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Abstract

Vibrations are important cues for tactile perception across species. Whisker-based sensa-

tion in mice is a powerful model system for investigating mechanisms of tactile perception.

However, the role vibration plays in whisker-based sensation remains unsettled, in part due

to difficulties in modeling the vibration of whiskers. Here, we develop an analytical approach

to calculate the vibrations of whiskers striking objects. We use this approach to quantify

vibration forces during active whisker touch at a range of locations along the whisker. The

frequency and amplitude of vibrations evoked by contact are strongly dependent on the

position of contact along the whisker. The magnitude of vibrational shear force and bending

moment is comparable to quasi-static forces. The fundamental vibration frequencies are in

a detectable range for mechanoreceptor properties and below the maximum spike rates of

primary sensory afferents. These results suggest two dynamic cues exist that rodents can

use for object localization: vibration frequency and comparison of vibrational to quasi-static

force magnitude. These complement the use of quasi-static force angle as a distance cue,

particularly for touches close to the follicle, where whiskers are stiff and force angles hardly

change during touch. Our approach also provides a general solution to calculation of whis-

ker vibrations in other sensing tasks.

Author summary

Vibrations play an important role in the sense of touch in many species, but exactly how

they influence touch perception remains mysterious. An important reason for this mys-

tery is the difficulty in measuring vibrations during touch. Mice are a powerful model sys-

tem for investigating touch perception because they actively sweep their whiskers into

objects and the resulting bending from touch can be video recorded. However, vibrations

of the whiskers during touch are usually too small and fast to be seen. To overcome this

limitation, we develop a new mathematical approach to calculating whisker vibrations
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from the speed at impact, maximum whisker bending during touch, and location of con-

tact along a whisker, which is more easily observed. We find that vibration frequency and

amplitude is strongly dependent on the location of contact along the whisker, which mice

may use to deduce the distance between their face and touched objects. We confirm our

calculations with high-speed imaging of whisker vibration during touch.

Introduction

Vibration of tactile sensors contributes to perception of surface texture and object identifica-

tion in humans [1, 2], prosthetic devices [3, 4], and potentially rodents [5–8]. Vibration could

also be an important cue for determining the distance to objects using swept sensors. This

method of distance determination is important for mice and rats, who rely on active touch of

swept whiskers for navigation and object localization in their natural habitat. It is also impor-

tant for visually impaired people, who navigate, locate, and identify nearby objects by touch

with a swept white cane [9].

When an elastic beam strikes an object, the beam bends and vibrates. The frequencies of

this vibration are dependent on where along the beam contact is made [10]. Sensing of vibra-

tional frequency was proposed as a possible method for distance determination using artificial

swept antennae [11]. This method has been demonstrated with artificial cylindrical whiskers

swept into objects [12] and for similar whiskers held fixed as a textured drum steadily rotates

against them [13]. This supports the possibility that rodents could use vibration as a cue for

distance to object. However, rodent whiskers are approximately conical [14, 15], with the cen-

ter of mass one quarter length from the whisker base. This provides conical whiskers with dis-

tinct vibrational properties. In addition, the relative lack of mass near the tip of the whisker

might make vibrations a less informative cue about object distance during distal contacts.

Since whiskers are conical, they tend to bend much more during distal rather than proximal

contacts. This is because the bending stiffness of a beam with a circular cross section is propor-

tional to the fourth power of its radius. For the same push angle (i.e. the maximum angle the

base rotates towards an object during touch), the angle of the force applied by the pole to the

follicle is strongly dependent on object distance [16]. This results in different ratios of axial to

lateral forces and moments for proximal and distal touches [17], which was proposed as a

behavioral basis of radial distance discrimination in head-fixed rodents [18, 19]. In compari-

son, force magnitude or push angle during touch provides degenerate signals during active

radial distance discrimination by mice, neither of which alone predict the behavior of the

animal.

Recent biomechanical modeling and experiments on isolated whiskers show that both force

angle and vibration can be used to mechanically discriminate radial distance of contact [20].

