
TYPE Review

PUBLISHED 16 August 2022

DOI 10.3389/fnut.2022.960309

OPEN ACCESS

EDITED BY

Xi Yu,

Macau University of Science and

Technology, Macao SAR, China

REVIEWED BY

Yuyun Lu,

National University of

Singapore, Singapore

Tiantian Lin,

Cornell University, United States

*CORRESPONDENCE

Jun Du

Eric.du@amway.com

Yuexin Yang

yuexin_yang@sina.com

†These authors have contributed

equally to this work and share first

authorship

SPECIALTY SECTION

This article was submitted to

Nutrition and Food Science

Technology,

a section of the journal

Frontiers in Nutrition

RECEIVED 02 June 2022

ACCEPTED 11 July 2022

PUBLISHED 16 August 2022

CITATION

Kan J, Wu F, Wang F, Zheng J,

Cheng J, Li Y, Yang Y and Du J (2022)

Phytonutrients: Sources, bioavailability,

interaction with gut microbiota, and

their impacts on human health.

Front. Nutr. 9:960309.

doi: 10.3389/fnut.2022.960309

COPYRIGHT

© 2022 Kan, Wu, Wang, Zheng, Cheng,

Li, Yang and Du. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Phytonutrients: Sources,
bioavailability, interaction with
gut microbiota, and their
impacts on human health

Juntao Kan1†, Feng Wu2†, Feijie Wang1, Jianheng Zheng1,

Junrui Cheng3, Yuan Li2, Yuexin Yang4* and Jun Du1*

1Nutrilite Health Institute, Shanghai, China, 2Sequanta Technologies Co., Ltd., Shanghai, China,
3Department of Molecular and Structural Biochemistry, North Carolina State University, Kannapolis,
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Phytonutrients are natural bioactive components present in the daily diet

that can exert a positive impact on human health. Studies have shown

that phytonutrients may act as antioxidants and improve metabolism after

being ingested, which help to regulate physiological processes and prevent

metabolic disorders and diseases. However, their e�cacy is limited by their

low bioavailability. The gut microbiota is symbiotic with humans and its

abundance and profile are related to most diseases. Interestingly, studies

have shown that the gut microbiota is associated with the metabolism

of phytonutrients by converting them into small molecules that can be

absorbed by the body, thereby enhancing their bioavailability. Furthermore,

phytonutrients can modulate the composition of the gut microbiota, and

therefore improve the host’s health. Here, we focus on uncovering the

mechanisms by which phytonutrients and gut microbiota play roles in health,

and the interrelationships between phytonutrients and gut microbiota were

summarized. We also reviewed the studies that reported the e�cacy of

phytonutrients in human health and the future directions.

KEYWORDS
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Introduction

Nutrients play an essential role in maintaining the regular functions in the body.

Their basic functions include providing energy, contributing to body structure, and

regulating chemical processes. Carbohydrates, lipids, protein, vitamins, and minerals

are the major nutrients in food (1, 2). There are also certain physiologically active

compounds known as “phytonutrients” that play a crucial role in human health. Previous

studies have shown that phytonutrients are effective in preventing and mitigating a

variety of diseases and physiological disorders, thus imposing a tremendous impact

on the medical and health care system. Common phytonutrients include polyphenols,

phytosterols, saponins, and carotenoids. Well-documented phytonutrients, such as

catechins, curcumins, anthocyanins, quercetin and chlorogenic acid, can be easily
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ingested from diets, and many studies have demonstrated

their role in anti-cancer, neuroprotection, anti-aging,

treatment of metabolic disorders, and other diseases (3–

5). For example, curcumin and chlorogenic acid have been

implicated in alleviating fat accumulation, high cholesterol, and

metabolic disorders by affecting protein synthesis pathways and

modulating immune responses (6, 7). In general, due to people’s

pursuit of a healthy diet, there has been a growing focus on

natural products in recent years (8), and phytonutrients hold a

great promise in healthcare and clinical therapy thanks to their

beneficial effects (9, 10).

Understanding the metabolism and pharmacokinetics

of phytonutrients may facilitate the application of phyto-

pharmaceuticals to mitigate various diseases. Limited by

phytonutrients and individual differences in digestive capacity,

membrane transporters and metabolic enzymes, only a small

part of phytonutrients can be directly absorbed by the human

body after oral administration, andmetabolism is mainly carried

out in the liver and intestine (11). In the liver, phytonutrients

undergo oxidation, demethylation, and hydrolysis reactions in

phase I, and then combine with endogenous binders in phase

II to form small molecules to facilitate absorption. Despite

a low inaccessibility in the upper gastrointestinal tract, the

bioavailability of phytonutrients can be greatly enhanced with

the participation of gut microbiota in the lower gastrointestinal

tract (12). Poorly absorbed phytochemicals undergomicrobiota-

mediated biotransformation such as cleavage, demethylation,

dihydroxylation, deglycosylation, and are able to produce

metabolites with higher bioavailability and bioactivity (13, 14).

For example, the bioavailability of cyanidin-3-glucoside is only

0.02%, while the microbial degradation product of cyanidin-

3-glucoside, 3,4-dihydroxybenzoic acid, has a bioavailability of

44% (15).

Gut microbiota is a complex ecological community

comprising trillions of bacteria that live in the human gut and

develop a mutually beneficial symbiosis (16). Gut microbes

assist in human digestion by decomposing chemicals that the

human gut is unable to degrade on its own (17). Firmicutes,

Bacteroidetes, Actinobacteria, and Proteobacteria are the

most common bacteria genera in the human gut microbiota

(18). They can integrate brain and gastrointestinal functions,

such as intestinal movement, appetite and weight, through

the microbiota-gut-brain axis (19), and then affect normal

physiology and disease susceptibility through their collective

metabolic activity and host interactions (20–23). Gut microbiota

are not static, instead, they have been in a dynamic process

throughout the lifespan (24).

The relationship between phytonutrients and the human gut

microbiota is a two-way complex interaction. Phytonutrients

are absorbed first to alter the composition of the gut

microbiota which includes inhibiting pathogens and promoting

the growth of beneficial bacteria (5), and then to influence

the production of their metabolites, which would further

modify the intestinal environment by inhibiting the production

of harmful compounds such as indole, lipopolysaccharide,

and hydrogen sulfide (25). Some polyphenols, such as

those found in green and black tea, may inhibit the

growth of detrimental bacteria such as Helicobacter pylori,

Listeria monocytogenes, Staphylococcus aureus, Escherichia coli,

Salmonella typhimurium, and Pseudomonas aeruginosa (26–29).

In the meantime, microbial metabolites such as short chain

fatty acids and other bioactive components fermented/degraded

by gut microbiota not only provide essential materials and

energy for the growth of gut microbes, but also can target

multiple pathways in intestine, liver, and pancreas, resulting in

improvements in gut health (8, 30). For example, chlorogenic

acid and its related compounds can be metabolized in the gut

by the resident microbiota, which are responsible for the release

of caffeic acid and further metabolism, producing phenyl–

propionic, phenylacetic, and benzoic acid derivatives that are

then absorbed into the circulatory system for further actions

(7, 31).

