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OBJECTIVE—This study was aimed at obtaining a profile of
lipids and proteins with a paracrine function in normal and
diabetic vitreous and exploring whether the profile correlates
with retinal pathology.

RESEARCH DESIGN AND METHODS—Vitreous was recov-
ered from 47 individuals undergoing vitreoretinal surgery: 16 had
nonproliferative diabetic retinopathy (NPDR), 15 had prolifera-
tive diabetic retinopathy, 7 had retinal detachments, and 9 had
epiretinal membranes. Protein and lipid autacoid profiles were
determined by protein arrays and mass spectrometry–based
lipidomics.

RESULTS—Vitreous lipids included lipoxygenase (LO)- and
cytochrome P450 epoxygenase (CYP)-derived eicosanoids. The
most prominent LO-derived eicosanoid was 5-hydroxyeicosate
traenoic acid (HETE), which demonstrated a diabetes-specific
increase (P � 0.027) with the highest increase in NPDR vitreous.
Vitreous also contained CYP-derived epoxyeicosatrienoic acids;
their levels were higher in nondiabetic than diabetic vitreous
(P � 0.05). Among inflammatory, angiogenic, and angiostatic
cytokines and chemokines, only vascular endothelial growth
factor (VEGF) showed a significant diabetes-specific profile (P �
0.05), although a similar trend was noted for tumor necrosis
factor (TNF)-�. Soluble VEGF receptors R1 and R2 were de-
tected in all samples with lowest VEGF-R2 levels (P � 0.05) and
higher ratio of VEGF to its receptors in NPDR and PDR vitreous.

CONCLUSIONS—This study is the first to demonstrate diabe-
tes-specific changes in vitreous lipid autacoids including arachid-
onate and docosahexanoate-derived metabolites indicating an
increase in inflammatory versus anti-inflammatory lipid media-
tors that correlated with increased levels of inflammatory and
angiogenic proteins, further supporting the notion that inflam-
mation plays a role the pathogenesis of this disease. Diabetes
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T
he evolving concept that there is an inflamma-
tory basis for diabetic retinopathy in its early
stages characterized by overexpression of proin-
flammatory factors has gained much support and

has led to the identification of potent proinflammatory
transcription factors, chemokines, and cytokines in dia-
betic retinas and vitreous (1–3). There are two main stages
of diabetic retinopathy—the earliest, nonproliferative dia-
betic retinopathy (NPDR), is characterized by structural
changes in capillaries that lead to bleeding and leakage
and now is thought to have an inflammatory basis. As the
disease progresses, angiogenic factors are secreted that
induce the growth of new retinal blood vessels (neovas-
cularization), which marks the next and most destructive
phase, proliferative diabetic retinopathy (PDR).

A noninclusive list of upregulated factors in the diabetic
vitreous includes vascular endothelial growth factor
(VEGF), VEGF angiogenic isoforms angiogenin (ANG),
angiopoietin (ANG-2), hepatic growth factor (HGF), insu-
lin like growth factor (IGF)-1, interleukins (IL-8, IL-6,
IL-10), leptin, matrix metalloproteases (MMP-9, MMP-2),
and monocyte chemoattractant protein-1 (MCP-1) among
others. Also seen in the diabetic vitreous are parallel
decreases in the concentrations of many angiostatic fac-
tors including pigment epithelial-derived factor (PEDF),
endostatin, and the soluble vascular endothelial growth
factor receptor-1 (VEGF-R1) (3–6). Many of these factors
are multifunctional in nature. There is now considerable
evidence that some of the angiogenic factors also act to
increase nerve and other cellular apoptotic processes,
thereby contributing to the compromised functional integ-
rity of the neurological processing network in the retina
and other tissues. To what extent specific factors contrib-
ute to the overall pathologic processes is currently uncer-
tain, since comparable changes in the concentration of
many of these factors have been observed secondary to
retinal detachments that are not diabetic related.

Almost all the work exploring the presence of inflam-
matory and angiogenic molecules in the diabetic vitreous
has focused on bioactive proteins and has ignored the
contributions of lipid mediators including various arachi-
donic acid–derived eicosanoids of the cyclooxygenase
(COX), lipoxygenase (LO), and cytochrome P450 monoox-
ygenase (CYP) pathways. Although eicosanoids released
from infiltrating cells can amplify the inflammatory re-
sponse, their ability to be produced endogenously from
the injured tissue renders them able to initiate the inflam-
matory response by altering vascular permeability and
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stimulating leukocyte chemotaxis. Prominent proinflam-
matory and angiogenic eicosanoids include the COX-
derived prostaglandins (PGE2 and TxB2), the LO-derived
leukotrienes, and the CYP-derived 12(R)-hydroxyeicosa-
trienoic acid (12-HETrE) (7–9). Among the anti-inflamma-
tory eicosanoids are the LO-derived lipoxins (10) and
CYP-derived epoxyeicosatrienoic acids (EETs) (11). The
role of eicosanoids in the pathogenesis of diabetic retinop-
athy is largely unknown.