In rodents, quasi-steady state forces drive activity in slowly adapting and Merkle-cell mechan-

osensory afferents in the whisker follicle [21, 22], while vibrational dynamics could be well

suited for activation of fast-adapting mechanoreceptors [21, 23]. Are the forces and whisker

dynamics during actual object localization by head-fixed mice suitable for radial distance dis-

crimination by vibration? Under what conditions would vibration frequency, magnitude, or

force angle be a more informative cue? We address these questions by examining quasi-static

and dynamic forces evoked by active touch by head-fixed mice locating objects with their

whiskers.

We present a new analytical approach to model whisker dynamics generated by contact

with objects. This solution builds upon prior work [20, 24]. We experimentally constrain the
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model by measuring parameters which control these dynamics, including Young’s modulus,

damping coefficient, and the temporal dynamics of whisker bending during active touch. We

estimate time varying forces applied to the whisker by the object using a quasi-static approxi-

mation of whisker bending, then apply the model to calculate vibrational whisker dynamics,

bending moment, and shear force at the follicle. The calculated vibrations closely match vibra-

tions we observe under high speed imaging. We find that the vibration frequency during touch

provides a unique signature for object distance during contacts along the proximal two thirds

of a whisker. Since the proximal half of whiskers are relatively stiff, vibration frequency pro-

vides a more sensitive cue for discriminating object distance than the angle of applied force for

touches in this range. We also find that the relative magnitude of vibrational forces to quasi-

static forces dramatically increases at distal object locations. Thus, neural circuits which com-

pare the relative magnitude of vibrational to sustained forces evoked by touch could provide

another distance cue.

Results

We highlight the key findings in the Results section, with a full derivation contained within the

Materials and Methods section.

Mechanical properties of mouse whiskers during active touch

We trimmed head-fixed mice to a single whisker (C2) and observed their interactions with a

thin vertical pole presented at varying distances from the mouse’s face (6.5–13mm from folli-

cle; Fig 1a). Mouse whiskers are thin tapered elastic beams of roughly conical shape [14],

which we describe using the variables illustrated in Fig 1b. Tracking whisker motion and bend-

ing from a top-down view at 1000 frames per second revealed that the follicle translates, the

whisker bends, and the angle of the whisker at follicle base and angle at object contact change

during single touches (Fig 2a and 2b). The difference between base and contact angles defines

the angle of the normal force (force angle) and is proportional to the axial (pushing into folli-

cle) and lateral (pushing sideways on the follicle) forces and bending moment (torque applied

to follicle). The ratio of axial force to lateral force or bending moment has been proposed to be

used by mice to discriminate object distance during contact with a single whisker [18]. Since

whiskers become much more flexible near the tip, Weber’s law predicts distance sensing reso-

lution will be maximum near the tip [17].

To test the prediction that force angle changes more dramatically during touches near the

whisker tip, we analyzed a set of 12,361 touches from a dataset of head-fixed single whisker

object localization [25, 26]. These touches were all active, exploratory touches that informed

the animal’s decision about object location, as they all occurred prior to the first lick in a trial.

Consistent with the prediction, we found that the maximum change in force angle for each

touch was, on average, small at distances <10mm from the follicle (10.3–16.4 deg from 6.7–

10mm from base), and increased rapidly near the tip (16.4–36.2 deg from 10–12.7mm) Fig 2c).

This suggests that force angle may be a poor discriminator of distance between object positions

<10mm from the follicle (about 2/3 of the whisker length). From this whisker bending and

estimates shape of the whiskers, we used the a quasi-steady state method to estimate the tem-

poral profile and magnitude of touch forces [16, 18] (Fig 2d).

Tracking dust particles on the whisker (Fig 1a, arrow) during a subset of trials allowed us to

determine if whiskers are pushed into the face by axial forces that build up when the whisker

bends. The radial location of the follicle moved over 0.6 mm as mice moved their cheek while

investigating the pole, and up to 0.2 mm into or out of the pad during single contacts. How-

ever, there was no correlation between increasing whisker curvature, which corresponds to

Dynamic cues for whisker-based object localization
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Fig 1. Schematic of whisker touch. A, Video frame with an overhead view of a whisker striking a pole during object localization in head-fixed mice.