Overall, the relationship between phytonutrients and human

health is established through the metabolic function of the

human digestive system, mainly through the participation of gut

microbiota (32, 33). The gut acts as an important sensory organ

capable of detecting, transmitting, integrating, and responding

to signals from the internal and external environment,

thereby triggering responses. Cascades of communication

along the gut-brain axis are associated with inflammatory

responses and immune homeostasis (34). For example, Ohno

et al. reported that curcumin supplementation modulated

the composition of gram-negative bacilli and subsequently

strengthened intestinal barrier and regulated the metabolic

functions of gut microbes, such as bile acid biosynthesis and

arachidonic acid metabolism (35). The purpose of regulating

physiological processes and treating diseases is achieved

through immunomodulation and anti-inflammatory, anti-

oxidative stress, and inhibition of various enzymatic functions

(6, 36), showing a complete chain of action of phytonutrients.

Accumulating evidence shows that different phytonutrients may

impact human health through different modes of action and

targets (37–42).

In conclusion, as the natural products from plants,

phytonutrients have shown unique diversity and safety.

Phytonutrients are involved in various physiological processes

and may prevent/mitigate disease pathogenesis through the

gut microbiota, which are closely linked with an individual’s

overall health (Figure 1). The complex and dynamic interactions

between phytonutrients and gut microbiota have become a

research hotspot. This review summarizes the sources, metabolic

processes of five phytonutrients including catechins, curcumin,

quercetin, anthocyanins and chlorogenic acid, and their

interactions with the gut microbiota. In addition, the influence

of these impacts on metabolism and the future directions of

phytonutrient-related studies are portrayed in detail.
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FIGURE 1

Summary of the factors a�ecting the bioavailability of phytonutrients. Created with BioRender.com.

Catechins and gut microbiota

Sources and chemical structures of
catechins

As a member of the flavan-3-ol polyphenol family, catechins

are widely distributed in a range of dietary sources, such

as tea, cocoa, apple, and kiwi fruit (43, 44). Catechins are

extremely abundant in polyphenol-rich green tea and its

extracts, accounting for approximately one-third of the solids in

brewed green tea (45, 46). Catechins include four major items,

namely epigallocatechin-3-gallate (EGCG), epigallocatechin

(EGC), epicatechin (EC), and epicatechin-3-gallate (ECG)

(Figure 2), among which EGCG is the most abundant and

has the highest biological activity (47, 48). The presence of

certain chemical structures like catechol group and pyrogalol

group in these compounds provide themwith strong antioxidant

properties and biological activity (49). Numerous studies

have demonstrated the health effects of catechins, including

anti-inflammatory, antimicrobial, immunomodulatory, and

neuroprotective effects (50).

Bioavailability and metabolism of
catechins

The bioavailability of catechins in the human body is

extremely poor (51). After oral administration, only a small

fraction of catechins is bioavailable (52), and transported to the

liver via the portal vein, where phase II enzymes convert them

into methyl, glucuronide, and sulfate derivatives. In fact, only

around 14% EGC, 32% EC, and 0.1% EGCG are accessible upon

oral intake (53).

Approximately two-thirds of catechins reach the colon

where catechins are degraded by microbial enzymes into a

range of metabolites (54, 55), followed by being released into

the enterohepatic or systemic circulation to perform diverse

physiological roles (56). There is evidence indicating that the

phase II metabolism of EC may occur in enterocytes, and the

metabolites (mainly sulfated conjugates) of EC were eliminated

by efflux back to the intestinal lumen, which was much higher

than the elimination via bile (57).

Interactions between catechins and gut
microbiota

Biotransformation of catechins into their metabolites is

mainly dependent on the gut microbiota. The gut microbiota’s

vast gene pool transforms the colon into a bioreactor with

immense catechin metabolic capacity (58, 59).

The gut microbiota can execute glycosidic connections, C-

ring fission, and degradation of the heterocyclic structures

of catechins, resulting in smaller compounds such as

phenylvalerolactones and phenylvaleric acids (55). These

newly produced microbial metabolites may then be absorbed
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FIGURE 2

Structure of EC, ECG, EGC, and EGCG.

across the colon epithelium and eventually enter the systemic

blood circulation (41). The metabolites of catechins produced by

microbial biotransformation may even outperform the parent

molecules in terms of biological activity (60). The relevant

process is summarized in Figure 3.

Metabolism of catechins by gut
microbiota

Catechins are metabolized by the gut microbiota to

facilitate absorption, and the degradation pathway has been

documented in various studies. The transformations can be

split into three major processes: (I) galloyl ester hydrolysis,

(II) C-ring opening, and (III) lactonization, decarboxylation,

dehydroxylation, and oxidation processes to further modify

the reaction products (53, 61, 62). Regarding galloylated

catechins (ECG and EGCG), the microbial metabolism begins

with galloyl ester hydrolysis by microbial esterases, which

produces gallic acid. The C-ring of the catechin residue is

opened after degalloylation, resulting in diphenylpropan-2-

ol, which is then transformed into valerolactone, resulting

in the formation of hydroxyphenylvaleric acids and/or 4-

hydroxyphenylvaleric acids. Meanwhile, dehydroxylation of

these hydroxylated phenolic acids at the original B-rings

may occur, yielding a variety of simpler phenolic acids.

The principal reaction products from catechins for intestinal

absorption are valerolactone and phenolic acids (63), which

can be easily absorbed by the large intestine and then

undergo phase I and phase II metabolism, distribution and

excretion (53).

Kutschera et al. reported that two bacterial strains,

Flavonifractor plautii and Eggerthella lenta, could biotransform

dietary catechins into hydroxyvaleric acid and valerolactone

metabolites (64). To further understand the underlying

mechanisms of the gut microbiota in modulating the effects of

catechins on health, more research is required to determine the

microbiota’s functional guild and characterization (65).
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FIGURE 3

The regulation of catechins on gut microbiota. Created with BioRender.com.

Modulation of gut microbiota by
catechins

Catechins are antibacterial compounds that are effective

against foodborne and other harmful microorganisms. Themost

widely acknowledged mechanism for catechins’ antibacterial

action is their capacity to disrupt membranes. EGCG can attach

directly to the exposed peptidoglycan layer of Gram-positive

bacteria, causing cross-links in the peptidoglycan to be cleaved.

When the peptidoglycan layer is damaged, its protective impact

is diminished and permeability increases, resulting in bacterial

demise (53, 66).

Several in vitro studies suggest that catechins may have

prebiotic effects by selectively improving the growth of

beneficial gut microbiota (28, 67). Green tea catechins have

been shown to boost the populations of beneficial bacteria,

such as Bifidobacterium spp. and Lactobacillus, while suppress

the harmful bacteria including Clostridium spp. in the in

vitro fermentation tests. Catechins have also been found

to increase the variety of gut microbiota and reduce the

ratio of Firmicutes/Bacteroidetes in several animal studies

(68, 69). Liao et al. found that tea catechins significantly

increased the abundance of Bifidobacteria while lowering

serum total cholesterol and low-density lipoprotein cholesterol

levels in mice (70). Furthermore, dietary catechins have been

reported to increase the relative abundance of Akkermansia

Muciniphila and alleviate high fat diet-induced metabolic

syndrome (71).