The vitreous accumulates lipids and proteins with para-
crine functions from the retina. This study aims at obtain-
ing a partial profile of these entities in the normal and
diabetic vitreous and exploring whether their presence
correlates with retinal pathology. Accordingly, vitreous
samples from nondiabetic patients with retinal detach-
ment (RD) or from patients undergoing epiretinal mem-
brane (ERM) surgery and from diabetic patients with PDR
and NPDR were analyzed. This study is the first to
demonstrate diabetes-specific changes in vitreous eico-
sanoids indicating an increase in inflammatory versus
anti-inflammatory lipid mediators. It is also the first to
document the presence of soluble VEGF-R2 in human
vitreous and to suggest that the relative concentration of
VEGF to its soluble receptors is indicative of the diabetic
status.

RESEARCH DESIGN AND METHODS

Vitreous was obtained after informed consent according to the Association for
Research in Vision and Ophthalmology guidelines and with the approval of
institutional review boards from the University Hospital of Padua, Italy, and
Sacro Cuore Hospital, Negrar VR, Italy. Vitreous samples were obtained from
47 patients undergoing vitreoretinal surgery: 31 (66 � 2 years old) were
diabetic, with fasting blood glucose at the time of surgery averaging 169.40 �
12.71 mg/dl (P � 0.02 vs. nondiabetic subjects), 16 (68 � 2 years old; 166.50 �
24.89 mg glucose/dl) had NPDR, and 15 (63 � 3 years old; 171.50 � 13.20 mg
glucose/dl) had PDR. All patients with NPDR or PDR were in the “active” form
of the disease at the time of surgery and were diagnosed with either type 2
diabetes (n � 28) or type 1 diabetes (n � 3). The remaining 16 nondiabetic
subjects (64 � 4 years old) with blood glucose of 120.50 � 12.26 mg/dl
underwent vitreoretinal surgery for repair of a retinal detachment (RD) (n �
7; 55 � 7 years old; 142.00 � 26.33 mg glucose/dl) or surgery for an epiretinal
membrane (ERM) (n � 9; 71 � 2 years old; 106.10 � 9.24 mg glucose/dl).
Samples were transferred on dry ice and stored at �80°C until analyzed. The
amount of vitreous in the samples varied; consequently, not all samples were
analyzed for inflammatory and angiogenic proteins (numbers are indicated in
the table and figure legends).
Lipidomics. Frozen vitreous samples (�10 �l) were thawed on ice, and two
volumes of methanol and 500 pg each of d4-PGE2, d8-12-HETE, d11-11(12)-
DiHETrE (dihydroxyeicosatrienoic acid), d11-8(9)-EET, d6-20-HETE, and d8-
11(12)-EET were added as internal standards. Samples were then centrifuged
at 1,500g for 15 min at 4°C, and supernatants were diluted with water and
acidified to pH 4.0 with 2 mol/l HCl. The pellet was saved and used for protein
determination using the Bio-Rad Protein Assay. Solid-phase lipid extraction
was performed using C18-ODS AccuBond II 500-mg cartridges (Agilent
Technologies, Santa Clara, CA) as described (12). Eicosanoid and docosanoid
identification and quantification was carried out using a Q-trap 3200 linear ion
trap quadruple liquid chromatography-tandem mass spectrometry (LC/MS/
MS) equipped with a Turbo V ion source operated in negative electrospray
mode (Applied Biosystems, Foster City, CA) as described (12). Multiple
reaction monitoring was used with a dwell time of 25 or 50 ms for each
compound with resource parameters: ion spray voltage (4,500 V), curtain gas
(40 units), ion source gas flow rate (165 and 250 units), and a temperature of
600°C. Synthetic standards were used to obtain standard curves (5–500 pg) for
each compound and internal standard. The given amounts in each sample
were corrected for loss during extraction and normalized to protein content.
Qualitative membrane arrays. Preliminary screening was carried out using
a large commercial membrane array kit (Human Cytokine Array V; RayBio-
tech, Norcross, GA) that contained duplicate dots of capture antibodies
specific for 79 cytokines, growth factors, and angiogenic modulators on a
cadaver vitreous sample as described (13). The results of this analysis
identified 12 of the 79 probed proteins as the major components in human
vitreous. Therefore, individual and pooled vitreous samples were probed

