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1D solitons in cubic‑quintic 
fractional nonlinear Schrödinger 
model
V. A. Stephanovich1*, W. Olchawa1, E. V. Kirichenko1 & V. K. Dugaev2

We examine the properties of a soliton solution of the fractional Schrö dinger equation with cubic-
quintic nonlinearity. Using analytical (variational) and numerical arguments, we have shown that the 
substitution of the ordinary Laplacian in the Schrödinger equation by its fractional counterpart with 
Lévy index α permits to stabilize the soliton texture in the wide range of its parameters (nonlinearity 
coefficients and α ) values. Our studies of ω(N) dependence ( ω is soliton frequency and N its norm) 
permit to acquire the regions of existence and stability of the fractional soliton solution. For that we 
use famous Vakhitov-Kolokolov (VK) criterion. The variational results are confirmed by numerical 
solution of a one-dimensional cubic-quintic nonlinear Schrödinger equation. Direct numerical 
simulations of the linear stability problem of soliton texture gives the same soliton stability boundary 
as within variational method. Thus we confirm that simple variational approach combined with VK 
criterion gives reliable information about soliton structure and stability in our model. Our results may 
be relevant to both optical solitons and Bose-Einstein condensates in cold atomic gases.

Nonlinear phenomena are realized in many branches of physics ranging from nonlinear optics (like self-focusing 
of laser beams), and Bose-Einstein condensation (BEC), to the theory of elasticity1–6. In this case, the nonlinear 
Schrödinger equation (NLSE) is utilized for their description. This equation expresses a balance between the 
dispersion (kinetic energy term, reduced to the Laplacian in ordinary systems) and nonlinearity and had been 
successfully applied to different nonlinear systems. To name o few, these are the systems with power-law (like 
cubic, quintic, and mixed cubic-quintic) and saturable nonlinearities2–8. In nonlinear optics, the NLSE is a basic 
tool to investigate light propagation in nonlinear optical media1,4,5. The majority of light beam shapes in this case 
are solitons - the nonlinear solitary waves, emerging as a result of a balance of nonlinearity and dispersion2,9. 
Because of their ability to propagate without altering their shapes, optical solitons have a promising future as 
primary signal carriers in telecommunication. It has been demonstrated in recent review articles6,10, that if the 
dispersion has the exotic ”fractional” form, the picture becomes richer and much more interesting physically, 
than in an ordinary case. Below we will also demonstrate this feature. One more example of the NLSE with cubic 
nonlinearity is the Gross-Pitaevskii equation (GPE), which is extensively used to study the mean field properties 
of the ground state of a system of identical bosons and thus is a central equation for BEC in ultracold bosonic 
gases3. In this case, the solitons with fractional dispersion play an important role, especially in the presence of 
spin-orbit coupling11. In this context, we also note the review paper6, where large corps of recent theoretical and 
experimental results dedicated to nonlinear localized textures in diverse media (ranging from systems with BEC 
to various optical setups) has been reviewed. This also includes the systems with fractional dispersion.

The description of boson systems in terms of GPE is appropriate only at a sufficiently low density of con-
densate, where two-body interactions dominate3. For higher densities three-body interactions enter the scene, 
generating quintic nonlinear terms in the corresponding NLSE. Thus, at higher boson density, the BECs are 
described by the NLSE with mixed cubic-quintic nonlinearity12,13. The one-dimensional (1D) NLSE with mixed 
cubic-quintic nonlinearity appears also in the context of optical pulses propagation in double-doped optical 
fibers with nonlinear effective refraction index1,14.

In dimensionless units ( � = m = 1 , where m is the mass of a boson in BEC setup) this equation has the form

(1)i
∂ψ

∂t
= −∂2ψ

∂x2
+ g|ψ |2ψ + χ |ψ |4ψ ,
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where g and χ are the nonlinear coefficients, corresponding to the two- (cubic nonlinearity) and three-body 
(quintic nonlinearity) interactions respectively. The signs of g and χ could be positive (repulsive interaction) or 
negative (attractive interaction) respectively. The substitution

(ω is a soliton frequency) recasts (1) into the following form

The soliton solutions of the equation (3) had been found in many papers (see, e.g.15–17) for different sign 
combinations of g and χ . It can be shown that these solutions, especially for the case of attractive interaction 
g ,χ < 0 are unstable according to Vakhitov-Kolokolov (VK) criterion18, being prone to either collapse or decay 
to zero. There exist several methods to stabilize such soliton texture. One of them is to use so-called optical lat-
tice (a spatially periodic polarization pattern, formed by counter-propagating laser beams) or external parabolic 
potential7,8. The other one is dynamic stabilization, where the time dependence is assigned to the coefficients 
g and χ . This is called nonlinearity management and is accomplished in such a way that the resulting soliton 
texture should avoid collapse (so-called collapse arrest) and otherwise become stable19.