Catechins, microbiome composition, and
related health benefits

Obesity is the outcome of energy surplus and is a major

risk factor for a variety of chronic diseases. As a result,

implementing a nutritional intervention to avoid obesity

has become a public health priority (72, 73). Studies have

depicted that obese individuals have a lower gut community

diversity and different microbial profile compared with their

lean counterparts (74). The involvement of tea catechins

in weight management has been proposed due to their

beneficial effects in modulating gut microbial compositions.

Hursel et al. reported that catechins may improve blood

biomarkers for metabolic syndrome, such as insulin, glucose,

low-density lipoprotein, which was accompanied with an

altered Firmicutes to Bacteriodetes ratio (67). In rats, the
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combination of catechins with a high fructose oligosaccharide

(FOS) diet reduced their body weight, which was correlated

with increased Parabacteroides spp., Phascolarctobacterium spp.,

Robinsoniella spp., Prevotella spp., and decreased Lachnospira

spp., Clostridiales spp., Ruminococcus spp., Peptococcaceae spp.,

and Oscillospira spp. (75).

A recent study suggests that catechins may have prebiotic-

like activity and therapeutic potential through modulating

gut microbiota. Notably, the abundance of Bacteroides

and Firmicutes in the intestinal mucosa of patients with

inflammatory bowel disease (IBD) was significantly reduced

after catechin administration, while the population of

Proteobacteria and Actinobacteria was significantly increased

(76). Therefore, understanding the underlying crosstalk

mechanism may help us to further elucidate the clinical value of

tea catechins in the prevention and treatment of IBDs (77).

Patients with non-alcoholic fatty liver disease (NAFLD)

exhibit lower Bacteroidetes and Firmicutes abundance and

lower gut microbiota diversity than healthy people. The

severity of non-alcoholic steatohepatitis has been linked

to changes in microbiota composition (78). Patients with

cirrhosis and hepatocellular carcinoma, for example, showed

higher levels of Bacteroidetes and Ruminococci and lower

levels of Bifidobacterium than those with cirrhosis alone.

The link between gut dysbiosis and NAFLD, as well as

the fact that catechins lowered endotoxin levels in the

circulating and portal circulation, highlights the preventative

and therapeutic potential of catechins in restoring gut

barrier integrity and reducing the hepatic and intestinal

inflammation (46).

Curcumin and gut microbiota

Sources and chemical structures of
curcumins

Curcumin, also known as diferuloylmethane (1,7-bis(4-

hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), is a

polyphenol representing the major curcuminoids extracted

from the rhizomes of Zingiberaceae and Araceae plants. It

is the main active ingredient of turmeric, a common Asian

spice used as a dietary spice, food coloring, and herbal

medicine (47, 79). Different biological and pharmacological

aspects have sparked widespread interest in its therapeutic

potential. Its bioactive constituents have recently been

studied. It was reported that curcumin, has showed potent

functions at the cellular level via regulating numerous signaling

pathways (80). Notably, an increasing number of clinical

trials with regard to curcumin supplementation have been

published or are presently underway, reflecting the scientific

community’s growing interest in curcumin’s therapeutic

potential (79, 81–84).

Bioavailability and metabolism of
curcumins

Because of the poor solubility, low bioavailability,

chemical instability, and rapid metabolism, curcumin’s

therapeutic potential is severely limited (85, 86). Curcumin

undergoes substantial metabolism (reduction, sulfation, and

glucuronidation) in liver, kidney, and intestinal mucosa

after oral administration (87). Liver is the major site where

the metabolism of curcumin occurs, whereas intestine and gut

bacteria also play an important role in facilitating this process. In

hepatocytes and enterocytes, the double bonds of curcumin are

reduced, resulting in dihydrocurcumin, tetrahydrocurcumin,

hexahydrocurcumin, and octahydrocurcumin (88, 89). The

intestinal microflora is capable of deconjugating phase II

metabolites and converting them back to phase I metabolites

leading to the production of fission products (e.g., ferulic acid)

that have a higher bioavailability (90).

In spite of the low digestibility in the upper gastrointestinal

tract, curcumin can be fermented by gut microbiota,

which potentially explains how it performs various

physiological activities.

Interactions between curcumins and gut
microbiota

Curcumin bioactivity, like that of other dietary polyphenols,

is linked not only to absorption rate but also to its gut microbial

digestion. Curcumin has shown preferential distribution and

accumulation in the gut after oral or intraperitoneal dosing,

despite its limited plasma and tissue bioavailability (79, 91).

Curcumin can be transformed by human intestinal microbiota

in a variety of metabolic pathways, including the production

of active metabolites with local and systemic effects, but also

by reducing the heptadienone backbone and demethylation

by Blautia spp (92, 93). In summary, undigested curcumin

may accumulate in the gut, where upon the fermentation

by microbiota, it can be converted into biologically active

metabolites, which subsequently modulate the growth of gut

microbiota in a selective manner (Figure 4).

Metabolism of curcumins by gut
microbiota

Because of its formidable metabolic functions, such as the

transformation of numerous compounds that reach the colon,

the gut microbiota can be described as a biological reactor.

Since the biotransformaiton of phytonutrients is achieved with

the microbial enzymes produced by the gut microbiota, the
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FIGURE 4

Schematic illustration of the bidirectional interactions between curcumin and gut microbiota. Created with BioRender.com.

efficiency of curcumin biotransformation differs by microbial

profile (84, 94).

Curcumin can be modified in the colon tract by a specific

microorganism, Escherichia coli. Curcumin/dihydrocurcumin

reductase (CurA) is a nicotinamide adenine dinucleotide

phosphate (NADPH)-dependent enzyme that converts

curcumin to the intermediate product dihydrocurcumin and

then to the final product tetrahydrocurcumin. By reductive

disruption of the chromophoric diarylheptatrienone chain in the

first process of the reaction, dihydrocurcumin is produced from

curcumin. The mechanism for converting dihydrocurcumin to

tetrahydrocurcumin is the same in the second step (95).

Multiple gut bacteria are involved in curcumin metabolism,

among which the Firmicutes Blautia spp. produces two

derivatives, demethylcurcumin and bisdesmethylcurcumin,

through demethylation (92). While Escherichia fergusonii

and Escherichia coli strains are involved in the metabolic

processes that produce dihydrocurcumin, tetrahydrocurcumin,

and ferulic acid (82). Other microorganisms capable of

degrading curcumin include Bifidobacterium longum,

Bifidobacterium pseudostrandum, Enterococcus faecalis,

Lactobacillus acidophilus, and Lactobacillus casei. Microbial

metabolism of curcumin by Pichia anomala or a bacterial

strain of Bacillus megaterium has been reported to produce

new metabolites via various metabolic processes such as

hydroxylation, demethylation, reduction, and demethoxylation.

An ultra-performance liquid chromatography analysis

identified 23 metabolites and discovered several novel human

gut microbiota-curcumin metabolic pathways (96).

Interestingly, curcumin metabolites have been shown to

have an equivalent or stronger potency compared with

the parent compound. Tetrahydrocurcumin, for example,

outperforms curcumin as a free-radical quencher which has

shown therapeutic effects in alleviating neurodegenerative

diseases (97).

