.
Further analysis revealed that the reduction of hospi-
talizations for HF and cardiovascular death were
observed both in patients with and without HF at
baseline (4). HF was not phenotyped at baseline, but
2 ongoing clinical trials, EMPEROR-Preserved (EMPa-
gliflozin outcomE tRial in Patients With chrOnic
heaRt Failure With Preserved Ejection Fraction) and
EMPEROR-Reduced (EMPagliflozin outcomE tRial in
Patients With chrOnic heaRt Failure With Reduced
Ejection Fraction), are actively enrolling patients to
study the effect of empagliflozin versus placebo on
top of guideline-directed medical therapy in patients
with each subset of HF (5,6).

Empagliflozin is one of a family of inhibitors that
target the sodium (Naþ)-glucose cotransporter-
2 (SGLT2). SGLTs are transmembrane proteins that
facilitate entry of glucose into cells by making use of
the Naþ gradient maintained by sodium-potassium
adenosine triphosphatase (7). SGLT2 inhibitors were
developed as a therapeutic treatment for diabetes
because of their inhibition of glucose reabsorption in
the proximal tubules of the kidneys, increasing
glucose excretion. In EMPA-REG OUTCOME, the
adjusted mean reduction in glycated hemoglobin
https://doi.org/10.1016/j.jacbts.2019.08.003

https://doi.org/10.1016/j.jacbts.2019.08.003
http://www.electrophysiology.onlinejacc.org/content/instructions-authors
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacbts.2019.08.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


J A C C : B A S I C T O T R A N S L A T I O N A L S C I E N C E V O L . 4 , N O . 5 , 2 0 1 9 Mantsounga and Morrison
S E P T E M B E R 2 0 1 9 : 5 9 2 – 5 Microvascular Effects of Empagliflozin

593
relative to placebo was modest and gradually shrunk
over the course of the study (3). These findings, in
part, have led to an increasing recognition of poten-
tial pleiotropic effects of SGLT2 inhibitors beyond
simply hypoglycemic effects. Although the molecular
mechanisms are not fully understood, the effects of
SGLT2 inhibitors are postulated to be multifactorial,
including hemodynamics involving blood pressure
reduction and diuresis, loss of body weight, and re-
ductions in the renin-angiotensin-aldosterone system
(7,8). SGLT2 inhibitors have also demonstrated some
adverse reactions; canagliflozin is associated with a
doubling of the risk for lower-limb amputation and
with increased risk of fractures, and empagliflozin is
associated with increased genital infections (3,9).
SEE PAGE 575
In the paper by Juni et al. (10) in this issue of JACC:
Basic to Translational Science, the investigators set
out to carefully examine the impact of empagliflozin
on the interaction between cardiac microvascular
endothelial cells (CMEC) and cardiac myocytes (CM)
in a unique coculture model. The investigators
established that secreted soluble factors from human
CMEC improved advanced measures of primary rat
CM contraction and relaxation, including sarcomere
length shortening, return velocity, and relaxation
time constant (tau). This beneficial effect was abol-
ished by pre-incubation of the CMEC but not CM with
nitric oxide (NO) synthase inhibitor, N(u)-nitro-L-
arginine methyl ester (L-NAME), indicating a
significant role of endothelial produced NO. CMEC-
conditioned medium had similar effects on CM
contraction and relaxation that were also abrogated
by the NO scavenger, carboxy-PTIO. Inflammatory
cytokines, tumor necrosis factor (TNF)-a or inter-
leukin-1b, reduced the availability of NO in endothe-
lial cells and abrogated the effects of CMEC on
measures of CM contraction and relaxation. Pre-
treatment of endothelial cells with empagliflozin
had modest effect on the return velocity and no
significant effects on sarcomere shortening and tau,
but it had a significant impact on preventing the in-
flammatory cytokines from reducing measures of CM
contraction and relaxation. Empagliflozin prevented
the TNF-a-mediated reductions in NO, indicating that
the protective effects of empagliflozin are mediated,
in part, by endothelial NO production.

The downstream effects of TNF-a, including nu-
clear factor-kB-dependent upregulation of inflam-
matory adhesion factors, VCAM-1 and E-selectin, and
mitochondrial superoxide dismutase 2 (SOD2), were
unchanged by empagliflozin treatment. Moreover,
empagliflozin had no effect on endothelial NO
synthase expression or phosphorylation. However,
empagliflozin did significantly blunt TNF-a-induced
production of reactive oxygen species (ROS) in both
the cytoplasm and in the mitochondria of the CMEC.
This effect did not seem to be mediated by JNK kinase
or a direct ROS scavenging/antioxidant effect of
empagliflozin. Thus, these interesting data support
an alternative mechanism whereby empagliflozin can
activate intracellular mechanisms that reduce mito-
chondrial ROS generation, leading to consequent
reductions in cytoplasmic ROS and enhanced NO
bioavailability.