Here we suggest one more method of soliton texture stabilization. It is related to the random management of 
the above NLSE in terms of so-called fractional derivatives, which describe non-Gaussian probability distribu-
tions. The former derivatives, in particular, generate so-called Lévy stable distributions20–23. The peculiar feature 
of these distributions is the power-law |x|−1−α decay of their probability densities, where 0 < α < 2 is the Lévy 
index. The latter character of decay means that Lévy stable distributions decrease much slower than ordinary 
Gaussian at α  = 2 . It can be shown that the case α = 2 corresponds to the conventional Gaussian distribution. 
To be specific, below we will show, that the replacement of ordinary Laplacian (second spatial derivative in 1D 
case) by fractional one in the NLSE (1) stabilizes its soliton solutions.

The Schrödinger equation with ordinary Laplacian being substituted by fractional one had been introduced 
by Laskin in the context of fractional quantum mechanics24. The introduction of the fractional Schrödinger 
equation was made possible in the Feynman picture of quantum mechanics25 , based on the path integral over 
all possible trajectories of a quantum particle. Namely, in fractional quantum mechanics, the path integral is 
taken over the trajectories, obeying Lévy (instead of Gaussian) statistics. In this case, as Lévy index α is respon-
sible for the deviation of the underlying system trajectories from Gaussian ones, this quantity plays a role of a 
phenomenological descriptor of the degree of disorder.

The fractional NLSE with cubic-quintic nonlinearities had been widely studied, see26,27 and references therein. 
In the present paper, using analytical (variational) and numerical arguments, we study the structure of soliton 
solutions of the above equation. As an introduction of the fractional derivatives in NLSE may be related to the 
disorder, we may consider the substitution of the ordinary Laplacian to the fractional one as a kind of disorder 
management or disorder engineering, leading to the soliton textures stabilization. So, one more aim of the present 
study is to address the possibility of soliton stabilization by the above disorder management, reduced in our case 
to the introduction of the fractional derivatives in the corresponding NLSE.

Our variational and numerical results reveal the ”phase diagram” of the soliton existence and stability in 
terms of variables � =

√
3g/(4

√
ωχ) (combination of parameters, entering the soliton solution of Eq. (3), see 

below) - α (Lévy index). For g = 0 , (corresponding to � = 0 ) we obtain our previous result28 that stable soliton 
textures exist in fractional NLSE with quintic nonlinearity at 2/3 < α < 2.

The plan of our paper is as follows. The basic fractional NLSE with cubic-quintic nonlinearity is discussed in 
the following section “The model”. Then, in the section ”Analytical results: the variational approach”, we present 
the variational method and obtain the soliton structure. The same method permits to investigate soliton stability 
on the base of VK criterion. This, in turn, allows to outline the existence and stability domains for the fractional 
solitons. Latter results, based on the computation of eigenvalues for small perturbations, are confirmed by direct 
numerical simulations of perturbed dynamics of the solitons in the section “Numerical results: soliton stability”. 
The last section "Conclusions" is devoted to possible generalizations of the model considered as well as to the 
physical implications of the results obtained.

The model
We consider the substitution of the ordinary second derivative in the NLSE (1) by the 1D fractional Laplacian, 
which is Riesz fractional derivative, defined by the following integral relation22–24,29,30

where 0 < α < 2 is the Lévy index. Note that at α = 2 the fractional 1D Laplacian (5) converts into ordinary 
second spatial derivative. The details of the corresponding transition are listed in the Appendix.

As the integral in (4) exists as the Cauchy principal value only, it is convenient to represent it in the form of 
the Fourier image, see Appendix for details

(2)ψ(x, t) = y(x)eiωt ,

(3)d2y

dx2
− ωy − gy3 − χy5 = 0,

(4)|�|α/2g(x) =Aα

∫ ∞

−∞

g(u+ x)− g(x)

|u|1+α
du,

(5)Aα =Ŵ(1+ α)

π
sin

πα

2
,
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The expression (6) implies that the Fourier image of the fractional Laplacian is simply −|k|α , which for α = 2 
yields the usual second derivative. The fractional equation, having soliton solutions for g ,χ < 0 , is obtained by 
substitution of (2) into (1) with respect to (4), (5). This generates following explicit equation for y(x)

where Aα is defined by (5). At α = 2 the equation (7) transforms into (3), which for this case has the exact soliton 
solution15–17 yα=2 ≡ y0

The parameters � and ω0 will be necessary in subsequent calculations. Also, in (8), we assume g ,χ > 0 so 
that we omit moduli signs. The solution (8) gives the interpolation between the cases of pure cubic ( χ = 0 cor-
responding to � → ∞ ) and quintic ( g = 0 , corresponding to � = 0 ) nonlinearities.