Modulation of gut microbiota by
curcumins

Since a majority of curcumin escapes the upper

gastrointestinal digestion and reach the colon, it may exert
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pharmacological effects by altering the richness, diversity,

and composition of gut microbiota (98). A previous study

found that curcumin-treated patients had a 69% increase in

bacterial species, whereas an overall 15% decrease in bacterial

species was observed in the control group. Participants

who responded to the treatment had consistent increases

in Bacteroides spp., Clostridium spp., Citrobacter spp.,

Enterobacter spp., Enterococcus spp., Klebsiella spp., and

Pseudomonas spp., as well as decreased relative abundance

in several Blautia spp. Curcumin increased the abundance

of Bifidobacteria, Lactobacilli, and butyrate-producing

bacteria while decreasing Prevotellaceae, Coriobacterales,

Enterobacteria, and Enterococci, resulting in a significant shift

in the beneficial-pathogenic microbiota ratio. Aside from

anti-inflammatory and anti-colonotropic carcinogenicity

activities, changes in gut microbiota may partially explain

how curcumin regulates immune responses and mitigate

hyperlipidemia (93).

By using a mouse model of acute myeloid, Liu et al.

revealed significant changes in gut microbiota composition

by intravenous curcumin administration. Specifically, they

observed a significant increase in Lactobacillus acidophilus,

Bifidobacterium bifidum and Lactobacillus reuteri, and

decrease in pathological bacteria including Bacteroides fragilis,

Escherichia coli, Fusobacterium nucleatum and Akkermansia

in the interventional group, which was associated with a

reduced disease severity (99). In rats, curcumin lowered the

Firmicutes/Bacteroidetes ratio and reversed the high fat diet-

induced gut dysbiosis, which was related to a decreased hepatic

ectopic fat deposition, reduced inflammatory markers, and

enhanced intestinal barrier integrity, suggesting that it could be

a novel therapeutic strategy for NAFLD (100).

Curcumin, microbiome composition, and
related health benefits

Changes in the microbiome have been linked to a variety

of metabolic diseases, including obesity, diabetes, and chronic

liver disease (101). In a rat model of menopause, Zhang et al.

investigated the relationship between curcumin intake and gut

microbial diversity, and reported that curcumin might partially

repair the changes in the richness and composition of the rat gut

microbiota caused by ovariectomy-induced estrogen shortage

(102). In specific, curcumin increased the abundance of Serratia,

Shewanella, Pseudomonas, Papillibacter, and Exiguobacterium

species, while lowered that of Anaerotruncus and Helicobacter

pylori (80).

Curcumin has shown neuroprotective properties

by targeting the gut-brain axis and reducing intestinal

inflammation through various molecular mechanisms (103–

105). Studies have revealed a close association between

gastrointestinal dysfunction and the exacerbation of

neurological disorders. For example, the most important

non-neurological complications of Huntington’s disease

are associated with gastrointestinal defects. Two studies

depicted that the patients with symptomatic Huntington’s

disease exhibited serum metabolomic shifts that suggested

changes in gut microbial-derived metabolites (106, 107).

Additionally, a study examined at how curcumin interacted

with the gut microbiota of APP/PS1 double transgenic mice

from two perspectives. Curcumin administration improved

spatial learning and memory abilities in these mice while

also lowered amyloid plaque burden in the hippocampus.

Interestingly, curcumin administration significantly altered the

relative abundances of bacterial taxa such as Bacteroidaceae,

Prevotellaceae, Lactobacillaceae, and Rikenellaceae at the family

level, and Prevotella, Bacteroides, and Parabacteroides at the

genus level, several of which have been reported to be key

bacterial species associated with Alzheimer’s disease (AD)

development. It is important to note that, the gut microbiota of

AD mice produced a total of 8 curcumin metabolites, and many

of these metabolites have been shown to have neuroprotective

properties (108).

Xu et al. used next-generation sequencing technology to

investigate the effects of curcumin on gut microbiota in a

rat model of uric acid nephropathy (UAN). As a result, they

found that in the interventional group, renal pathological

lesions were reduced, and the serum uric acid and metabolic

endotoxemia were decreased, which were tightly connected

with a suppressed proliferation of opportunistic pathogens

such as Escherichia coli and Bacteroides, and increased relative

abundance of bacteria that produce short-chain fatty acids

(SCFAs), such as Lactobacillus and Ruminococcaceae (109).

In a clinical trial, curcumin supplementation for 6 months

restored the α-diversity of gut microbiota to a normal value

in the patients diagnosed with chronic renal disease (CKD).

At the phylum level, curcumin supplementation significantly

inhibited the growth of Escherichia Shigella, but enhanced that

of Lachnoclostridium. Moreover, compared to the baseline levels,

Lactobacillaceae spp. were found to be considerably higher at the

family level in the last 3 months of supplementation. No adverse

events were reported in the supplemented group, suggesting

a high safety profile of curcumin phytosome after long-term

dosing (110).

Colorectal cancer (CAC) progression is also influenced

by gut bacterial profile. In an IL-10 knockout CAC mouse

model, a curcumin-rich diet significantly improved survival,

reduced colon weight/length ratio, and eradicated total tumor

burden. Such beneficial effects were associated with an

enhanced bacterial diversity, mitigated age-related decreases

in alpha diversity, a raised Lactobacillales relative abundance,

and a decreased Coriobacterales composition. Therefore, the

anti-tumorigenesis properties of curcumin were linked to

the maintenance of a more diversified colonic microbial

ecology (111).
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FIGURE 5

General structure of anthocyanidins and substitution pattern.

Anthocyanins and gut microbiota

Sources and chemical structures of
anthocyanins

Anthocyanins are a class of flavonoids found in nature

as pigments in a wide range of plant food. It is abundant

in many berry varieties, including blackberries, blueberries,

and cranberries. Their color changes depending on the pH

of the food matrix and may appear purple, red, or blue.

Anthocyanins contain a phenolic structure that contributes

to their biological effects. Pelargonidin, cyanidin, delphinidin,

peanidin, petunidin, and malvain are common anthocyanins

that occur naturally in food categories (Figure 5) (112, 113).

Anthocyanins have been linked to a variety of positive

health outcomes, including improved blood vessel function,

cancer prevention, and bone health. Since anthocyanins are

naturally present in dietary sources, their use in the prevention

and treatment of adverse health events is of interest, and

anthocyanins may provide a safe, inexpensive, and low-risk

approach to disease prevention (114–116).

Bioavailability and metabolism of
anthocyanins

The bioavailability of anthocyanins can be defined as the

fraction of anthocyanins that are absorbed and utilized by

the body. The bioavailability of natural anthocyanins has been

estimated to be as low as 2% (117). During metabolism,

only a small fraction of anthocyanins are absorbed by the

gastrointestinal tract and then transferred to various bodily

tissues such as the kidney and liver. Meanwhile, considerable

amounts of anthocyanins bypass the small intestine and

enter the colon, where they are hydrolyzed and fermented

by the microbiota for further digestion (118, 119). The

resulting colonic metabolites of anthocyanins are transported

to the liver to be further metabolized and subsequently

distributed to the circulating system to achieve various

biological effects.