using membrane kits for 43 angiogenic protein modulators (Human Angio-
genic array, RayBiotech), which screened for all but two of the 12 detected
proteins (human interferon-inducible protein 10 [IP-10] and macrophage
inflammatory protein 1�). Analysis was carried out by coupling the sandwich
ELISA array kits to a femtogram/ml-sensitive substrate as described (13).
Each analytic set was accompanied by a fresh set of two membranes
developed in tandem that served as blank controls in the absence of added
vitreous. Images were documented on an LAS-4000 mini image station
(Fujifilm).
Quantitative micro-well plate-based arrays. Three micro-well arrays were
used in this study: 1) an angiogenic array (Quansys Biosciences, Logan, UT)
specific for ANG-2, VEGF, basic fibroblast growth factor (bFGF), platelet-
derived growth factor-BB (PDGF-BB), HGF, tissue inhibitors of metallopro-
tease (TIMP-1 and- 2), tumor necrosis factor (TNF)-�, and VEGF-A; 2) a
chemokine array specific for GRO� (growth-regulated oncogene), IL-8, IP-10,
MCP-1, RANTES (regulated upon activation, normal T-cell expressed and
secreted), and TARC (thymus- and activation-regulated chemokine) (Quansys
Biosciences, Logan, UT); and 3) a custom-designed array specific for
VEGFR-1, VEGFR-2, and TNF-R2 (Aushon Biosystems, Boston, MA). The
assay protocol and reagents were modified to increase detection sensitivity to
the femtogram/ml range as described (14). The plates were imaged using a
Fuji film mini Las 4000 imaging station equipped with a high quantum
efficiency cooled digital camera with a light panel (LP) plate. Imaging was
carried for periods up to 5 min and stored with and without summing. The set
of summed images was then examined with specific time points selected for
densitometry and quantification based on the degree of saturation for specific
proteins of interest. Because the assays for different proteins gave rise to a
wide range of densities, several time points were selected for quantitative
analysis. The developed arrays were densitometrically analyzed using Array
Gauge (Fujifilm) and Q-View Software (Quansys Biosciences).
Statistical analysis. Vitreous samples were analyzed using the Mann-
Whitney rank-sum test. A P value �0.05 was considered significant. All data
are presented as mean � SEM.

RESULTS

Vitreous lipid autacoids. The LC/MS/MS-based analysis
of lipid autacoids was set to detect COX-, LO-, and
CYP-derived arachidonic acid metabolites (eicosanoids)
and LO-derived metabolites of docosahexaenoic acid
(DHA) including resolvins and neuroprotectin D1 (NPD1)
(15) with a sensitivity range of 5–25 pg. COX-derived
metabolites including PGE2/D2 and TXB2 were not de-
tected in the vitreous samples. The most recurring eico-
sanoids in the vitreous were the LO-derived 5-HETE,
12-HETE, 15-HETE, and the CYP-derived EETs including
11(12)-EET, 14(15)-EET, 8(9)-EET, and 5(6)-EET (Fig. 1).
DHA metabolites were detected in 8 out of 47 vitreous
samples and included 4-HDHA (four samples; 56–3,023
pg/mg), 17-HDHA (two samples; 1,026–9,577 pg/mg), 14-
HDHA (five samples; 71–1,220 pg/mg), 7-HDHA (three
samples; 28–626 pg/mg), and NPD1 (three samples; 24–91
pg/mg). When combining all DHA-derived resolvins and
NPD1, the nondiabetic vitreous (n � 2) contained sever-
alfold higher levels than the diabetic vitreous (n � 6)
(1,826 � 1,015 and 107 � 28 pg/mg, respectively).

Among the LO-derived metabolites, 5-HETE (�5 pg)
was detectable in 31 out of 47 vitreous samples. More
importantly, it exhibited a significant increase in patients
with diabetic retinopathy, specifically, in patients with
NPDR. 5-HETE was 4.8-fold higher in vitreous from dia-
betic subjects that from nondiabetic subjects (67.84 �
11.69 vs. 14.12 � 6.13 pg/mg protein, mean � SE, P �
0.027) (Fig. 2A), and among the four groups, NPDR vitre-
ous contained the highest amount of 5-HETE: 88.56 �
19.96 pg/mg compared with 4.69 � 3.69, 26.24 � 12.15, and
45.73 � 9.05 pg/mg in ERM, RD, and PDR vitreous,
respectively (Fig. 2B). Other lipoxygenase-derived eico-
sanoids including 15- and 12-HETE were detected in fewer
samples, 10 (PDR, 5; NPDR, 1; RD, 3; ERM, 1) and 8 (PDR,
7; NPDR, 1; RD, 0; ERM, 0), respectively; the amount
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detected ranged from 5 to 350 pg/mg and did not show a
distinct pattern.

The vitreous also contained significant levels of CYP-
derived EETs and their hydrolytic metabolites dihy-
droxyeicosatrienoic acids. In fact, their levels were on the
average 10 times higher than HETEs and were detected in
20 diabetic and 14 nondiabetic vitreous. The major EETs

were 14(15)-EET and 11(12)-EET. Levels of both EETs
were substantially higher in the nondiabetic control sub-
jects (Fig. 3A and B). 14(15)-EET amounted to 1,086 � 430
and 242 � 64 pg/mg in the nondiabetic and diabetic
vitreous, respectively. Among the nondiabetic groups, RD
displayed the highest value of 1,306 � 630 compared with
758 � 560 pg/mg in the ERM. Among the diabetic vitreous,
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the level of 14(15)-EET was the lowest in PDR (147 � 34
vs. 404 � 152 pg/mg in NPDR vitreous). 11(12)-EET
showed a similar pattern: high levels in nondiabetic (780 �
287 pg/mg) compared with diabetic (115 � 27 pg/mg)
vitreous, with the PDR displaying the lowest (86 � 24
pg/mg) and the RD vitreous the highest (1,095 � 443
pg/mg) (Fig. 3C and D). 8(9)-EET and 5(6)-EET displayed
similar patterns but were detected in fewer samples (not
shown).
Vitreous proteins. Our preliminary screening using the
Human Cytokine Array of 79 proteins in a vitreous sample
obtained from a human cadaver identified 12 proteins:
GRO (generic), IL-8, IL-6, IL-1� and -�, MIP-1�, CSF,