The norm of the solution (8) reads

First, we see that it also interpolates between known cases of quintic

and cubic

nonlinearities. Second, we see that for both asymptotic solutions the famous VK stability criterion18 dN/dω < 0 
does not hold. Namely, for the solution with quintic nonlinearity (10) we have dN/dω = 0 , i.e. so-called marginal 
stability7,8. At the same time, the solution with cubic nonlinearity (11) is plainly unstable, i.e. dN/dω > 0 for it. 
In the mixed case (9) we have

which also means soliton instability. Below we show that the introduction of the fractional derivatives will sta-
bilize the resulting soliton texture for α < 2 . Also, as for α = 2 , the mixed ”cubic-quintic soliton” is unstable, in 
the fractional case (7) of arbitrary α < 2 we will have the entire ”phase diagram” of soliton existence and stability 
in terms of variables α - �.

Analytical results: the variational approach
The variational functional corresponding to the nonlinear equation (7), has the form

Here the first term is the fractional gradient, which is best defined via its Fourier transform

Note that at α = 2 , the first term in (13) gives the square of the ordinary first spatial derivative.
The next step is to substitute the trial function, defining the soliton texture, into the energy function (13). To 

keep things as simple as possible, it is reasonable to consider the ”ordinary” solution (8) as a trial function. In 
this case we substitute the fixed parameters A0 and B0 with variational ones. Specifically, we consider the trial 
function of the form

(6)|�|α/2f (x) = − 1

2π

∫ ∞

−∞
|k|α f (k)e−ikxdk.

(7)Aα

∫ ∞

−∞

y(p+ x)− y(x)

|p|1+α
dp− ωy + |g|y3 + |χ |y5 = 0,

(8)

y0 =
A0

√

�+
√
1+ �2 cosh B0x

, A0 =
(

3ω

χ

)1/4

,

B0 =2
√
ω, � =

√
3g

4
√
ωχ

≡
√

ω0

ω
, ω0 =

3g2

16χ
.

(9)N0 =
∫ ∞

−∞
y20dx =

√

3

χ

[π

2
− arctan �

]

.

(10)N0(� = 0) = π

2

√

3

χ

(11)N0(� → ∞) = 4

g

√
ω

(12)
dN0

dω
= 3

8χ

1

ω3/2(1+ �2)
> 0,

(13)
Wα =

∫ ∞

−∞
dx

[

− 1

2

(

|∇|α/2y
)2 − ω

y2

2

+g
y4

4
+ χ

y6

6

]

, g ,χ > 0.

(14)|∇|α/2y(x) = − 1

2π

∫ ∞

−∞
|k|α/2y(k)e−ikxdk.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15031  | https://doi.org/10.1038/s41598-022-19332-z

www.nature.com/scientificreports/

where A and B are variational parameters. The best way to calculate the integral of the fractional gradient in the 
energy (13) for the trial function (15) is to use the Fourier image y(k) of the function y(x). Namely,

Substitution of the inverse Fourier image (14) of the function (16) into the integrand of the first term in (13) 
generates factor e−ix(k+k′) in it. After integration over x this yields 2πδ(k + k′) , where δ(z) is Dirac δ function. 
After integration over k′ we than arrive at the following expression for the first term. Substitution of (14) with 
respect to (16) into the first term (13) yields

Here we used the fact that Fourier image (16) is the even function of its argument. The variational energy 
then yields

where �f n� =
∫∞
−∞ f n(x)dx . The functions 〈f n〉 ( n = 2, 4, 6 ) have following explicit form

It is seen from (19) that functions 〈f n〉 are all positive and independent of A and B. This means that we can find 
the extremum of Eα (18) with respect to these parameters. After lengthy calculations we arrive at following result

where parameters A0 , B0 are defined by Eq. (8) and κα by (17). The requirement of positivity of the above param-
eters a2 and bα , generates the phase diagram of the soliton solution existence in terms of variables α - � . This 
phase diagram will be considered below with respect also to the line dN/dω = 0 , which defines the borders of 
the soliton stability. Our explicit numerical solution of the fractional equation (7) along with simulations of the 
soliton texture stability will show that the above border, obtained variationally, describes the numerical one with 
the very good accuracy, not exceeding 1%.

