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Abstract

CoverageMaster (CoM) is a copy number variation (CNV) calling algorithm based on depth-of-coverage maps designed to detect
CNVs of any size in exome [whole exome sequencing (WES)] and genome [whole genome sequencing (WGS)] data. The core of the
algorithm is the compression of sequencing coverage data in a multiscale Wavelet space and the analysis through an iterative Hidden
Markov Model. CoM processes WES and WGS data at nucleotide scale resolution and accurately detects and visualizes full size range
CNVs, including single or partial exon deletions and duplications. The results obtained with this approach support the possibility
for coverage-based CNV callers to replace probe-based methods such as array comparative genomic hybridization and multiplex
ligation-dependent probe amplification in the near future.
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Introduction
Copy number variation (CNV) is the most frequent
structural alteration in the human genome. Aberrant
numbers of copies of specific genes, exons or, in
general, genomic regions are known to be implicated
in pathogenic conditions such as Mendelian diseases
and cancer [1–4]. Hence, identification of these deletion
and amplification events is a primary purpose in
medical genetics research. In clinical diagnostics, the
identification of rare, potentially causative CNVs in a
patient with a suspected genetic disorder is a long-sought
objective. However, the discovery of such variants that
can vary in size and copy number is a challenging task.
Currently, the most commonly used high-throughput
methodologies to detect clinically relevant CNVs rely
on microarray-based technologies. Array comparative
genomic hybridization (array CGH) offers an efficient
method to detect CNVs and micro-CNVs (5Kbp < size
<10Mbp) in the whole genome, but its resolution does

not cover the lower size spectrum. Multiplex ligation-
dependent probe amplification (MLPA) is the current
golden standard to detect exon-sized CNVs but this
technology can cover few exons per assay (low through-
put) and its application is limited to a small number
of genes [5].

In recent years, the development of next-generation
sequencing (NGS) technologies of short reads has pro-
vided a standardized way for accurate coding variant
analyses through whole genome sequencing (WGS) and
whole exome sequencing (WES). Remarkably, this tech-
nology provides the coverage per nucleotide of clinically
relevant regions of the genome. Although WGS allows for
a more comprehensive overview of the entire genome
with uniform coverage [6], the related sequencing costs
and the computational infrastructures needed to process
the raw data are still limiting its broad application in
clinical practice [7]. On the other hand, WES is compu-
tationally less demanding and has reached such a high
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sensitivity and specificity in variant calling to eventually
become a clinical standard. Currently, WES is widely
used for diagnostic purposes in many medical genetics
laboratories throughout the world.

A wide range of detection algorithms have been devel-
oped to call CNVs from WGS and WES data. It is custom-
ary to define as CNVs duplication and deletions with a
size >1–5 Kbp where the smaller ones are called INDELs.
In the exomic space, however, the duplication/deletion of
one exon (down to 100pb or less) can result in a much
bigger duplication/deletion in the genomic space for the
large majority of breakpoints happen in the intronic or
intergenic part of the genome. Therefore, while split-
reads- and gapped-reads-based algorithms [8] might be
quite sensitive and precise when the breakpoints are cov-
ered (i.e. sequenced), in practice they are quite inefficient
to detect exonic structural variants if the SV is bigger
than the size of the read (∼100–200 bp in standard WES
and WGS experiments) [9]. For this reason, while waiting
for long-read NGS to take over in clinical applications,
read-depth-based methods [10–12] are so far considered
more effective for accurate copy number detection in
WES data [13]. NGS short reads are mapped to a reference
sequence and the depth-of-coverage (DoC) in a genomic
region is calculated by counting the number of reads
that align to this region. DoC is then assumed to be
proportional to the copy number of that region. In prin-
ciple, DoC is sufficient for the detection of all clinically
relevant CNVs, irrespectively of size and copy number
and breakpoints location, promoting WGS and WES as a
robust and more inclusive alternative to complementary
laboratory approaches such as array CGH or MLPA.