Interactions between anthocyanins and
gut microbiota

Anthocyanin-rich diets may impact the composition of the

gut microbiota, which acts as a modulator for anthocyanin-

related health benefits. The metabolites of major anthocyanins

have been shown to improve overall gut integrity by decreasing

inflammation and oxidative stress (120).

The interactions between anthocyanins and gut microbiota

are important factor to be considered to understand the

biological activities of anthocyanins for their corresponding

health benefits. The interlinkage between anthocyanin

biotransformation to potentially more bioactive, low molecular

weight metabolites and anthocyanin-mediated modification

of gut microbiota composition contributes to favorable health

outcomes (121).

Metabolism of anthocyanins by gut
microbiota

With a small number of dietary anthocyanins are directly

absorbed, the majority of the ingested compounds reach the

colon. Bifidobaterium spp. and Lactobacillus spp. are two major

families of gut bacteria that have glucosidase activities. They

can metabolize phenolic substances during growth, providing

energy to foster the growth of other gut bacteria. These

bacterial groups have been linked to positive effects in the

large intestine, such as the antibacterial action of pathogenic

microorganisms through the generation of short-chain fatty

acids and competition for growth substrate and adhesion

sites (112).

In vitro studies conducted by Tian et al. showed that

the bacterial metabolism of anthocyanins involves glycosidic

linkage cleavage, anthocyanidin heterocycle breakdown, and

degradation into phloroglucinol derivatives and benzoic acids

(122). Anthocyanins and metabolites produced in the intestine

simultaneously have the potential to selectively stimulate

or hinder certain bacterial growth. Different metabolites

may be formed via anthocyanin fermentation depending

on the bacterial composition. The maximum conversions of

anthocyanins by probiotic bacteria have been recorded, with L.
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FIGURE 6

Biotransformation of quercetin into metabolites by gut microbiota and their benefits in gut. Created with BioRender.com.

plantarum and S. thermophiles degrading cyanidin-3-glucoside

and cyanidin-3-rutinoside, respectively (123). Microbial

fermentation of anthocyanins and the catabolism of those

compounds at various stages along the process may produce a

wide range of chemicals, resulting in a highly dynamic profile of

some molecules.

Modulation of gut microbiota by
anthocyanins

The colonization of the gut microbiota can be altered

by anthocyanin ingestion, influencing intestinal bacterial

proliferation. Bifidobacterium, Lactobacillus, and Akkermansia

are among these bacteria that can benefit the host, and they can

catalyze anthocyanins alongside Bacteroides and Eubacterium

(124). These bacteria have been linked to beneficial effects in the

large intestine, including the antimicrobial effect of pathogenic

bacteria by producing short chain fatty acids and competing

for growth substrate and adhesion sites, but they also reduce

potentially harmful bacteria, such as Clostridium histolyticum,

which has been linked to tumor promotion and inflammatory

bowel disease (125).

In the mice with colon cancer, oral administration of

bilberry anthocyanin extract (BAE) enriched the diversity of

bacterial populations in the digestive system and increased

the abundance of Clostridium and Lactobacillus johnsonii.

Meanwhile, the improvement of gut microbiota with daily

BAE supplementation has been shown to reduce tumor growth

and improve PD-L1 treatment efficacy (126). Faria et al.

reported that in vitro incubation of malvidin-3-glucoside

with fecal slurry increased the growth of Bifidobaterium spp.

and Lactobacillus spp., but had no effect on the growth of

Bacteroides spp. Surprisingly, adding malvidin-3-glucoside to

other anthocyanins displayed a synergistic effect on bacterial

growth. Gallic acid, an anthocyanin metabolite found in the gut,

has been shown to reduce the abundance of potentially harmful

bacteria including Clostridium histolyticum without affecting

healthy bacteria (112).

Anthocyanins, microbiota composition,
and related health benefits

It has been shown that anthocyanins are able to prevent or

delay the onset of certain diseases with their anti-inflammatory
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and antioxidative properties (127). Phenolic chemicals have

the capacity of blocking pro-inflammatory mediators and

thereby reducing inflammation. Anthocyanin metabolites have

been shown to activate Nrf2, which activates the antioxidant

enzymes and antioxidation-related pathways. They may also

lower intestinal inflammation by modulating the MAKP and

NF-B pathways mediated by TAK1 and SphK/S1P (113).

Hidalgo et al. portrayed that a mixture of anthocyanins

enhanced the growth of Bifidobacterium and Lactobacillus-

Enterococcus in a batch culture fermentation system resembling

the human distal large intestine, and interestingly, the

microbial metabolite malvidin-3 -glucoside alone displayed

the similar beneficial effects compared with its parent

compounds (128).

In a study by Liu et al. oral administration of anthocyanins

in the C57BL/6 J mice significantly reduced high fat diet-

induced body weight gain by 20–27%, total adipose tissue

weight by 18–25%, and plasma total cholesterol by 25%.

Meanwhile, they observed a significantly reduced plasma

lipopolysaccharide concentration, which was correlated

with decreased relative abundances of Rikenella and

Rikenellaceae. At the genus level, dietary supplementation

of berry anthocyanin extract enhanced the grwoth of the groups

of Lachnoclostridium, Roseburia, and Clostridium innocuum,

resulting in increased fecal short-chain fatty acid (SCFA) release

(129). Consistently, two studies found that anthocyanins might

be able to alleviate high fat diet-induced dysbiosis by reducing

Luminococcus (129) and Muribaculaceae (130), while enriching

Oscillobacter (129).

Anthocyanins may prevent neurodegenerative illnesses by

modulating the microbiome in the gut. Marques et al. explored

into this association in rats fed a high fat diet, which is

known to contribute to obesity-related neuroinflammatory

and neurobehavioral abnormalities via altering the gut flora.

Increased Oscillibacter were discovered in the gut of the

animals treated with the anthocyanin-rich blackberry extract.

They came to the conclusion that anthocyanin regulation

in the gut is linked to anti-neuroinflammatory properties

by lowering TCK-1 expression, and that anthocyanins might

affect the central nervous system by altering tryptophan

metabolism in the kynurenine pathway, thereby increasing

the production of neuroprotective metabolites and reducing

systemic inflammation (130).

Khan et al. recently shown that anthocyanins can lower

the expression of proinflammatory cytokines, preventing

against the pathogenesis of neuroinflammation and Alzheimer’s

disease (131, 132). Furthermore, anthocyanin has been shown

to protect against Alzheimer’s disease and synapsis-related

functions in A1-42-injected mice (133). By blocking α’-amylase,

anthocyanins may limit starch digestion. When this undigested

starch enters the large intestine, it feeds probiotic bacteria like

Lactobacilli, Bifidobacteria, and Streptococci, allowing them to

continue to boost health (134).

Quercetin and gut microbiota

Sources and chemical structures of
quercetins

Quercetin, a polyphenolic flavonoid, is abundantly present

in onions, kale, apples, cherries, and red wine. Quercetin binds

to sugar moieties like rhamnose or rutose in nature by attaching

a sugar group as a substitute for one of the OH groups,

forming quercetin glycosides and rutin (135). The sugar groups

linked to quercetin can change its solubility, bioavailability,

and bioactivities (136). Quercetin’s antioxidative properties are

essential in the prevention and treatment of illnesses. Different

pharmacological benefits of quercetin in treating osteoporosis,

blood pressure, cancer, and cardiovascular disease have been

described in animal and human research (136, 137) (Figure 6).