Note, that in Refs.10,11, the variational approach has also been applied to study the soliton textures in the sys-
tems with fractional Laplacians. Thus, it is instructive to compare our variational approach with those devised in 
the above references. Namely, in Ref.11, the variational method has been used to study the 1D and 2D solitons in 

(15)y(x) = Af (Bx), f (z) = 1
√

�+
√
1+ �2 cosh z

,

(16)
y(k) =A

∫ ∞

−∞
f (Bx)eikxdx

=A

B

∫ ∞

−∞
f (z)ei

k
B zdz ≡ A

B
ỹ

(

k

B

)

.

(17)

I1α =− 1

2

∫ ∞

−∞

(

|∇|α/2y
)2
dx = − 1

8π2

∫ ∞

−∞
|k|α/2

× |k′|α/2y(k)y(k′)dkdk′
∫ ∞

−∞
e−i(k+k′)xdx

=− 1

4π

∫ ∞

−∞
|k|α/2|k′|α/2y(k)y(k′)δ(k + k′)dkdk′

= − 1

4π

∫ ∞

−∞
|k|αy2(k)dk

=− 1

2π

A2

B2

∫ ∞

0

kα ỹ2
(

k

B

)

dk ≡ −καA
2Bα−1,

κα = 1

2π

∫ ∞

0

zα ỹ2(z)dz.

(18)Eα = −καA
2Bα−1 + �f 6�

B

[

χ
A6

6
+ g

�f 4�
�f 6�

A4

4
− ω

2
A2 �f 2�

�f 6�

]

,
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2
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]
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[
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(π

2
− arctan �
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,
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(π

2
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)

− 3�.

(20)
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3
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α − 1
2
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3



−1+
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Gross-Pitaevsky equations with spin-orbit interaction. In this case, the solution is a two-component spinor and 
thus is more complicated than our trial function (15). Also, as the exact solution of the problem with ordinary 
(i.e. that at α = 2 ) Laplacian is unknown, the authors11 use the general Gaussian variational ansätse for both 
spinor components. At the same time, the 2D ”mathematical counterpart” of our system has also been studied in 
Ref.10. Formally, it comprises one component two-dimensional nonlinear system with cubic-quintic nonlinearity 
and fractional kinetic energy (Laplacian). This corresponds physically to the vortex soliton textures in systems 
with fractional diffraction. Here, the numerical (instead of variational) solution of the corresponding fractional 
equation has been used to extract the information about the soliton structure. The 2D variational solutions have 
been provided for other solitons types like those in trapping potentials.

This shows the multitude of possibilities for relatively simple variational approaches in the investigation 
of solitons structure, especially in higher dimensions, where the direct numerical simulations become quite 
computer-intensive and require additional care as the numerical scheme by itself may become unstable.

Substitution of the energy minimizing parameters (20) into the trial function (15) generates following vari-
ational soliton solution

Here, the function f(z) is defined by (15). The variational solution (21) is reported in Fig. 1 for two selected 
values of soliton frequency in the units of ω0 (8). The shape of solutions at other ω is qualitatively similar to 
those shown in Fig. 1. It is seen that as Lévy index approaches the corresponding critical values ( αcr ≈ 0.6266 
for ω = ω0 and αcr ≈ 0.6491 for ω = 5ω0 ), the solution becomes progressively more peaked so that at α → αcr 
the peak height goes to infinity. That being said, at α → αcr(�) we have the soliton collapse due to “excessive 
fractionality”. Note, that as Lévy index can be viewed as a measure of disorder in a system (see, e.g.22,28,31–33), the 
values αcr can be regarded as some threshold disorder strength, at which the solitons cease to exist in a system.

For the variational solution (21), the soliton norm can be easily expressed in the form

which permits to obtain the explicit expression for N(ω) in fractional case. Substitution of (19) and (20) into 
(22) yields

(21)y1 = af (bx1), y1 =
y

A0

, x1 = B0x.

(22)N = A2

B
�f 2�,

(23)

N(ω) =N0�
1
2
− 1

α
a2(�)

b(�)

[

π

2
− arctan

1√
�

]

,

N0 =
2
√
3

4
1
α
√
χ
ω

1
2
− 1

α
0 , � = ω

ω0
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Figure 1.   The variational solution (21) for the fractional soliton for ω = ω0 ( � = 1 , left panel) and ω = 5ω0 
( � = 1/

√
5 , right panel), plotted for Lévy indices α (legend in the left panel) down to their critical values αcr(�) 

for soliton existence. Namely, for ω = ω0 ( � = 1 ) αcr ≈ 0.6266 , while for ω = 5ω0 ( � = 1/
√
5 ) αcr ≈ 0.6491 . 