Nevertheless, WES has technical issues that result in
the generation of noisy data. First, the lack of continu-
ity of the target regions and, second, the biases due to
hybridization and sequencing processes complicate the
procedure to standardize read-depth-based CNV detec-
tion [14]. As a result, current WES-based detection meth-
ods suffer from limited resolution, high false positives
and false negatives calls [9].

Here, we introduce CoverageMaster (CoM), a CNV
calling algorithm based on DoC maps from aligned short
sequence reads from WES or WGS. CNVs are inferred
with Hidden Markov Models (HMMs) at multiscale
nucleotide-like levels in the Wavelet reduced space,
in comparison to existing methods that utilize fixed
length windows or exon averages. This approach is
designed to optimize the search for CNVs of different
sizes in WES and WGS data. Of note, since it is working
at nucleotide resolution, CoM provides the graphical
representation of the predicted CNV in all genes of
interest, and, optionally, a wig formatted file compatible
with UCSC Genome Browser for detailed visualization
of the normalized coverage on the target genes or
regions in the genomic space. We propose CoM as a
potential first-line diagnostic tool in research and clinical
applications.

Materials and methods
Material
The analyses reported in this study were performed on
DNAs processed by WES at the Health 2030 Genome
Center (https://www.health2030genome.ch/) or Medi-
genome (www.medigenome.ch) using Twist Human
Core Exome Kit (TWIST Biosciences, San Francisco, CA,
USA); NA12878 DNA has been obtained from the Coriell
Institute (https://coriell.org/); sequencing was performed
on Illumina HiSeq4000 or Novaseq platforms. Array CGH
and MLPA were performed in GeneSupport using Agilent
SurePrint G3 Human 4x180K (analyzed with Agilent
CytoGenomics (V 5.1.1.15) and double checked by visual
inspection) and SALSA MLPA Probemix P021 SMA (MRC
Holland), respectively.

Preprocessing and transformation of exome data
CoM uses DoC maps from aligned short sequence
reads to estimate CNV events. To acquire the sequence
reads, the mapping is done with the standard pipeline
for whole-exome or WGS data based on GATK [15],
and the coverage at each nucleotide of the region of
interest (ROI) is calculated and stored in tab separated
COV files (format: chr nucleotide_position coverage)
using samtools (samtools depth) [16]. Coverage files
of a test/target plus one or more controls plus one
reference coverage serve as input for the algorithm. The
assumption is that control coverages are DoC maps of
copy number neutral cases (diploid) or carrier of frequent
CNVs in the ROI of interest. The reference set consists of
a batch of coverage files from samples processed with
the same technology (i.e. hybridization kit, reagents for
library prep and sequencer) used to generate case and
controls. First, the coverage per nucleotide per sample
is normalized by the respective total number of reads.
Then, mean and standard deviation of the normalized
coverage values are computed over all the samples for
each nucleotide.

WAVELET transform
In a genomic region of N nucleotides, the coverage
of test case and control can be represented as the
discrete signals s(n) and c(n) , respectively, where n is
the nucleotide number corresponding to the genomic
or exonic position in the exon space [the space where
covered regions ( i.e. exons) are ‘ligated’ together]. In
the ideal case, the coverage ratio r = s

c is a non-
periodic square waveform with up and down steps in
correspondence of increased or decreased copy number,
respectively. In order to diminish the noise induced by
fast variations of the signal and, at the same time, to
reduce the computational burden, the coverage ratio
is compressed in the nucleotide-like space using the
Discrete Wavelet Transform (DWT) equipped with the
Haar basis. At scale l, the approximation and detail
coefficients are rl, dl, dl−1, . . . , d0 = DWTl(r) . The M =
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N· 2−l approximation coefficients rl are normalized to the
median of the original signal and used for CNV analysis.