MCP-1, ANG, leptin, IP-10, and TIMP-1 and -2 in 100 �l
vitreous (data not shown). Using a smaller angiogenic
array (Fig. 4), detectable signals for GRO (generic), IL-8,
IL-6, MCP-1, ANG, leptin, TIMP-1, and TIMP-2 were ob-
served with the relative distribution strikingly different in
the pathological and normal (ERM) vitreous samples. The
vitreous sample from subjects with ERM exhibited a
relatively sparse protein profile consisting of strong sig-
nals only for ANG and TIMP1. All of the pathological
vitreous samples including RD exhibited to varying de-
grees strong sets of signals for GRO (generic), IL-8, IL-6,
MCP-1, ANG, leptin, TIMP-1, and TIMP-2. We also identi-
fied upregulated proteins that included VEGF, leptin, IL-6,
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IL-8, TIMP-1, and TIMP-2. Particularly striking was the
pattern of signals that was unique to the one NPDR subject
who experienced a rapid transition to proliferative diabe-
tes (NPDR*). This sample displayed a relatively high signal
for VEGF and a very low signal for leptin (Fig. 1).

Quantitative analysis was carried out using micro-well
plate array methodology. Analysis of multifunctional che-
mokines consisting of angiogenic and angiostatic entities
revealed measurable levels of GRO�, MCP-1, IP-10, IL-8,
RANTES, and TARC in most samples with distinct differ-
ences in concentration and in the distribution between
ERM vitreous and vitreous from RD, NPDR, and PDR
(Table 1). GRO� was not detected in ERM and PDR
vitreous; moreover, levels of MCP-1, IL-8, RANTES, and
TARC in ERM were significantly lower than in most of the
other groups (Table 1). MCP-1 was present in all vitreous
samples, and its concentration in ERM, NPDR, and PDR
vitreous was comparable to previously reported values in
vitreous of subjects with proliferative vitreoretinopathy
and diabetic vitreous (16,17). Interestingly, MCP-1 concen-
tration was significantly higher in RD vitreous displaying
five times higher levels than in ERM vitreous and about

four times higher than the NPDR and PDR vitreous.
Particularly surprising was the marked difference in the
distribution of GRO in the NPDR and the PDR populations,
suggesting a marked drop off of this chemokine with
progression to proliferation.

Additional analysis was carried out using an angiogenic
array specific for ANG-2, basic FGF, HGF, PDGF-BB,
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FIG. 4. Representative arrays of vitreous samples. Upper panel: Representative membranes of vitreous samples (300 �l) from individuals with
an ERM and RD sample along with blank control. Lower panel: Representative membranes of pooled vitreal samples from individuals randomly
selected with NPDR, ERM, and PDR (three samples of 700 �l each in each category) and a membrane probed with 700-�l samples of vitreous from
an individual exhibiting a rapid disease progression (NPDR*). Array configuration and the sensitivity limits for each protein determined by the
manufacturer are depicted in the table.

TABLE 1
Chemokines concentrations (in pg/ml) in vitreous from subjects
with ERM, RD, NPDR, and PDR

ERM RD NPDR PDR

n 9 6 14 13
GRO� 0 � 0 147 � 83 104 � 50 0 � 0
IL-8 5 � 3 214 � 130* 87 � 42* 52 � 25*
IP-10 18 � 7 193 � 86 48 � 20 46 � 19
MCP-1 856 � 159 4,519 � 1,136* 1,610 � 520 1,414 � 210
RANTES 14 � 11 70 � 22 199 � 176* 21 � 10*
TARC 4 � 2 57 � 17 * 13 � 7 6 � 2

Data are expressed in picograms per milliliter and are means � SE.
n � number of samples. *P � 0.05 vs. ERM.
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TIMP-1 and -2, TNF-�, and VEGF (Table 2). Significant
amounts of these factors were detected in all samples with
HGF, TIMP-1, and TIMP-2 present in ng/ml quantities.
Among these angiogenic entities, only VEGF showed a
significant diabetes-specific profile, although such ten-
dency was also noted for TNF-�. Levels of VEGF in
vitreous from subjects with either proliferative or nonpro-
liferative diabetic retinopathy were significantly higher
when compared with nondiabetic subjects. Interestingly,
VEGF was not detected in vitreous from patients with RD
(Table 2).

The angiogenic/inflammatory effect of VEGF and TNF-�
largely depends on the concentration of their soluble
receptors. Soluble VEGF-R1 and VEGF-R2 as well as
TNF-R2 act as traps for their corresponding ligands. A
custom-made array was used to determine the levels of
these receptors. Soluble VEGF-R1 levels were not signifi-
cantly different among the groups, whereas levels of
soluble VEGF-R2 were significantly lower in NPDR and
PDR than in ERM (Table 3). Importantly, the ratio of VEGF
to its soluble receptors, VEGF-R1 and VEGF-R2, was
higher in PDR and NPDR patients than in control ERM
patients (Fig. 5). Soluble TNF-R2 was readily detected in
all groups and was significantly higher in PDR when
compared with ERM vitreous (Table 3). The ratio of TNF-�
to its receptor was higher in NPDR and PDR vitreous but
did not reach significance when compared with ERM
vitreous.