Arrow points to a dust particle used to track radial movements. Compass indicates anterior-posterior and medial-lateral axes. B, Coordinate frame and

configuration of the conical whisker and the pole used in the model. L is the length of a full-length whisker, ℓ is the truncation length, R is the whisker

radius at base, and c is the position of the pole exerting force F. Extrapolated virtual tip of the trimmed whisker is located at x = 0.

https://doi.org/10.1371/journal.pcbi.1006032.g001

Fig 2. Quantification of active whisker touch. A, Time-series of a tracked whisker before, during and after a typical pole touch. Non-contact periods

in gray, contact periods in black. Black dots, estimated base of follicle. Arrows indicate base whisker angle (cyan) and whisker angle at contact point

(red). B, Example set of whisker-pole touches. Whisker angle at base (cyan) and at contact point (red). The change in the difference of base angle and

contact angle from onset of each touch (black). Time points for traces during contact displayed in (A) are indicated as solid circles. C, Distribution of

the maximum change in base-contact angle for 12,361 exploratory (pre-decision) protraction touches across a range of pole distances during object

localization. Smoothed spline fit (red). Data from Hires et al. 2015. D, Estimated quasi-static force generated by the four touches in B, using the

methodology of Pammer et al., 2013.

https://doi.org/10.1371/journal.pcbi.1006032.g002
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increasing axial force, and the radial location of the dust particle. This suggests that the axial

position of the follicle is actively controlled, and allows us to neglect axial compliance.

Whiskers vibrate when force is applied to them. These vibrations decay based on damping

properties of the whisker and the follicle. To measure the damping coefficient α and first

eigenfrequency ω of the C2 whisker, we quantified the decay of whisker curvature change fol-

lowing rare events where the whisker slipped past the pole. The pole was 10 mm from the folli-

cle base and curvature measured 6 mm from follicle base (Fig 3a). These slips provide a large,

sharp impulse to the whisker after which the whisker vibrates freely. We describe these vibra-

tions using the oscillatory damped function: f ðtÞ ¼ A sin ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2 � ða=2Þ
2

q

t þ �Þ expð� at=2Þ,

where A is the amplitude of the oscillations and ϕ is their phase at t = 0. Eight slip-offs were fit,

each giving an estimate of the oscillation frequency and damping of the whisker (Fig 3b and

3c). Damping and eigenfrequencies estimates were independent of force magnitude, the point

of force application and the point of whisker curvature measurement. The mean damping

value, fitted to the decay of the exponent was α = 430 ± 120 rad/s and the mean angular fre-

quency of vibration was ω = 962 ± 50 rad/s (153 ± 8 Hz). This is well within the range with

which mechanosensory neurons in the follicle can fire in every cycle [27]. Since Eq (24) relates

the vibration (angular) frequency to Young’s modulus E, using the measured whisker’s param-

eters, length L = 17.14 mm, radius at base R = 37.15 μm, and density ρ = 1.0g/cm3 we can esti-

mate E for this whisker to be 3.04 GPa. This number is near the center of the range of values

reported for rat whiskers 3.34 ± 1.48 GPa [28].

In the analytical modeling examples throughout the remainder of this paper, we selected

parameters close to those extracted from these measurements. All whiskers were linearly

tapered cones truncated at 0.95 of the extrapolated length (i.e., ℓ/L = 0.05) unless otherwise

specified. We set length to be L = 18mm, base radius R = 37 μm, density ρ = 1.0 g/cm3, damp-

ing α = 430 rad/s, and Young’s modulus E = 3.00 GPa.

Analytical solution for whisker vibrations from touch

To understand how vibrational dynamics of whiskers could influence tactile perception, we

first calculated the eigenmodes and eigenfrequencies of a model whisker (i.e. a linearly tapered

cone) during two sets of boundary conditions, when the whisker is in contact with a thin cylin-

drical pole (Fig 4a), or where it is vibrating freely (Fig 4b). In both cases, the follicle is fixed.

During touch, all eigenmodes share a node at the follicle base and at the point of contact.