Although more work is needed to unravel the mo-
lecular mechanisms involved here, this study is quite
timely, given the recent findings in both patients and
an experimental model that HFpEF is associated with
coronary microvascular endothelial dysfunction and
oxidative stress, leading to a reduction of NO-
dependent signaling from endothelial cells to car-
diomyocytes (11). This study by Juni et al. (10) would
have benefited from measures of soluble guanylate
cyclase activity or cyclic guanosine monophosphate
levels in the CM and inhibition of soluble guanylate
cyclase to confirm NO-mediated effects on measures
of contraction and relaxation. The addition of an
experimental animal model of HF to support that the
cellular measures of contraction and relaxation
translate readily to measures of systolic and diastolic
function would have strengthened the study. How-
ever, a recent study of nondiabetic mice treated with
empagliflozin demonstrated preservation of systolic
function relative to vehicle-treated mice in an aortic
constriction model of pressure overload HF, sup-
porting the findings of this cell-based system (8).

This new study also raises interesting questions as
to whether the molecular mechanisms that govern
the therapeutic effects of this emerging class of
agents are specific to the inhibition of SGLT2. Though
SGLT1 mRNA is abundantly expressed in the human
heart and in other tissues, SGLT2, the selective target
of empagliflozin, has been largely identified in skel-
etal muscle and kidney but not in heart (12,13). Some
studies have indicated that SGLT2 may be expressed
at low levels in endothelial cells (14,15), but the au-
thors of the current investigation acknowledge that
they and others have been unable to consistently
detect SGLT2 from the CMEC. Improvements in the
current forms of detection for SGLT2 RNA and protein
may certainly be required. Ultimately, gene knock-
down by small double-stranded interfering RNAs
targeting SGLT2 in the CMEC or isolation of primary
endothelial cells from SGLT2 knock-out mice may be
helpful in confirming the specificity of the empagli-
flozin effect.
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It is possible that empagliflozin has an effect,
either directly or indirectly, on an alternative cation
transport protein, the Naþ/Hþ exchanger-1 (NHE-1),
leading to the reductions in mitochondrial ROS.
Recent studies demonstrated that empagliflozin
lowered cytosolic [Naþ] and [Ca2þ] while enhancing
mitochondrial [Ca2þ], through impairment of NHE-1
(16,17). Prior studies have focused on car-
diomyocytes, but it is possible empagliflozin may
have similar effects on microvascular endothelial
cells given that they also express NHE-1. Direct inhi-
bition of NHE-1 by cariporide decreased ROS pro-
duction, induced the regression of cardiac
hypertrophy, and exerted beneficial effects in exper-
imental HF (18,19). These actions may be car-
dioprotective, in part, because both increased cardiac
intracellular Naþ and NHE activity have been linked
to the occurrence of arrhythmias, myocardial hyper-
trophy, and aggravation of HF (20). Future studies
involving conditional deletion systems of SGLT2 or
NHE-1 in experimental models of HF are required to
further dissect this new mechanism. Of note, target-
ing NHE-1 with cariporide clinically for the treatment
of ischemia reperfusion injury was studied over a
decade ago in the GAUARDIAN (Guard During
Ischemia Against Necrosis) and EXPEDITION (The
Naþ/Hþ Exchanger Inhibition to Prevent Coronary
Events in Acute Cardiac Conditions) trials, and
despite evidence of reduced myocardial injury,
increased mortality caused by cerebrovascular events
raised concerns about clinical safety (21–23). There
may be something different about the study pop-
ulations or the way empagliflozin is targeting mito-
chondrial NHE-1 to reduce mitochondrial ROS, but
whatever the case, it is clear that more study is
needed in this area.

In summary, the manuscript by Juni et al. (10)
provides fascinating new insight into the impact of
SGLT2 inhibitors on the cardiac microvascular and
its protective role in cardiac mechanics. Empagli-
flozin counteracted inflammatory cytokine-induced
impairment of CMEC-CM communication by
reducing mitochondrial ROS and enhancing NO
bioavailability for the preservation of CM contraction
and relaxation. Results from EMPEROR-Preserved
and EMPEROR-Reduced should provide additional
clinical perspective on the potential protective effects
of empagliflozin on the mechanics of the failing heart.
Further research into the cellular and molecular
mechanisms that determine these effects is required
to help improve efficacy and reduce adverse events in
this growing new class of pharmocotherapeutics.
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