DISCUSSION

The diabetic vitreous contains elevated levels of many
angiogenic and inflammatory proteins and lipids, with
some of these changes associated with diabetic progres-
sion (6,7). This study compares and contrasts levels of
angiogenic and angiostatic proteins and inflammatory and
anti-inflammatory lipid mediators, primarily eicosanoids,
in the diabetic and nondiabetic vitreous and correlates
them with the progression from nonproliferative to prolif-
erative diabetic retinopathy. We clearly demonstrate that
changes in these autacoids follow the progression of the

disease with a general increase in angiogenic and inflam-
matory autacoids in the diabetic vitreous.

The present study is the first to perform lipidomic
analysis of eicosanoids and docosanoids in vitreous from
diabetic and nondiabetic patients and shows that the
vitreous contains detectable amounts of these small lipid
autacoids. What emerges from this analysis is a profile that
is specific for diabetes, indicating a shift in favor of
recognized proinflammatory over anti-inflammatory eico-
sanoids in diabetic vitreous. The cellular source of these
lipid autacoids is unknown and could be derived from
retinal tissues including the retinal vascular endothelial,
glial, and pigmented epithelial cells as well as from infil-
trated inflammatory cells. Different patterns of eico-
sanoids may be seen in these tissues; therefore, what is in
the vitreous may not fully reflect the changes at these
tissue levels. Nevertheless, the lipid accumulation in the
vitreous is still indicative of a distinct paracrine effect on
this tissue. The most abundant proinflammatory eico-
sanoid was the 5-LO-derived 5-HETE. The 5-LO (Alox5) is
the initial enzymatic step in the synthesis of leukotrienes
(LTs), including LTB4 and the cysteinyl-LTs, LTC4, LTD4,
and LTE4. These 5-LO–derived LTs are strong inflamma-
tory mediators (18). LTB4 is a potent chemoattractant
factor that increases leukocyte aggregation and adhesion
to the vascular endothelium. LTC4 and LTD4 increase
vascular permeability and are potent vasoconstrictors.
The role of 5-LO in inflammation is supported by the
demonstration that mice null for the 5-LO gene display a
reduced inflammatory reaction (19,20). In line with these
characteristics, the finding of high levels of 5-HETE in the
diabetic vitreous is highly significant. 5-HETE is generally
devoid of the powerful inflammatory properties of LTs;
however, its presence indicates a considerable 5-LO activ-
ity as it is the degradation product of 5-HPETE, the
unstable intermediate in the synthesis of LTA4 and conse-
quently cysteinyl-LTs (21). The vitreous levels of 5-HETE
were five times higher in diabetic patients than in the
nondiabetic patients. Moreover, within the diabetic group,
vitreous from patients with NPDR contained twice as

TABLE 2
Angiogenic and anti-angiogenic factors (in pg/ml) in the vitreous

ERM RD NPDR PDR

n 8 6 18 12
ANG-2 1,326 � 650 2,610 � 740 3,641 � 1,218 3,528 � 1,753
Basic FGF 756 � 756 0 � 0 636 � 300 235 � 235
HGF 27,704 � 7,912 10,846 � 1,275* 29,106 � 3,821 24,786 � 3,009
PDGF-BB 872 � 469 0 � 0 969 � 360 366 � 261
TIMP-1 367,841 � 84,766 567,205 � 84,921 352,477 � 50,960 431,310 � 54,912
TIMP-2 253,031 � 44,718 126,403 � 24,625 257,830 � 21,453 286,248 � 31,168
TNF-� 31 � 19 0 � 0 153 � 97 125 � 118
VEGF 0 � 0 0 � 0 647 � 308* 307 � 159

Data are expressed in picograms per milliliter and are means � SE. n � number of samples. *P � 0.05 vs. ERM.

TABLE 3
VEGF and TNF-� receptor concentrations in the vitreous

ERM RD NPDR PDR

n 9 6 14 13
TNF-R2 127 � 12 192 � 42 199 � 35 245 � 32*
VEGF-R1 3,779 � 360 2,735 � 333 4,114 � 830 3,606 � 607
VEGF-R2 11,823 � 1,460 8,676 � 1,239 8,026 � 1,809* 6,430 � 728*

Data are expressed in picograms per milliliter and are means � SE. n � number of samples. *P � 0.05 vs. ERM.
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much 5-HETE as the patient with PDR, suggesting that the
5-LO pathway participates in the initiation and amplifica-
tion of the inflammation. The predominant expression of
5-lipoxygenase in myeloid cells makes infiltrating leuko-
cytes the likely source of 5-HETE. The importance of the
leukocyte in the early initiation phase of diabetic retinop-
athy is an emerging area. Talahalli et al. (22) failed to
detect 5-LO in the retina, yet retinal cells could generate
LTB4 and LTC4 after LTA4 was provided, suggesting that
the likely source of 5-HETE and LTA4 is circulating
leukocytes, and the surrounding retinal cells participate in
the amplification of the inflammatory signal (LTB4) and
vascular permeability (LTC4). The authors concluded that
generation of LTs could contribute to chronic inflamma-
tion and retinopathy in diabetes. Indeed, Gubitosi-Klug et
al. (8) provided convincing evidence for a major role of
5-LO in the development of diabetic retinopathy. Retinas
from diabetic 5-LO–deficient mice had significantly less
leukostasis, superoxide production, and nuclear factor
(NF)-	B expression, all of which are markers for inflam-
mation in early diabetic retinopathy (1). Typical diabetic
alterations were also significantly reduced in these mice.