Bioavailability and metabolism of
quercetins

Based on human studies, oral quercetin is primarily

administered as a purified aglycone supplement. The typical

daily consumption of quercetin in China, the United States,

and Europe is 6–18mg (54, 135). The bioavailability of

quercetin after a single oral administration was found to be

relatively low in human pharmacokinetic trials. In healthy

people, the absorption rate of quercetin glucoside (the natural

form of quercetin) varies between 3 and 17%/100mg. Limited

absorption, extensive metabolism, and/or quick excretion may

all contribute to quercetin’s low bioavailability (136).

Quercetin metabolism occurs primarily in the liver.

After absorption, quercetin is transported to the liver, where

it undergoes phase I and phase II metabolism, producing

metabolites that circulate in the blood for distribution to body

tissues (138). To fully understand the concentration of quercetin

in plasma following repeated administration of quercetin-rich

meals, Mullen et al. evaluated the accumulation of quercetin

conjugates in human plasma after feeding the subjects with

onions on a regular basis. The participants consumed about

100mg of quercetin each meal from onion slices over three

meals for a week. Results showed that fasting plasma levels of

glucuronide and sulfate metabolites in participants increased

from 0.04 to 0.63µM. The primary plasma metabolites

quercetin-30-sulfate and−3-glucuronide reached their peak

levels after half an hour. Furthermore, after 4 h, the major

urine metabolites quercetin-diglucuronide,−3′-glucuronide,

isorhamnetin-3-glucuronide, and sulfate-glucuronide all peaked

(139). Compounds that were not absorbed in the small intestine

escaped to the large intestine, where colonic microbiota

degraded the quercetin into phenolic acid compounds that

were easily absorbed and delivered to the liver via the portal

vein (140).
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Interactions between quercetins and gut
microbiota

In the intestine, quercetin is metabolized by resident

microbiota, and the resulting products may have different

biological activities compared with the parent compound.

Reciprocally, quercetin may alter the microbiota’s composition,

which is one of the proposed mechanism of actions for these

chemicals. Through promoting beneficial flora and inhibiting

potentially pathogenic flora, quercetin can therapeutically target

gut microbiota and produce beneficial health consequences for

the human host (141).

Metabolism of quercetins by gut
microbiota

In the intestine, quercetin is converted by the microbiota

to 3,4-dihydroxyphenylacetic acid, also known as 3-(3-

hydroxyphenyl) propionic acid, 3,4-dihydroxybenzoic acid,

and 4-hydroxybenzoic acid. Bacteroides fragilis, Clostridium

perfringens, Streptococcus, Lactobacillus, Bifidobacterium, and

Eubacterium cladobacterium have been identified as the strains

that convert quercetin to the compounds indicated above

(54, 142). Jaganath et al. analyzed the microbial metabolites of

quercetin 3-O-rutinand suggested that they might enhance the

overall antioxidant capacity of the colon following ingestion of

quercetin-rich food (143).

Modulation of gut microbiota by
quercetins

Quercetin has a significant impact on the gut environment,

which in turn has an impact on the regulation of gut

microbiota. Food-pathogenic bacteria such as Staphylococcus

aureus, Escherichia coli, Listeria monocytogenes, and Vibrio

parahaemolyticus, as well as clinically important hospital

or community-associated pathogens, may be present

in the human gut microbiota. With the prebiotic and

antibacterial effects, quercetin may diminish these pathogenic

microbiota (144–146).

Lan et al. discovered that quercetin treatment improved the

diversity of gut microbiota, and the major changes in the gut

microbiota (Clostridium, Bacteroides, and Bacilli) were observed

at the class level. After quercetin treatment, there was an

increase in Lactobacillus and a decrease in Ruminococcus (144).

Meanwhile, Shi et al. discovered that quercetin supplementation

improved the diversity of the gut bacterial community

in antibiotic-treated mice. This was accompanied with an

increase intestinal barrier function, as the researchers observed

a decreased serum D-lactic acid concentration and serum

diamine oxidase activity. Intestinal villi length and mucosal

thickness were both increased considerably after quercetin

supplementation. In addition, quercetin promoted rebuilding

of mice’s gut microbiota following antibiotic therapy and

might be used as a prebiotic in the fight against gut

dysbiosis (147).

Quercetin, microbiome composition, and
related health benefits

By using a mouse model of atherosclerosis and feeding

the mice with quercetin for 12 weeks, researchers found

that quercetin could prevent damaged arteries caused by

a high fat diet, which was associated with significantly

altered Bacteroidetes, Firmicutes, and Proteobacteria as well as

increased Phascolarctobacterium and Anaerovibrio (148). Nie

et al. found that in mice fed with a high fat diet for 12

weeks, oral quercetin supplementation significantly enhanced

the immune/inflammatory responses and alleviated oxidative

stress. Microbial analysis performed at the phylum level

reported that quercetin treatment decreased the abundance of

Verrocomicrobia, while increased the diversity of the microbiota

and the abundance of Actinobacteria, Cyanobacteria, and

Firmicutes. In addition, quercetin decreased gut cholesterol,

lysophosphatidic acid, and atherogenic lysophosphatidylcholine

levels, while increased faeprostanol levels (149).

Additionally, Lan et al. studied the effect of quercetin

in alleviating osteoarthritis in a rats, and found that the

quercetin supplementation reversed osteoarthritis-associated

dysbiosis and changed the microbial metabolites. These studies

suggested that quercetin might be used as a potential therapeutic

approach in alleviating various diseases by modulating gut

microbiota (144).

Chlorogenic acid and gut microbiota

Sources and chemical structures of
chlorogenic acid

Chlorogenic acid (CGA), one of the most common

polyphenols in the human diet, is present in a variety of

fruits, vegetables, and herbs, including apples, coffee beans,

tea, and wormwood plants, and has a number of health-

promoting qualities (150, 151). Chlorogenic acid belongs to

the hydroxycinnamic acid family of phenolic compounds.

With a caffeic acid (CA) and a quinic acid (QA) moiety, it

is also known as 5-O-caffeoylquinic acid (5-CQA) (Figure 7)

(152). Chlorogenic acid has shown several beneficial effects

with its anti-oxidative, anti-inflammatory, anti-cancer and anti-

neurodegenerative activities (150).
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FIGURE 7

Chemical structure of chlorogenic acid.