Multiscale CNV detection
The probability bj(om) of each m nucleotide-like posi-
tions of the sequence of approximation coefficients rl =
o1o2 . . . okok+1 . . . oM to be in a normal (i.e. diploid), dupli-
cated or deleted state s ∈ S ≡ {1, 3

2 , 1
2 } is defined at any

scale l as a random variable with Gaussian distribution of
mean s and standard deviation σ(Rl) , where Rl(m) is the
sequence of approximation coefficients of the reference
coverage in the m -coordinates of the l -scaled nucleotide-
like space.

At scale l, the indicator function (trigger) T =
argmaxs(bs(rl)) �= 1 identifies the locations of non-diploid
nucleotide-like positions and masks the rest of the signal.
If no location is identified, the algorithm discards this
region and processes the next one.

Once the putative CNVs are identified, the Viterbi
algorithm is then used to identify the most likely copy
number state sequence Q = q1q2 . . . qkqk+1 . . . qM of the
compressed genomic region, based on the corresponding
sequence of observations rl = o1o2 . . . okok+1 . . . oM .
Masked observations ok have a fixed diploid state
qk = 1.

More formally, if vt(j) represents the Viterbi probability
that the underlying HMM is in copy number state j after
seeing the first m observations and passing through the
most probable state sequence q1q2 . . . qm−1 , it can be
shown that vm(j) = maxi∈Svm−1(i)αijbj(om) , where vm−1(i)
is the previous Viterbi path probability from the previous
nucleotide, αij is the transition probability (here set to
aij = 5 × 10−6 which is the probability of finding a dupli-
cation or a deletion in the human genome, calculated as
the mean of the inclusive and stringent number of CNVs
per nucleotide from [17]) and bj(om) is the observation
probability given the state j as defined above.

If no putative CNV is detected at this stage, the algo-
rithm performs a multiscale analysis by repeating the
HMM phase with the masked signal transformed at scale
l − 1 . Again, in absence of CNVs, the algorithm keeps
decrementing l down to, if necessary, l = 0 (no com-
pression). This is computationally possible because only
the relevant unmasked regions are actually inspected.
Otherwise, eventual putative CNVs are saved and the
algorithm proceeds to the next region.

Iteration over controls
In case more control coverages are provided, eventual
putative CNVs and relative masks are stored in a
temporary buffer. Following the assumption that a rare
causative CNV cannot be present in any control sample,
CNVs are iteratively challenged with the Multiscale CNV
Detection algorithm against each control.

Generation of simulated data
Heterozygous deletions and duplications in randomly
picked exonic regions have been inserted in samples

BAM files using the library Pysam from Python. Briefly,
a script selects a random exonic position (inter-exonic or
across two or multiple exons) and, around that location,
removes or duplicates half of the overlapping reads in
the sample BAM files, respectively. Coverage (COV) files
are then produced with samtools depth following the usual
protocol and processed with CoM with standard param-
eters.

Results
CoM utilizes the representation of coverage signal ratio
(case over control) in the reduced Wavelet approximation
space to perform a multiscale analysis of aberrant
coverage profiles, potentially underlying causative CNVs,
at nucleotide resolution (Figure 1, see Methods). This
approach is meant to explore a broad spectrum of CNV
sizes and in particular deletions or duplications of <5 kb.
At this scale, the experimental noise is caused on one
hand by the particular technology used for sequencing
and, for WES, DNA selection by hybridization. On the
other hand, batch specific coverage distortions may
occur. Intuitively, the smaller the CNV the higher the
chance that the call is a false positive. To overcome
this problem, CoM exploits the fact that, as all other
genomic variations, clinically relevant CNVs are rare
(MAF < 0.01%). Thus, it is reasonable to assume that such
CNVs cannot be present in two or more independent
unrelated individuals of the same batch. Following this
basic principle, CoM utilizes a reference with the average
coverage and standard deviation of 15–20 samples
processed with the same technology (hybridization kit,
reagents and sequencer). The reference provides the
standard deviation per nucleotide from the expected
coverage where coverage spikes are produced by repro-
ducible experimental noise and/or recurrent CNVs.
Eventually, matching CNVs in the test sample are then
considered as frequent or false positives and finally
discarded. Moreover, CoM pairwise compares the sample
case with independent samples, used as controls, from
the same batch. Spikes present in the test signal coverage
and in one control sample are averaged out in the
coverage ratio and consequently discarded.