5-LO can also generate the anti-inflammatory metabo-
lites of EPA and DHA, the resolvins and protectins (23),
some of which interact with the LTB4 receptor (BLT1) as
receptor antagonists. Their presence and that of lipoxins,
15-LO–derived anti-inflammatory arachidonate meta-
bolites (23), may present a significant counteracting
mechanism in the initiation or progression of diabetic
retinopathy. 15-HETE and its unstable precursor 15-
HPETE, which are known cell growth regulators, have
been detected in epiretinal membranes from patients with
proliferative vitreoretinopathy and PDR (24). In our study,
lipoxin A4 was not detected in any of the vitreous samples,
while 15-HETE was present in 10 out of 47 samples with
no significant differences among the groups. Likewise, the
DHA-derived resolvins and protectins were detected in
few samples (six diabetic vitreous and two nondiabetic
vitreous). The two nondiabetic vitreous samples contained
18-fold higher levels of these metabolites than the diabetic
vitreous. Interestingly, a recent study indicated that the
percentage of DHA is significantly decreased in the retina
of diabetic mice (25). Certainly, additional studies need to
be performed and further linked to dietary intake. It would
be interesting to evaluate whether increasing dietary in-

take of 
-3 fatty acids affects the progression of diabetic
retinopathy in view of reports that these lipids reduce
pathological angiogenesis such as in retinopathy of pre-
maturity (26) and may act in a protective role against
ischemia-, light-, oxygen-, inflammatory-, and age-associ-
ated pathology of the vascular and neural retina (27).

The findings that EETs are abundant in the vitreous and
that their levels are significantly higher in nondiabetic
vitreous than in diabetic vitreous is of great significance.
EETs, primarily 11(12)-EET and 14(15)-EET, are potent
vasodilators and are endowed with anti-inflammatory,
cytoprotective, and neuroprotective properties (28–30).
Increasing the levels of EETs by exogenous administra-
tion, inhibition of their degradation, or overexpression of
their production has anti-inflammatory effects including
inhibition of cytokine production, endothelial cell adhe-
sion molecule expression, and leukocyte adhesion to the
vascular wall by a mechanism involving NF-	B inhibition
(11,31). There are also reports indicating that EETs have
neuroprotective properties (32); however, their role in the
pathophysiology of the eye and in particular the retina is
poorly defined. Interestingly, plasma and tissue concentra-
tions of EETs in a mouse model of type 2 diabetes are
significantly lower compared with levels in control mice,
and administration of an EET agonist reverses the diabetic
states (33). Given the known properties of these metabo-
lites and other lipid autacoids detected in this study, a
pattern can be discerned from the lipidomics analysis—
the proinflammatory autacoids (in particular, 5-HETE) are
far more abundant in diabetic vitreous than in nondiabetic
vitreous, while anti-inflammatory autacoids including 15-
HETE, resolvins, NPD1, and EETs are notably reduced in
diabetic vitreous compared with nondiabetic vitreous.

Analysis of cytokines and chemokines presented a
profile similar to that of the lipid autacoids showing a
diabetes-dependent increase in key inflammatory and an-
giogenic factors. Among the vitreous chemokines, only
MCP-1, IP-10, IL-8, and GRO� were substantially ex-
pressed, while levels of RANTES and TARC were occa-
sionally detected. MCP-1 was detected in all samples as
reported by others (16,17). ERM samples had chemokine
levels that were a small fraction of those in the other
groups. The ERM patients had a total of 1,005 pg/ml in
their combined samples or 126 pg/ml per patient. NPDR
patients had 339 pg/ml per patient, and PDR patients had
197 pg/ml per patient. Thus, there appears to be an
increase in overall chemokine levels in diabetic retinopa-
thy. RD patients had, by far, the highest chemokine levels:
678 pg/ml per patient, including significant 5- to 40-fold
higher levels of MCP-1, TARC, and IL-8 when compared
with ERM vitreous. RD is characterized by the apoptotic
death of the outer retinal layers; neovascularization is not
a feature of this condition. MCP-1 expression has been
reported to be critical for RD-induced photoreceptor apo-
ptosis and subsequent macrophage/microglia infiltration
and activation (34). IP-10 is a potent angiostatic factor, and
GRO� was reported to be angiostatic in high concentra-
tions (35). Thus, angiostatic chemokines dominate in the
RD vitreous. The finding in RD vitreous of elevated levels
of TARC, a member of the C-C chemokine family and a
potent chemoattractant for Th2 cells, is interesting; how-
ever, its significance is unclear.