Fig 3. Fitting whisker damping. A, Single tracked whisker over time, immediately before and after a slip-off (time between snapshots, 1 ms). B, Post-

slip vibration for the example in (A). C, Best fit and 0.95 confidence intervals for 8 whisker slips.

https://doi.org/10.1371/journal.pcbi.1006032.g003
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We next developed analytical solutions for the vibration of a mouse whisker during object

contact at a single point along the whisker’s length, and for free vibration (see Materials and

Methods for a complete description). We modeled the timecourse of touch forces based on

typical observed touches (Figs 2d and 5a), with the shape of a truncated Gaussian curve. We

modeled touch onset as a smooth connecting function with one free parameter, τ, the duration

of time between zero force and the main Gaussian (Fig 5a). This is in contrast to previous

work [24], which treat impact as an instantaneous event. Excitation of eigenmodes is sensitive

to the duration of the transition period, whereas dynamics at moment of impact are beyond

our temporal resolution of observation. Therefore, we performed a parameter sensitivity anal-

ysis of τ on eigenmode excitation. The magnitude of excitation of the first six eigenmodes was

insensitive to shortening τ below 0.1 ms (Fig 5b). Eigenmodes with order above six are >100x

weaker than primary and secondary modes, and have higher frequency than what could plau-

sibly be sensed by mechanoreceptors in the follicle. Therefore, we defined τ to be 0.1 ms for all

later analysis.

Excitation of eigenmodes is also sensitive to the location of contact, with the fundamental

mode dominating higher modes for most contact positions, except around c/L = 0.3, where the

second mode excitation becomes most prominent (Fig 5c). The relative amplitude of these

modes affects the temporal pattern of peak vibrational forces at the follicle.

A prominent feature of observed touches and prior models of whisker vibrations is the

propagation of a wave from the point of contact towards follicle immediately after the onset of

touch [24]. Our model recapitulates this phenomenon (Fig 5d). Shear force and bending

moment at the follicle drive mechanotransduction [22]. Our model describes the vibrational

components of shear force and bending moment (Fig 5e) at the follicle following contact onset

and offset. These components likely drive mechanotransduction. Contact with a pole causes

bending and deflection from applied steady-state force and vibration. Our model provides a

complete solution for the displacement of the whisker along its entire length, including beyond

the object contact point, decomposed to the steady-state component (Fig 5f), the vibrational

component (Fig 5g), and sum of these during (Fig 5h) and after contact (Fig 5i).

To validate the accuracy of our model, we performed 4000 frame per second imaging of

active whisker touch during object localization. Following the experiment, we measured the

Fig 4. Four lowest eigenmodes for a full-length conical whisker with fixed-base free-tip boundary conditions. A, Pole located at c/L = 0.3, as

indicated by arrow. B, Free vibration of the whisker in absence of the pole. Insets: The same four eigenmodes magnified for clarity.

https://doi.org/10.1371/journal.pcbi.1006032.g004
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whisker dimensions L = 15.726mm, radius at base R = 38.96 microns. Using the whisker prop-

erties, the location of the pole (c/L = 0.356) and the velocity of whisker at the contact point

(86mm/s) we calculated the vibrational response of the whisker with zero free parameters.

Remarkably, observed responses had appropriate sign, shape, phase and amplitude (Fig 6).

For vibration to serve as a cue for object distance during contact with a single whisker,

there must be some detectable distance-dependent change in whisker vibration. This could

manifest as a change in vibration frequency or magnitude. To determine if such a cue could be

present, we calculated the frequencies of the first five eigenmodes during object contact. We

found a strong dependence of vibration frequency on the distance between contact point and

follicle, with the first mode increasing in frequency by 2.31x between contact near the base

(c/L = 0.95) and c/L = 0.32 (Fig 7a). This is qualitatively similar to results for a cylindrical whis-

ker [13], albeit with a less pronounced change in frequency. Here, since the vibration is of a

beam with free tip, the distance-frequency relationship is non-monotonic, increasing away

from base then decreasing as the contact point approaches the tip. Higher eigenmodes show