We plot the critical soliton textures for α (shown near the corresponding curves), slightly larger that the critical 
values, for better visualization. Curves, labeled ”unstable”, correspond to Lévy indices, for which dN/dω > 0 , i.e. 
VK stability criterion does not fulfilled.
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Here a and b are minimizing variational parameters (20). They are the functions of parameter � and by this 
virtue of � , see Eq. (8). It is seen that at α = 2 , the dependence N(ω) (23), identically gives (9), derived for the 
”ordinary” soliton. The dependence N(ω) (23) as well as its frequency derivative is shown in Fig. 2. It is seen 
from the left panel that at α = 2 the dependence N(ω) increases monotonically so that dN/dω > 0 everywhere. 
According to VK criterion18 this means that the soliton texture is unstable. On the other hand, our analysis of 
the expression (23) shows, that as soon as α becomes less than 2 (fractional case), the dependence N(ω) stops 
being monotonously growing. Rather, it acquires a maximum, where dN/dω = 0 and then decreases, giving rise 
to stable soliton textures with dN/dω < 0 . More specifically, an infinitesimal deviation of α from 2 generates 
such a maximum at very large � → ∞ . At smaller α this maximum shifts towards smaller, finite ω/ω0 (see, e.g., 
the curves N(ω) on the left panel of Fig. 2, corresponding to α = 1.5 and 1.3) and finally, at α → 1 , it occurs at 
ω = 0 and at α < 1 disappears. This gives rise to complete soliton stability at αcr < α < 1 , where αcr depends 
on � , see Fig. 1. The collection of points � , at which dN/dω = 0 comprises the curve, where the stable soliton 
starts to exist. This curve will be shown below, in the soliton phase diagram. The right panel of Fig. 2 visualizes 
the above behavior in terms of the derivative dN/dω (specifically, d(N/N0)/d� ). It is seen that while the deriva-
tive is strictly positive at α = 2 , at α = 1.5 there is already the negative part of the dN/dω curve (see also inset, 
which shows this in more details) and at α = 0.7 the derivative is strictly negative, going to very large negative 
numbers as ω → 0.

The soliton ”phase diagram” is reported on the left panel of Fig. 3 in terms of variables α - � . The right panel 
of Fig. 3 shows that it can be represented equally well in terms of � = 1/

√
� rather than � . However, it seems 

to us to be ”more physical” to use variable � = ω/ω0 as it explicitly relates the actual soliton frequency to the 
combination of cubic g and quintic χ nonlinearity coefficients. It is seen from the left panel, that the stable soliton 
textures exist between two curves: upper dN/dω = 0 (stability boundary) and lower defining αcr(�) , where the 
soliton transforms to something similar to Dirac δ - function. Right panel of Fig. 3 shows that the latter curve 
interpolates between the cases of pure quintic nonlinearity ( g = 0 ) with αcr = 2/3 and pure cubic nonlinearity 
( χ = 0 ) having αcr = 1/2 . As the case of quintic nonlinearity ( g = 0 ) corresponds to ω0 → 0 (see Eq. (8)), at 
large � soliton begins to stabilize ( N(ω) acquires maximum) already for α infinitesimally less than 2, see the 
discussion above. This is because in the case of quintic nonlinearity ( g = ω0 = 0 ) the soliton texture stabilizes 
immediately as the equation ”fractionalizes”, i.e. α becomes less than 2, see Ref.28 for details. At the same time, 
in the opposite limiting case of cubic nonlinearity ( χ = 0 , ω0 → ∞ , � → 0 ), the stable soliton exists at α < 1 
only. This explains the transition of the curve dN/dω = 0 from � → ∞ at α → 2 to � → 0 at α = 1 . The Fig. 3 
explains why some curves in Fig. 1 are labeled ”unstable”. This is because their Lévy indices α lie above the stabil-
ity boundary dN/dω = 0 for ω/ω0 = 1 and 5 respectively.

This shows that above simple variational approach not only permits to obtain the fractional soliton struc-
ture, but predicts its stability (within VK criterion) at certain range of Lévy indices and dimensionless soliton 
frequencies � , which includes nonlinearity coefficients g and χ . This is one of the main results of the present 
consideration, which will be confirmed below by direct numerical simulations.