Assessment of distinct angiogenic factors showed that
VEGF was the only angiogenic factor that displayed a
diabetes-specific distribution, although TNF-� showed the
same profile but did not achieve significance. Levels of
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FIG. 5. Ratios of VEGF to VEGFR1 and VEGFR2 in vitreous from
patients with ERM, RD, NPDR, and PDR. Results are mean � SE. *P <
0.05 vs. ERM.
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VEGF in ERM and RD vitreous were below detection
levels, while it was readily detected in vitreous from NPDR
and PDR subjects (4,17,36,37). Likewise, TNF-�, which is
present at a high concentration in PDR vitreous (38,39),
was only detected in vitreous from NPDR and PDR sub-
jects. Interestingly, soluble receptors for VEGF and TNF-�
were prominent in the vitreous from all groups. These
soluble receptors are considered endogenous inhibitors or
traps for their corresponding ligands, and some have been
detected in vitreous from patients with proliferative vit-
reoretinopathy (36,40). Levels of soluble VEGF-R2 were
significantly lower in NPDR and PDR vitreous when
compared with ERM vitreous, suggesting a lower capacity
to quench the bioactivity of VEGF in the diabetic retina.
On the other hand, levels of VEGF-R1 were similar in
diabetic and nondiabetic subjects. Matsunaga et al. (36)
examined the levels of soluble VEGF-R1 in vitreous from
patients with PDR or idiopathic macular hole and found
twofold higher levels in PDR. In the present study, while
the levels of soluble VEGFR1 were not different, the
VEGF/VEGF-R1 ratio was severalfold higher in NPDR and
PDR subjects, as was the VEGF/VEGF-R2. The relative
lower concentration of soluble VEGF receptors may drive
the angiogenic phenotype of the retina in diabetic retinop-
athy. It should be noted that, in this study, we measured
VEGF-A; however, other forms of VEGF may be present in
the vitreous of diabetic patients, the levels of which may
contribute significantly to the pathology seen in the dia-
betic eye.

Our study adds support to the role of inflammation in
the genesis of diabetic retinopathy. Understanding the
implication of these potent lipid and protein autacoids in
this condition through studies in transgenic animal models
and human studies that take into consideration diets and
genetic polymorphisms may provide diagnostic tools and
therapeutic targets for treatment and prevention of dia-
betic retinopathy.
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6. Simó R, Carrasco E, García-Ramírez M, Hernández C. Angiogenic and
antiangiogenic factors in proliferative diabetic retinopathy. Curr Diabetes
Rev 2006;2:71–98

7. Hardy P, Beauchamp M, Sennlaub F Jr, Gobeil F, Mwaikambo B,
Lachapelle P, Chemtob S. Inflammatory lipid mediators in ischemic
retinopathy. Pharmacol Rep 2005;57(Suppl.):169–190

8. Gubitosi-Klug RA, Talahalli R, Du Y, Nadler JL, Kern TS. 5-Lipoxygenase,
but not 12/15-lipoxygenase, contributes to degeneration of retinal capillar-
ies in a mouse model of diabetic retinopathy. Diabetes 2008;57:1387–1393

9. Laniado Schwartzman M, Green K, Edelhauser HF, Hackett RB, Hull DS,
Potter DE, Tripathi RC. In Cytochrome P450 and Arachidonic Acid

Metabolism in the Corneal Epithelium: Role in Inflammation. New York,
Plenum Press, 1997, p. 3–20

10. Gronert K. Lipoxins in the eye and their role in wound healing. Prosta-
glandins Leukot Essent Fatty Acids 2005;73:221–229

11. Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK.
Anti-inflammatory properties of cytochrome P450 epoxygenase-derived
eicosanoids. Science 1999;285:1276–1279

12. Patil K, Bellner L, Cullaro G, Gotlinger KH, Dunn MW, Schwartzman ML.
Heme oxygenase-1 induction attenuates corneal inflammation and accel-
erates wound healing after epithelial injury. Invest Ophthalmol Vis Sci
2008;49:3379–3386

13. Sack RA, Conradi L, Krumholz D, Beaton A, Sathe S, Morris C. Membrane
array characterization of 80 chemokines, cytokines, and growth factors in
open- and closed-eye tears: angiogenin and other defense system constit-
uents. Invest Ophthalmol Vis Sci 2005;46:1228–1238

14. Li S, Sack R, Vijmasi T, Sathe S, Beaton A, Quigley D, Gallup M, McNamara
NA. Antibody protein array analysis of the tear film cytokines. Optom Vis
Sci 2008;85:653–660

15. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. Neuroprotectin D1:
a docosahexaenoic acid-derived docosatriene protects human retinal
pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A
2004;101:8491–8496

16. Capeans C, De Rojas MV, Lojo S, Salorio MS. C-C chemokines in the
vitreous of patients with proliferative vitreoretinopathy and proliferative
diabetic retinopathy. Retina 1998;18:546–550

17. Maier R, Weger M, Haller-Schober EM, El-Shabrawi Y, Wedrich A, Theisl A,
Aigner R, Barth A, Haas A. Multiplex bead analysis of vitreous and serum
concentrations of inflammatory and proangiogenic factors in diabetic
patients. Mol Vis 2008;14:637–643

18. Lewis RA, Austen KF, Soberman RJ. Leukotrienes and other products of
the 5-lipoxygenase pathway: biochemistry and relation to pathobiology in
human diseases. N Engl J Med 1990;323:645–655