Bioavailability and metabolism of
chlorogenic acid

The hydrophilic characteristic of chlorogenic acid prevents

it from passing through lipophilic membrane barriers after

oral administration, resulting in limited absorption and

bioavailability (153). It has been well-documented that

chlorogenic acid is accessible and processed differently in the

gastrointestinal tract, liver, and kidney in humans. In general,

the metabolic pathways of chlorogenic acid are as follows: (I)

in humans, around one-third of the chlorogenic acid in food

is absorbed intact and enters the bloodstream without being

hydrolyzed in the stomach and/or upper gastrointestinal tract;

(II) a small amount of chlorogenic acid (about 7%) is absorbed

throughout the small intestine, including hydrolysis to caffeic

and quinic acid; (III) colonic microbiota-mediated metabolism

of chlorogenic acid and absorption of metabolites; and (IV)

intact chlorogenic acid and its metabolites are absorbed and/or

metabolized in the liver (7, 154). Experiments in rat models

have shown that chlorogenic acid is rarely hydrolyzed in the

stomach and has no significant bioavailability before reaching

the colon (155). Most chlorogenic acids are transferred to

the large intestine and become small molecules with higher

biological activities through the decomposition and metabolism

by intestinal flora.

Interactions between chlorogenic acid
and gut microbiota

Chlorogenic acid is formed from the esterification of

caffeic acid and quinic acid and is often referred to as a

“non-polysaccharide” based prebiotic. Only a small fraction of

ingested chlorogenic acid is absorbed by the small intestine,

while the majority is metabolized in the large intestine where it is

extensively degraded by the gut microbiota. The gut microbiota

can break down chlorogenic acid into a series of low-molecular-

weight aromatic acid metabolites, including metacoumaric acid

and derivatives of phenylpropionic acid and benzoic acid, which

may be the main molecules responsible for its biological activity.

For example, benzoic acidmay support gut health bymodulating

gut microboita (156–158).

Metabolism of chlorogenic acid by gut
microbiota

The colon’s resident microflora could quickly hydrolyze

chlorogenic acid, and the resultant products could be further

metabolized by the hosts’ enzymes to produce additional

metabolites that are then released to the circulating systems.

When espresso coffee was cultivated with human stool samples

for 6 h, it was discovered that the colonic microbiota swiftly

decomposed all of the coffee chlorogenic acids, resulting in a

total of 11 catabolites (155).

Tomas-Barberan et al. conducted resting cell studies

on nine different colonic populations to investigate the

biotransformation of caffeoylquinic acid by diverse human

colonic microbiota. Before hydrolyzing their ester linkages,

different bacterial communities can hydrogenate, dehydroxylate,

or eliminate the quinic acid moiety. All conversion pathways

focus on 3-(3-hydroxyphenyl)-propionic acid (HPPA), which

is the final metabolite in most samples. The transformation

rate of caffeoylquinic acid was increased under the action of

Bifidobacterium animalis subsp. lactis (159).

It has also been reported that nearly 30% of ingested 5-CQA

is hydrolyzed to caffeic acid and quinic acid in the rat cecum (7).

These findings are in line with the in vitro evidence that human

fecal bacteria at least partially hydrolyze 5-CQA.

Modulation of gut microbiota by
chlorogenic acid

Chlorogenic acid may regulate the relative abundances

of some essential microbial species (e.g., Burkholderiales,

Desulfovibrio, Klebsiella, Desulfovibrionales, and

Bifidobacterium, among others), which consequently benefit the

host (155).

An in vitro study showed that chlorogenic acid significantly

increased the abundance of beneficial bacteria such as the

Bifidobacterium spp and the Clostridium coccoides-Eubacterium

rectale group (153). Chen et al. discovered that chlorogenic

acid treatment greatly enhanced the abundance of the phylum

Firmicutes, adding to our knowledge of the favorable effects of

dietary chlorogenic acid on improving nutrient bioavailability

(158). Meanwhile, dietary chlorogenic acid supplementation

reduced Bacteroides abundance in ileal samples from weaned

pigs, while Bacteroides are gram-negative obligate anaerobic

bacteria that have deleterious effects on the gut (156). Another
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study conducted by Ludwig et al. showed that the abundance

of bacteria from the phylum Proteobacteria in the cecal samples

of the chlorogenic acid group was significantly lowered. This is

important because most bacteria in the Proteobacteria phylum

have been shown to cause long-term intestinal inflammation and

injury in both neonates and adults (160).

Chlorogenic acid, microbiome
composition, and related health benefits

Chlorogenic acid, as well as its metabolites caffeic acid and

ferulic acid, are potent antioxidants. One study by Ding et al.

demonstrated that chlorogenic acid could efficiently ameliorate

cadmium-induced kidney and liver damage. Oral chlorogenic

acid supplementation significantly enhanced the abundance

of Rikenella and other anti-inflammatory bacteria, lowering

cadmium poisoning symptoms (161). Ye et al. investigated

the role of gut microbiota in the protection of obesity and

metabolic endotoxemia by supplementing C57BL/6 mice with

chlorogenic acid. As a result, chlorogenic acid altered the gut

microbiota’s composition by increasing the abundance of SCFA-

producing bacteria (e.g., Dubosiella, Romboutsia,Mucispirillum,

and Faecalibaculum) and Akkermansia, which was correlated

with enhanced intestinal barrier. Furthermore, animals with a

microbiota that was modified by chlorogenic acid had reduced

body weight and fat content, as well as developed less metabolic

endotoxemia (162).

Another study by Wang et al. found that administering

chlorogenic acid for 6 weeks reduced body weight, improved

plasma lipids linked with high fat diet-induced obesity, and

modulated lipogenesis and adipogenesis gene expressions

in the epididymal white adipose tissue (163). Furthermore,

chlorogenic acid treatment significantly decreasedDesulfovibrio,

Erysipelas, Lachnospira, and Ruminococcus, as well as increased

Bacteroidetes and Lactobacilli, which was associted with a

decreased obesity severity. Shi et al. aimed to investigate the

effect of chlorogenic acid on high fat diet-induced mouse

model of non-alcoholic fatty liver disease (164), and reported

that chlorogenic acid could reduce high fat diet-induced

hepatic steatosis and inflammation, lower serum transaminases,

and improve insulin sensitivity. Simultaneously, chlorogenic

acid increased the Bifidobacteria content while decreased the

Escherichia coli content in feces. These findings suggest that

chlorogenic acid, through its capacity for modulating gut

microbiota, may protect against high fat diet-induced hepatic

steatosis and inflammation.

Bhandarkar et al. hypothesized that chlorogenic acid could

improve cardiovascular, hepatic, and metabolic responses in a

high carbohydrate, high fat diet-induced rat model of metabolic

syndrome. Energy intake and food absorption efficiency

were reduced in rats with chlorogenic acid supplementation,

resulting in a reduction in visceral fat. With these, chlorogenic

acid may improve the overall metabolism by regulating the

diversity and profile of gut microbiota. Thus, long-term dietary

chlorogenic acid reduces diet-induced inflammation as well

as cardiovascular, hepatic, and metabolic changes, indicating

the potential for further clinical studies of chlorogenic acid

(165). However, there is a lack of well-designed clinical

trials that validated the efficacy of chloric acid in improving

metabolic health.

Current research and limitation

Phytonutrients modulate the gut microbiota through

multiple mechanisms. These pathways may act independently or

in crosstalk (Figure 8, Supplementary Table 1). Taken together,

the mechanisms by which phytonutrients interact with gut

microbiota and in turn affect human health include (I) direct

or indirect regulation on the composition of the gut microbiota,

which has an impact on the brain-gut-microbiota axis and other

processes, (II) metabolism by gut microbiota, which enhances

bioavailability and bioactivity of the phytonutrients, and (III)

synergistic activities of different types of phytonutrients.