In order to prove its efficiency, we tested CoM in vari-
ous contexts of NGS data analysis. All samples processed
here for WES were hybridized with Twist Core Exome +
RefSeq Spike and sequenced with Illumina HSeq4000 or
Novaseq.

Most of the published algorithms use samples form
1000 Genomes to evaluate their performances (e.g. [19]).
Being the large majority of CNVs in these samples quite
frequent and of no clinical relevance, this approach
is not appropriate for CoM. To clarify this point, we
sequenced and analyzed the exome of sample NA12878,
generally considered the golden standard for this
analysis [20]. Whole Genome CNV calls validated by
several technologies are made available by the 1000G
consortium in https://www.internationalgenome.org/

https://www.internationalgenome.org/phase-3-structural-variant-dataset/
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Figure 1. CoverageMaster workflow CoM is based on depth-of-coverage maps from aligned short sequence reads from WES or WGS. The normalized
values of the depth-of-coverage for each nucleotide position are calculated (Step 1). The ratio of the test to control coverage signal is compressed at a
specified initial scale l(= 25 by default) in the nucleotide-like space using the DWT (Step 2). For the compressed signal, an indicator detects the potential
non-diploid nucleotide-like positions (Step 3). HMM is used to segment the compressed signal into regions of similar copy number and assign CNV states
(Step 4). If no putative CNVs are identified, the process is repeated at scale l − 1 via ‘zooming’ (Step 5).

phase-3-structural-variant-dataset/. This sample has 45
exonic CNVs of which 34 are frequent (MAF > 5%). As
expected, CoM achieved a recall of 9/45 on the full set
but 9/11 on the rare CNV set (the two miss CNVs were
few bases overlapping with the exonic covered region).
ED identified 11/45 CNVs on the full set and 6/11 on the
rare set. CODEX2 and CONTRA both detected 7/45 and

5/11 where PatternCNV scored 2/45 on the full set and
0/11 on the rare set (Supplementary Figure 1).

To design a more clinically oriented test to investigate
the performance of CoM on CNVs of different size,
we created a dataset of simulated WES data starting
from real BAM files obtained from 10 individuals where
array CGH did not previously provide any clinically

https://www.internationalgenome.org/phase-3-structural-variant-dataset/
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Figure 2. CNV detection in simulated data and array CGH comparison on clinical samples. (A) (up) Number and fraction of true calls detected by CoM
(orange), ED (blue), CODEX2 (gray), CONTRA (green) and PatternCNV (yellow) in 10 samples where CNVs of various size were randomly introduced
in exonic regions. (down) Number and fraction of true calls of detected CNVs by the above-mentioned tools stratified by size. (B) Cumulative plots
of number of calls (y-axis) detected by CoM (blue) and ED (green) and the number of CNVs found by array CGH (ed) in 12 samples: (up) all calls are
considered; (down) only the rare CNVs (MAF < 1%) are included.

significant call. We preferred this approach to the
generation of synthetic reads as performed in other
studies where they had to simulate the sequencing
error model, the probability to have a single nucleotide
variant, GC content effect etc. [18]. Indeed the use of
real samples automatically provides all the requested
features. Around 2000 heterozygous duplications and
deletions of 200, 500, 1000 and 5000 base pairs were
randomly introduced in the exonic regions of these
samples (see Methods) and analyzed by CoM and
other CNV callers such as ExomeDepth [12], CONTRA
[21], PatternCNV [22] and CODEX2 [19]. The results
show that CoM has the best performance with an
average sensitivity of 88.5% as compared with 77%
obtained by the second best performer ED (Figure 2c)
and an average precision of 30% for CoM versus 16%
obtained by ED with 25 control samples (with the
conservative hypothesis to considering all CNV calls not
overlapping with the simulated test as False Positives).
It is worth to note that, in contrary to ED, CoM precision
drastically increases with the number of control samples
(Supplementary Figure 2). The explanation of this differ-
ence in performance between CoM and the other tools
becomes evident by stratifying the CNV calls by size. It
is indeed the multiscaling approach that enables CoM to
keep a constant high sensitivity above 80% for all CNVs
sizes in contrast to the other tools where the perfor-
mance rapidly decreases with size reduction (Figure 2A).