Numerical results: soliton stability
To check the accuracy of the above variational approach, it is instructive to compare its results with the direct 
numerical solution of the equation (7). For that, we bring this equation to the units (21). The comparison of 
numerical and variational results for selected values of α at both � = 1 and 5 are portrayed in Fig. 4. It can be 
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seen that the qualitative behavior of the numerical solutions is similar to that of the variational one. Namely, at α 
diminishing from 2 to its critical value αcr(�) , the amplitude of the soliton grows so that at α → αcr the solution 
resembles Dirac δ - function. To have better insight into the quantitative features of numerical and variational 
solutions, we plot the solutions for each α (except for α = 1.1 and lower) on separate panels. It is seen that while 
in the ”ordinary” case of α = 2 the numerical and variational solutions are similar to each other (this can also be 
considered as a ”sanity check” of our approach), at α < 2 , the main difference of the variational and numerical 
solution occurs at the wings of the solution. Latter discrepancy becomes progressively larger as α approaches 
αcr . It is seen that at α = 0.7 at � = 1 and α = 0.8 at � = 5 , the discrepancy on the wings is really large. We note 
also that as it was numerically difficult to obtain the solutions for α → αcr corresponding to those in Fig. 1 (i.e. 
α = 0.64 for � = 1 and α = 0.69 for � = 5 ), we choose higher values α = 0.7 and 0.8 respectively, as shown 
on Fig. 4.

The main point behind those difficulties is the following. As our fractional soliton problem (8) formalizes as 
a boundary value problem for a nonlinear integral equation, its numerical solution is performed by the problem 
discretization and its reduction to the (very large to achieve reasonable accuracy) set of nonlinear algebraic 
equations (see, e.g.34,35), which then can be solved by (for instance) Newton-Raphson method. In our numerical 
calculations, to achieve satisfactory accuracy, we need to have around 10000 discretization steps on the interval 
(-20 - 20) (to have a ”reserve” for solution convergence as compared to the interval -5..5, which is depicted on 
Figures 1 and 4), which makes the task quite computer intensive. At the same time, as α → αcr , the above grid 
becomes insufficient to achieve desired accuracy so that we should choose a progressively larger number of steps, 
which requires an extremely long time to obtain (even not that accurate as for at higher α ) solution.

Our analysis shows that this outcome of variational treatment is since our simple trial function (8) has expo-
nential asymptotics at infinities, while it is well-known (see, e.g.,21–23,36) that the asymptotics of the fractional 
differential equations solutions is usually power-law. Latter power-law asymptotics starts to manifest itself for 
α ’s somewhere close to αcr for each dimensionless soliton frequency � = ω/ω0 . To avoid this problem, we can 
construct more intricate trial function with asymptotics, dependent on Lévy index α , see, e.g.31–33,37. Also, the use 
of a multi-parametric trial function would improve coincidence with numerics. Latter approaches, however, will 
complicate our analytical consideration a lot with no substantial gain in the understanding of the physical prob-
lem under consideration. This shows that our variational treatment with a simple one-parametric trial function 
captures well the soliton structure everywhere outside the narrow region near αcr . Below we will see that it gives 
also a very good approximation to the ”integral characteristics” of the soliton, like N(ω) as well as its phase dia-
gram, i.e. lines αcr(�) and dN/dω = 0 . This shows that the considered variational approach could be considered 
as an efficient analytical tool to obtain and study the solution of the soliton equations with fractional derivatives.

The comparison of analytical (variational) and numerical dependences N(ω) is reported in the left panel of 
Fig. 5. The numerical dependences N(ω) have been obtained by integration of the corresponding solutions at 
different α . The quantitative coincidence with expression (23) is clearly seen: while at α = 2 the norm N grows 
everywhere, at α = 1.5 (essentially already at α < 2 , see above), the maximum N(ω) appears, after which this 
function starts to decrease so that according to VK criterion, the soliton stabilizes. The little discrepancy in the 
positions of the N(ω) maxima is due to the discrepancy at the tails (or wings) of numerical and variational soliton 
solutions. It can be shown that for all α except those close to αcr , the maximal error between numerical and 
variational results is around 7%. As at α → αcr , we have difficulties (extremely long time of solution, see above) 
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in obtaining the numerical solution of the equation (8), we opt to show only a small portion of the numerical 
curve N/N0(�) on the left panel of Fig. 5.

Despite the above numerical difficulties of obtaining solutions near αcr , the curve αcr(�) , signifying the 
soliton existence boundary can be calculated with sufficient accuracy. This curve along with stability boundary 
dN/dω = 0 (which is not difficult to obtain numerically) is reported in the right panel of Fig. 5. The pretty good 
coincidence between numerical and variational curves is seen. The average error in this case is less than 5% so 
that out simple variational approach shows its reliability in calculation of the ”integral” soliton characteristics. 
The only thing we need now is to numerically check if really VK criterion of stability signifies it in the case of 
fractional textures. The crux of the matter here is that the VK criterion itself had been proven for ordinary (i.e. 
without fractional derivatives) soliton textures18 so that it is highly desirable to check the linear stability of our 
soliton solution by applying direct numerical simulations.