19. Chen XS, Sheller JR, Johnson EN, Funk CD. Role of leukotrienes revealed
by targeted disruption of the 5-lipoxygenase gene. Nature 1994;372:179–
182

20. Funk CD, Chen XS. 5-Lipoxygenase and leukotrienes: transgenic mouse
and nuclear targeting studies. Am J Respir Crit Care Med 2000;161:S120–
S124

21. Rubin P, Mollison KW. Pharmacotherapy of diseases mediated by 5-lipoxy-
genase pathway eicosanoids. Prostaglandins Other Lipid Mediat 2007;83:
188–197

22. Talahalli R, Zarini S, Sheibani N, Murphy RC, Gubitosi-Klug RA. Increased
synthesis of leukotrienes in the mouse model of diabetic retinopathy.
Invest Ophthalmol Vis Sci 51:1699–1708

23. Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-
inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 2008;
8:349–361

24. Augustin AJ, Grus FH, Koch F, Spitznas M. Detection of eicosanoids in
epiretinal membranes of patients suffering from proliferative vitreoretinal
diseases. Br J Ophthalmol 1997;81:58–60

25. Hegde KR, Varma SD. Electron impact mass spectroscopic studies on
mouse retinal fatty acids: effect of diabetes. Ophthalmic Res 2009;42:9–14

26. Connor KM, SanGiovanni JP, Lofqvist C, Aderman CM, Chen J, Higuchi A,
Hong S, Pravda EA, Majchrzak S, Carper D, Hellstrom A, Kang JX, Chew
EY, Salem N Jr, Serhan CN, Smith LE. Increased dietary intake of

M.L. SCHWARTZMAN AND ASSOCIATES

diabetes.diabetesjournals.org DIABETES, VOL. 59, JULY 2010 1787



omega-3-polyunsaturated fatty acids reduces pathological retinal angio-
genesis. Nat Med 2007;13:868–873

27. SanGiovanni JP, Chew EY. The role of omega-3 long-chain polyunsaturated
fatty acids in health and disease of the retina. Prog Retin Eye Res
2005;24:87–138

28. Spector AA. Arachidonic acid cytochrome P450 epoxygenase pathway. J
Lipid Res 2009;50(Suppl.):S52–S56

29. Spiecker M, Liao JK. Vascular protective effects of cytochrome p450
epoxygenase-derived eicosanoids. Arch Biochem Biophys 2005;433:413–
420

30. Deng Y, Theken KN, Lee CR. Cytochrome P450 epoxygenases, soluble
epoxide hydrolase, and the regulation of cardiovascular inflammation. J
Mol Cell Cardiol 2010;48:331–341

31. Moshal KS, Zeldin DC, Sithu SD, Sen U, Tyagi N, Kumar M, Hughes WM, Jr,
Metreveli N, Rosenberger DS, Singh M, Vacek TP, Rodriguez WE, Ayotunde
A, Tyagi SC. Cytochrome P450 (CYP) 2J2 gene transfection attenuates
MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia. J Cell
Physiol 2008;215:771–781

32. Zhang W, Otsuka T, Sugo N, Ardeshiri A, Alhadid YK, Iliff JJ, DeBarber AE,
Koop DR, Alkayed NJ. Soluble epoxide hydrolase gene deletion is protec-
tive against experimental cerebral ischemia. Stroke 2008;39:2073–2078

33. Sodhi K, Inoue K, Gotlinger K, Canestraro M, Vanella L, Kim DH, Manthati
VL, Koduru SR, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosa-
trienoic acid agonist rescues the metabolic syndrome phenotype of
HO-2-null mice. J Pharmacol Exp Ther 2009;331:906–916

34. Nakazawa T, Hisatomi T, Nakazawa C, Noda K, Maruyama K, She H,
Matsubara A, Miyahara S, Nakao S, Yin Y, Benowitz L, Hafezi-Moghadam A,

Miller JW. Monocyte chemoattractant protein 1 mediates retinal detach-
ment-induced photoreceptor apoptosis. Proc Natl Acad Sci U S A 2007;
104:2425–2430

35. Cao Y, Chen C, Weatherbee JA, Tsang M, Folkman J. Gro-beta, a -C-X-C-
chemokine, is an angiogenesis inhibitor that suppresses the growth of
Lewis lung carcinoma in mice. J Exp Med 1995;182:2069–2077

36. Matsunaga N, Chikaraishi Y, Izuta H, Ogata N, Shimazawa M, Matsumura
M, Hara H. Role of soluble vascular endothelial growth factor receptor-1 in
the vitreous in proliferative diabetic retinopathy. Ophthalmology 2008;115:
1916–1922

37. Patel JI, Tombran-Tink J, Hykin PG, Gregor ZJ, Cree IA. Vitreous and
aqueous concentrations of proangiogenic, antiangiogenic factors and other
cytokines in diabetic retinopathy patients with macular edema: implica-
tions for structural differences in macular profiles. Exp Eye Res 2006;82:
798–806

38. Adamiec-Mroczek J, Oficjalska-Młyńczak J. Assessment of selected adhe-
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