Fig 5. Model response to touch. A. Time dependent profile of the applied force modeled by a truncated Gaussian (Eq (77)) and a smooth connecting

function Fs(t) (Eq (79)) that models the touching event at early times, 0� t� τ. For clarity, τ is exaggerated in the figure. B. Amplitudes of the

eigenmodes excited by pole impact as a function of the eigenmode number calculated for different τ. C. The relative excitation of eigenmodes is

dependent on location of contact along the whisker. D. Touch onset propagates a vibrational wave towards the base of the whisker. E. Bending moment

and shear force at the follicle during, 0� t� 10 ms, and after, t> 10 ms, touch calculated for pole position c/L = 0.6. F-I. Time-dependent displacement

of a 5% trimmed whisker during and after typical interactions with pole located at c/L = 0.6. F. Top: steady state component, ys(x, t), of the whisker

displacement during contact with pole, 0� t� tf, tf = 10 ms. Bottom: solid and dashed lines show ys(x, t) sampled with 0.5 ms steps during the forward

and backward motion, respectively. G. Top: vibrational component of the whisker displacement, ye(x, t), during contact with pole. Bottom: vibrational

component ye(x, t) sampled with 0.5 ms steps. H. Top: sum of the steady-state and vibrational components. Bottom: solid and dashed lines show the

total whisker shape sampled with 0.5 ms steps during the increase and decrease of the force, respectively. The time colorbar shown in F applies to all

bottom panels F-I. I. Top: free whisker motion after the pole detachment, t> tf. Bottom: whisker shape for the same time interval sampled with 0.5 ms

time steps. The value τ = 0.1 ms was used in panels C-I.

https://doi.org/10.1371/journal.pcbi.1006032.g005
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Fig 6. Comparing model and observation. Traced high speed imaging (4000 fps) of whisker displacement and deformation during touch. Each line is

a whisker position during the first 5 ms from onset (0.25ms timesteps). Y-axis is expanded. This whisker had an intrinsic curvature that bent towards

the anterior of the head, in the direction of protraction. Compass indicates anteroposterior and mediolateral axes. Inset, zero free parameter model

predictions and observed vibrational deformation through time at eight color coded locations along the whisker during this example touch.

https://doi.org/10.1371/journal.pcbi.1006032.g006

Fig 7. Dependencies of eigenfrequencies. A, The dependence of the five lowest dimensionless eigenfrequencies, βj, on pole position for a full-length

conical whisker. B, The dependence of the five lowest dimensionless eigenfrequencies on the truncation length for a fixed pole position c/L = 0.6.

https://doi.org/10.1371/journal.pcbi.1006032.g007

Dynamic cues for whisker-based object localization
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multi-peaked relationships, with number of peaks equal to the order of the mode, and less rela-

tive modulation with increasing order. In a frictionless system, this relationship is independent

of touch force or τ, making it robust to variation in how firmly or quickly the mouse strikes

the pole. Truncation of the whisker also affected the eigenmode frequency, with modest effects

on the first mode, and increasingly strong effects on higher modes (Fig 7b).

Could mice determine the distance to the pole using vibration frequency rather than the

ratio of axial to lateral forces (i.e. the angle of the touch force [18])? To assess this, we com-

pared the relative rate of change in vibration frequency and force ratios as the contact point

moves along the whisker (Fig 8). In the proximal half of the whisker, fundamental vibration

frequency changes 7.4–4.1x more quickly with increasing distance (4.5–10% / mm) than force

ratios (0.6–2.2% / mm). Near c/L = 0.3, vibrational frequency becomes more steady, before

changing more rapidly again towards the whisker tip. The fundamental frequency near the tip

is degenerate with frequency in the proximal 2/3 of the whisker, though including higher

order modes could uniquely resolve object distance. In contrast, the rate of change in force

ratios increases rapidly for contacts beyond 2/3 of whisker length, exceeding 100% / mm near

the tip. This is consistent with the distal third of the whisker being several orders of magnitude

more flexible than the proximal third. Overall, this suggests that vibration frequency would be

a more salient cue for object distance for contacts in the proximal half of the whisker than axial

to lateral force ratios, provided similar detection sensitivity.

Fig 8. Comparison of distance dependence of vibration frequency and force component ratios. Red, the rate of change of fundamental vibrational

frequency against contact distance along the whisker length. Blue, the rate of change of force ratios against contact distance along the whisker length.