To accomplish the above task, we consider the linear stability problem for the soliton solution of the initial 
fractional NLSE (1) with ordinary Laplacian being substituted by fractional one (5). We look for its solution in 
the following complex form

Here y(x) is unperturbed soliton texture (i.e. the above numerical solution of the equation (7)) and asterisk 
means complex conjugation. Substitution of (24) into fractional NLSE with its subsequent linearization over p 
and q generates following eigenvalue problem

where −|�|α/2 is defined by (4). By solving numerically the spectral problem (25), we obtain the spectrum 
of eigenvalues � = �r + i�i , where �r,i are, respectively, the real and imaginary parts. It can be shown that the 
necessary condition of y(x) stability is that all real parts �r of the eigenvalues � are zero. In this case, the main 
role in the stability plays the sign of the lowest eigenvalue i�i = p0 . Namely, if p0 < 0 , the soliton is stable since 
the correction ∼ e�t = e−p0t to y(x) decays exponentially, i.e. after small perturbation, the system comes back 
to its initial state. In the opposite case p0 > 0 we have exponentially growing perturbations and the soliton is 
unstable. Under lowest we understand the eigenvalue having largest modulus, in which case the exponential 
decay of the perturbation is strongest.

The numerical behavior of p0 versus α at different � (figures near curves) is reported in the left panel of Fig. 6. 
It is seen that for all � at α close to 2, the soliton is unstable as in this range p0 > 0 . The p0 is positive until some 

(24)ψ(x, t) =
[

y(x)+ p(x)e�t + q∗(x)e�
∗t
]

eiωt , p, q << y.

(25)

L̂p− f (x)q = i�p, L̂q− f (x)p = −i�q,

L̂ = −|�|α/2 + ω − 2gy2(x)− 3χy4(x),

f (x) = y2(x)(g + 2χy2(x)),
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threshold value αtr of Lévy index, where p0 changes its sign abruptly. Then, at α < αtr , the sign of p0 becomes 
negative, going to minus infinity almost vertically. This infinity is achieved at α = αcr (soliton existence bound-
ary, see left panel of Fig. 3 and right panels of Figs. 5 and 6) so that at this point the soliton is ”infinitely stable” 
similar to the case of pure quintic nonlinearity28. We note in this context, that the case of pure quintic nonlin-
earity corresponds to ω0 → 0 or � → ∞ . Our calculation shows that as � becomes larger and larger than 50, 
the αtr → 2 so that the range of positive p0 collapses into a point α = 2 and soliton becomes stable as α become 
infinitesimally smaller than 2. This result is also in agreement with28.

If we take the points αcr for each � from the left panel of Fig. 6 and plot them, we see immediately (blue points 
in the right panel of Fig. 6) that these points fall perfectly on the curve dN/dω = 0 , which defines the soliton 
stability boundary according to VK criterion. This means that our direct numerical simulations confirm the VK 
stability criterion for the ”fractional soliton” in a system with cubic-quintic nonlinearity. That being said, the 
soliton phase diagram in the right panel of Fig. 6 now becomes numerically corroborated. Note that the points 
αtr coincide with the numerically (from the calculations of soliton textures, see Fig. 4) obtained stability bound-
ary curve dN/dω = 0 within 1% accuracy. The numerical curve, in turn, is very close to the variational one, see 
above. This once more shows that our simple variational approach, being much less laborious, gives very accurate 
information about the soliton structure and stability.

Conclusions
It has been a principal goal of this article to investigate the structure and stability of the texture, emerging as 
a soliton solution of the fractional NLSE with cubic-quintic nonlinearity. The main outcome of present study 
is that to stabilize the initially unstable soliton texture, we do not need complex setups like optical lattice and/
or traps for Bose-Einstein condensates. It turns out that to stabilize the soliton (although in our so far simple 
1D model) it is sufficient to substitute the ordinary Laplacian in the NLSE to the fractional one. The possible 
rationale behind the latter substitution is that the ”fractionalization” (say, the deviation od Lévy index α form 2 
in a fractional Laplacian) may come from the strong (i.e. non-Gaussian) disorder in a system31–33.