By reviewing the roles and mechanisms of the representative

phytonutrients above, we conclude that the interactions between

phytonutrients and gut microbiota may confer multiple benefits

to human health (Table 1). However, various factors continue

to obstruct phytonutrient function, including phytonutrient

bioavailability, the composition of the gut microbiota, and the

processes through which the gut microbiota influences the

human body.

The physiochemical parameters that affect bioavailability of

phytonutrients include the chemical class, polarity, molecular

weight, structure of the phytonutrients, the activity of

gastrointestinal enzyme, and the enterocyte absorption

(177). Administering phytonutrients by modifying them into

appropriate dosage forms would be a strategy to improve the

efficiency of phytonutrient metabolism and absorption. Chen

et al. proposed the use of novel nano-formulation techniques

to target delivery of these phytonutrients. The cumulative

transport and bioavailability of nano-EGCG was about twice of

free EGCG, and the dose advantage of nano-EGCG to induce

apoptosis in prostate cancer cells was more than ten times (178).

In addition, the bioavailability of most phytonutrients

depends on the microbes in the gut. By regulating the

abundance and quantity of gut microbiota, the bioavailability of

phytonutrients can be effectively improved. For example, when

mice were fed with a diet rich in pectin-rutin, bacterial

abundances in Bacteroidetes, Clostridium, Eubacteria,

Enterobacteriaceae, Lactobacillus, and Streptococcus were

significantly increased, and plasma quercetin level was also

increased (179). Meanwhile, dietary phytonutrients were

metabolized by gut microbiota to form beneficial short-chain
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FIGURE 8

Summary of mechanisms associated with phytochemicals modulating gut microbiota. Created with BioRender.com.

fatty acids, which might differentially affect phytochemical

bioavailability by modulating gut microbiota.

Furthermore, while earlier research has explored the impact

of phytonutrients on gut microbial composition, little is known

about the synergic effects of intestinal epithelial integrity and

microbiota in regulating the bioavailability and bioactivity of

phytonutrients. Additionally, most research focused on fecal

samples, which may not accurately reflect the entire small

intestinal or cecal microbiome. In order to better depict the

dynamic changes of the gut microbiota and the intestine, an

appropriate animal model can be established for research. For

instance, Sun et al. investigated the interaction of curcumin

with gut microbiota in APP/PS1 double transgenic mice for

the treatment of Alzheimer’s disease. The findings suggested

that curcumin could affect the diversity of the gut microbiota,

and a range of metabolites were bio-transformed by the gut

microbiota, which would provide insights into the treatment

of Alzheimer’s disease (108). By addressing these questions, we

will have a clear understanding of the relationship between

phytonutrients and gut microbiota, as well as the mechanism by

which gut microbiota acts on human body, which will guide the

use of phytonutrients in the future.

Conclusion and prospects

Phytonutrients, as a class of nutritional supplements that

can be obtained from the daily diet, enter the body through

oral absorption, produce biologically active substances during

metabolism in the body, and regulate the abundance and

composition of intestinal flora. In this review, we focus on

phytonutrients, including catechins, curcumin, anthocyanins,

quercetin, and chlorogenic acid, to discuss their sources,

bioavailability, interaction with gut microbiota, and their
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TABLE 1 E�ect of phytonutrients on gut microbiota modulation and their major e�ects on human health.

Phytonutrient Source Type of study Change to microbiome Outcome of benefit References

Catechins Tea, cacaos, apples,

berries, grapes

Fermentation in vitro, in vivo

animal study

(+) Bifidobacteria

(–) Bacteroides

Prevotella,

Clostridium

histolyticum

Eubacterium-Clostridium

Alleviate inflammation, resist microbial

invasion, regulate immunity, protect the

nervous system, protect circulatory

system and cardiac tissues

(70, 166)

EGCG Green tea In vitro assay in bacterial

medium, in vivo animal and

human study

(+) Bacteroides,

Christensenellaceae,

Bifidobacterium

(–) Firmicutes, Bacteroidetes

Prevent GMD, suppress obesity,

modulates gut microbiota, alleviate

low-grade inflammation

(167–169)

Polyphenol Green tea In vivo animal study and

human study

(+) Firmicutes and Bacteroidetes Reduce weight, promote energy

conversion, reduce the levels of glucose,

triglycerides and total cholesterol

(170, 171)

Curcumin Turmeric Pilot study in humans (–) Clostridium

Bacteroides

Citrobacter

Cronobacter

Enterobacter

Enterococcus

Klebsiella

Resistance to inflammation,

neurotrophic effects, restore normal gut

microbial diversity

(93)

Anthocyanins Cranberry, grape In vitro (batchculture

fermentation)

(–) Bacteroides, Prevotella, Blautia,

Lactobacillus,

Bifidobacterium,

Enterobacteriaceae,

Ruminococcus

Control blood sugar, reduce insulin

resistance, reduce inflammation

(172)

Quercetin Green tea, lettuce,

cranberry, apple, onion,

In vivo animal and human

study

(–) Firmicutes, Erysipelotrichia and

Bacillus genus, Bacillus,

Eubacterium cylindroides,

Erysipelotrichaceae

Reduce inflammation, reduce insulin

resistance

(173, 174)

Quercetin Onions, tea, lettuce,

broccoli, apples

In vitro (human feces) (–) Escherichia coli, Streptococcus,

lutetiensis,

Enterococcus gilvus, Clostridium

perfringens, Bacteroides fragilis,

Lactobacillus acidophilus

Converted to beneficial metabolites by

C. perfringens and B. fragilis

(142)

Chlorogenic acid Ertain fruits, vegetables In vivo animal model (+) Bifidobacterium, Dubosiella,

Romboutsia, Mucispirillum,

Faecalibaculum, Akkermansia

(–) Escherichia coli

Reduce oxidative stress, reduce

inflammation, reduce acute lung injury,

protect cardiovascular

(162, 164)

Coffee and Caffeic

acid

Green and roasted coffee

beans, or red wine

In vivo animal and human

study

(+) Bifidobacterium spp. Prevention of colon cancer metastasis,

inhibit tumor cell transformation

(175, 176)

impacts on human health. Although the recent two decades

witnessed an increasing interest in the studies of phytonutrients

and microbiota, the research on the interaction between

phytonutrients and gut microbiota is still in its infancy. In the

foreseeable future, phytonutrients may be applied to pregnant

women to maintain gut health, promote neurodevelopment,

and benefit overall wellness of the infant. At the same time,

the application of phytonutrients in the formation of intestinal

flora in children can help mitigate adverse conditions such as

inflammation in body, thereby enabling health promotion at the

adolescent stage. In addition, phytonutrients may be used to

improve sub-health status in adults, and daily supplementation

of corresponding phytonutrients may have preventive and

therapeutic effects. Although phytonutrients have shown various

beneficial effects, more studies are warranted to explore how

gut microbiota may enhance these bioactivities, as well as the
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interaction between phytonutrients and gutmicrobiota. It would

also be intriguing to explore unbeknown potential beneficial

effects of phytonutrients and their microbial metabolites in the

prevention and/or mitigation of diseases.
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