To demonstrate further the performance of CoM in
standard clinical analyses, we analyzed 12 clinical sam-
ples and compared CoM CNVs calls to standard array
CGH calls (see Methods). In order to provide a point of ref-
erence, we also included the results obtained by ED given
its reasonably good performance in the simulation test.
In Figure 2a, the cumulative true positive values for CNVs
detected by CoM and ED are reported. CoM calls coincide
with almost the entire array CGH calls for each sample
with the exception of some frequent benign variants
discarded by CoM as they are present in most controls.
In fact, when searching for CNVs with MAF < 1%, CoM
identifies all CNVs detected by array CGH, in contrast
to ED that detects 80% of them (Figure 2b). This result
demonstrates that CoM may replace array CGH in clinical
diagnostic settings.

CoM has been mainly conceived as a diagnostic sup-
port tool for clinical genetics analysis. To provide a per-
spective of the broad capabilities of the algorithm, we
report four examples (three WES and one WGS) of solved
clinical cases.

Patient 1 is a 38-year-old male with a Kallman
syndrome [OMIM 308700] born from a consanguineous
couple of the first degree. WGS analysis with CoM
revealed a homozygous deletion of 135Kbp including
the two first exons of ANOS1 that completely explain
the phenotype [23]. Interestingly, WGS data can be also
analyzed as WES by CoM by calculating the appropriate
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Figure 3. Examples of clinically relevant CNV identified by CoM. (A) In green, the collapsed exon structure of the gene of interest, up or down blocks
representing one exon. Coverage profiles in exon space of test sample, control and reference (color code in the legend) are represented in the second
plot. For patient 1 (see the text), the homozygous deletion of 135Kbp covering the last two exons of ANOS1 is clearly visible in the WGS analysis but less
evident in the WES analysis (called by CoM but not detected by ED). Below the respective coverage as reported by CoM in the genomic space for WGS
and WES data. (B) For patient 2 the partial heterozygous deletion of 115Kbp in SCN1A, detected from WES, is clearly visible in the exonic and genomic
spaces. (C) Homozygous deletion of exon 7 in SMN1 in patient 3, detected in WES data, is clearly visible in the exonic and genomic spaces. It is worth
noting that, in the genomic space, the coverage profile seems to show two other exons with a drop in coverage. The control, dashed line in the plot above,
shows the same profile indicating a fluctuation of the coverage in this region, likely independent from the number of copies, or a common deletion.

exon coverage. From this perspective, the causative
CNV appears as a full two exons deletion of <100 bp
in the exonic space, detected by CoM but not by ED.
Therefore, CoM can be used to perform an efficient
clinical analysis of WGS data in a two-step approach:
first, through a high-resolution (100–200 bp) WES profile
and second, through a broad investigation of the genomic

regions presenting with positive SNV calls from the
first step.

Patient 2 is an, 8-year-old female child, diagnosed with
drug-resistant epilepsy with febrile seizures. WES single
nucleotide variant analysis did not provide any candidate
on a panel of 478 genes related to epilepsy (Epilepsy MDG-
1204.01, https://www.medigenome.ch/en/gene-panels/).

https://www.medigenome.ch/en/gene-panels/
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CoM reported a heterozygous deletion of ∼120Kbp par-
tially overlapping the last 10 exons of SCN1A (Figure 3b).
The sodium channel 1A is associated with generalized
epilepsy with febrile seizures, Type 2 [OMIM 604403].
Deletions in this gene are known to cause seizure disor-
ders, ranging from early-onset isolated febrile seizures to
generalized epilepsy [24].