The major argument here is that a disordered system typically has a wide, non-Gaussian distribution of its 
characteristics33. Such strong disorder in quantum mechanics typically causes the localization of initially (before 
the disordering of a sample like its amorphization) itinerant states. The renowned Anderson localization38 can 
be explained in this way. This refers to ”greater localization” of the soliton in the context of our problem, such 
as its collapse at α = αcr (Figs. 1 and 4), so that it becomes ”more stable” than in the ordinary ”non-fractional” 
situation, which corresponds to α = 2.

Here, using analytical (variational) and numerical arguments, we construct the soliton phase diagram (ranges 
of its existence and stability) in terms of variables � = ω/ω0 (or, concurrently � , see Eq. (8)) - α . This phase 
diagram shows that soliton exists and is stable in the wide range of its nonlinearity coefficients g and χ (which 
merge in a single parameter � or � ) as well as disorder strength, characterized by the Lévy index α . Moreover, 
Fig. 6 shows that the soliton stability boundary, obtained from VK criterion18 coincides with that, obtained by 
direct numerical solution of linear stability problem (25). This means that for our system with mixed cubic-
quintic nonlinearity, the VK criterion gives a reliable answer on the soliton stability question. This, in turn, sig-
nifies that our simple variational approach with two-parameters trial function, being much less laborious, then 
direct numerical solution of nonlinear integral equation (7), gives very accurate (within few per cent accuracy) 
information about soliton structure and stability. Our preliminary results show that the same variational method 
can be well applied to the systems with more complex nonlinearity (like saturation one) as well as to systems in 
higher dimensions. We note, that for 2D and 3D systems, the numerical solution of corresponding fractional 
equation becomes prohibitively slow even in the problems with cylindrical (2D) or spherical (3D) symmetries. 
This is because the 2D or 3D interval 0 < r < ∞ (rather than −∞ < x < ∞ in our 1D case) imposes additional 
limitations on the iterative solutions of the set of nonlinear equations, obtained from the initial integral one. The 
results of these studies will be published elsewhere.

We note that here, similar to the case of purely quintic nonlinearity28, we can develop the perturbation theory 
with the small parameter being the deviation of α from 2. The point is that such perturbational expansion is the 
only analytical instrument available to study the soliton solutions in models of any complexity when variational 
solution is impossible for some reasons. Although perturbational calculations (particularly in higher orders and 
for models with complex nonlinearities, notably in the external potentials) can be very cumbersome, they serve 
as guidance for numerical simulations as the nonlocal nature of fractional derivatives makes even the numeri-
cal computations challenging. Latter is especially true for higher spatial dimensions. Also, the stability effects 
(for example using VK criterion, which should then be checked numerically) can be studied analytically within 
the latter technique. On the other hand, the perturbational solution can be viewed as ”exact” in the range of its 
applicability. As a result, it is possible to think of a perturbational soliton as complementary to a variational one 
near α = 2 . This is largely true for the models (including our with mixed cubic-quintic nonlinearities), where 
we have the exact solutions for the ”ordinary” case α = 2 . Latter solution gives extremely convenient zeroth 
approach to further develop the perturbation theory.

The results reported here may be used to control (e.g. by varying Lévy index α and/or nonlinearity coef-
ficients) the properties of nonlinear systems with a significant disorder. To be specific, it is common knowledge 
that disorder (especially strong like crystalline solid amorphization) is usually considered as an unwanted effect. 
However, in recent years, its helpful features have grown more and more apparent. Specifically, the impacts of 
disorder provide an extra opportunity to fine-tune the system’s physical properties in addition to standard exter-
nal stimuli like electromagnetic fields, optical lattices, and/or confining potentials. Specifically, by manipulating 
the type and concentration of different imperfections (like point or extended defects in solids used in nonlinear 
optics), we can alter the physical properties of a disordered host in the desired direction. In other words, this 
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enables us to modify a system’s features to satisfy specific requirements, needed, for instance, in optoelectronics. 
It had been demonstrated in recent papers6,10 that there are many physical systems, where the balance between 
nonlinearity and fractional, disorder-driven, dispersion, produces many intriguing effects, which do not occur in 
ordinary (i.e. those with Lévy index α = 2 ) systems. This is also true in systems with Bose-Einstein condensates 
having fractional dispersion11.

Methods
The details of our theoretical methodology and those of working with fractional derivatives and fractional 
Laplacians, in particular, have been described in the sections “The model” and ”Analytical results: the variational 
approach”. The numerical solutions of boundary value problems for fractional NLSE have been conducted using 
the commercial Mathematica software package as well as C++ routines, partially written ad hoc and partially 
taken from the standard libraries like LAPACK.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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