Patient 3 is a 3-year-old female child with a suspicion
of spinal muscular atrophy. WES analysis and array CGH
were negative but CoM identified a homozygous deletion
of the exon 7 (112 bp - Figure 3c). This deletion, confirmed
by MLPA but not detected by ED, is the most frequent CNV
related to SMN1-induced muscular atrophy [25] [SMA
OMIM 253400]; this deletion was eventually considered
as the pathogenic cause of the phenotype of the patient
by the clinicians.

Discussion

CoM is an NGS coverage based CNV calling algorithm
designed to work at nucleotide resolution with WES and
WGS data. The capacity to analyze a given coverage
signal in different scale sizes, combined with the
nowadays availability of numerous controls in standard
clinical batches, enables the detection of multi-sized
clinically relevant deletions or duplications and in
particular the detection of the so far elusive small CNVs
of <5Kbp. The algorithm has been designed to reduce the
analysis burden by using all available control datasets
to eliminate frequent CNVs and stochastic coverage
variations. We have proven the effectiveness of CoM
in comparison to ExomeDepth and others broadly used
in silico CNV callers. Performance wise, CoM is not the
fastest algorithm available but in line with the state
of the art (Supplementary Table 1). With 10 control
samples, CoM takes 6 h to analyze a full gene panel of
20 400 genes and around 1 h to process a WES panel
of 4758 clinically relevant genes from OMIM and the
Clinical Genomic Database ( [26], https://research.nhgri.
nih.gov/CGD/) on a 16 cores machine with 32Gbyte of
RAM. The analysis time, however, can be sensibly reduced
by iteratively increasing the number of controls and,
consequently, reducing the number of False Positives
(Supplementary Figure 2). CoM, in common with all
other read-depth based algorithms, is sensitive to cov-
erage variations induced by different hybridization kits
and sequencing processes. Indeed, mismatches between
samples, reference and controls can lead to a consistent
increase of the number of False Positives. Nowadays, this
problem is less compelling given that even small labs
process hundreds of WES before updating the production
lines. One caveat concerns the ethnicity of patients and
controls and the interpretation of CoM results. A CNV can
be frequent in a specific region or population and rare
elsewhere. Therefore, as for single nucleotide variants,
the ethnicity of the patient must be taken into account
to reach an appropriate diagnostic [27]. Future devel-
opments on CNV detection will deal with WGS as the
standard technology for genetic clinical applications [28]

and long reads as leading approach for SV detection [29].
We show that CoM can already be used to analyzed WGS
data (Figure 3) and, in principle, there is no limitation
to employ it on long-read data. A possible improvement
might involve the integration of CoM CNV search and
zooming process with split-read detectors to provide
precise breakpoint detection for large CNVs. It is crucial
information needed to understand the impact of the CNV
on patient phenotype especially on cancer [30]. Of note,
we are planning to apply CoM on tumor samples in the
next future. Concerning WES data, CoM demonstrated
to be superior to the current state-of-the-art algorithms
in the detection of rare and small CNVs in simulated
and clinical data and it can be a valid and inexpensive
alternative to MLPA and array CGH in clinical settings.

Key Points

• CoverageMaster (CoM) is designed to identify CNVs of
any size at nucleotide resolution through multiscale
analysis.

• Simulated and clinical data show that CoM significantly
increased CNV call sensitivity with respect to the state
of the art, especially in the lower size spectrum (50–
1000 bp).

• CoM can analyze whole exome or whole genome
sequencing data.

• The analysis at nucleotide resolution enables the visual-
ization of the identified CNVs in the exonic and genomic
space (Genome Browser) to further support the clinical
interpretation of the calls.

Supplementary Data
Supplementary data are available online at https://
academic.oup.com/bib.
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