Log base 10 y-axis. There is little change in axial-to-lateral force, Fax/Flat, (< 1% / mm) in proximal contact positions due to whisker stiffness preventing

substantial curvature during touch. However, the fundamental frequency of vibration changes substantially (5 – 10% / mm) with contact position for a

large range of contacts out to c/L = 0.3. At more distal contact positions, the first eigenfrequency falls and is degenerate with proximal frequencies. The

rate of change of force component ratios accelerates towards the tip.

https://doi.org/10.1371/journal.pcbi.1006032.g008
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Vibration magnitude could also serve as a contact distance cue. Touches with equal push

angle generate dramatically reduced steady-state forces with increasing contact distance [16,

25]. The magnitude of vibration forces are less dependent on contact distance. We illustrate

this by calculating the ratio of vibration to steady state shear forces and bending moments for

contacts at varying distance from the whisker base. These ratios increase dramatically as the

contact point moves from base to tip (Fig 9). Both the average and maximum vibrational bend-

ing moment and shear force are a small fraction the steady-state component for very close con-

tacts (c/L = 0.9; shear 0.057 average, 0.057 maximum; bending moment 0.020 average, 0.021

maximum). Near the tip, these forces can approach or exceed the steady state component

(c/L = 0.1; shear 1.36 average, 4.57 maximum; bending moment 0.409 average, 0.996 maxi-

mum). Since mice have distinct sensing afferents for fast vs. slowly changing touch forces [20,

21], comparison of activity between these afferents is a plausible additional mechanism for

determining object distance.

Discussion

Accuracy of the mechanical model

Our model of whiskers deformed by time-varying point forces relies on several simplifying

assumptions. First, we used the Euler-Bernoulli beam theory for thin beams, which ignores

shear terms. Rodent whiskers have a slenderness ratio of>> 100, a regime where shear terms

are irrelevant [29].

We assume a constant path length from follicle to point of force application. The majority

of touches have a change in push angle of< 15 degrees, and the peak increase in path length

during touch was < 1% for 81% of touches (Fig 2c), justifying our use of the small-angle

approximation [30]. For the 3% of touches with peak angle difference of> 50 degrees, a more

sophisticated non-linear model may be necessary for accurate calculation of vibration.

We treat the whisker in two dimensions. We also ignore friction, since the applied forces

are assumed to be normal to the longitudinal axis of the whisker [16]. Frictional forces could

tension the whisker, altering vibrational frequencies. Full treatment of vibrations in three

dimensions, including torsional movement [31], intrinsic whisker curvature [32], and friction

would require a numerical approach [33].

Fig 9. A. Touches evoke quasi-static and vibrational bending moments at the base. The ratio of quasi-static and dynamic bending moments increases

dramatically toward the tip. B. Similarly, the ratio of quasi-static and dynamic shear forces increases dramatically toward the tip.

https://doi.org/10.1371/journal.pcbi.1006032.g009
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We use approximate boundary conditions at the follicle. The follicle holding the whisker

has unknown and potentially variable compliance during whisking [34–37]. The angle of the

whisker relative to the follicle is thus fixed, whereas bending moment (directly proportional to

the whisker curvature and the magnitude of the applied force), and shear force (the rate of

change of the curvature) vary. Since the parameters relevant to object localization [18], includ-

ing bending moment, can be calculated for the fixed end boundary condition, we focused our

analysis on this case.

Mouse whiskers are not quite linear cones, but are thinner in the middle than a linear fit

[14]. This has an appreciable impact on the bending angle, due to the fourth power depen-

dence of stiffness on radius, but the effect on the vibrational modes is estimated to be relatively

small.

We assumed Young’s modulus to be constant along the whisker. Rat and mouse whiskers

have an inner hollow medulla, filled with spongy material. This could cause a difference in

effective Young’s Modulus between proximal and distal halves of the whisker [28]. The esti-

mates of the damping coefficient, vibration frequency and steady state displacement all depend

on Young’s Modulus.

Our reference frame fixes the x-axis along the long axis of the whisker. From this perspec-

tive, the deflections produced by a whisker rotated into a pole (as in active touch) are equiva-

lent to a pole moving into a whisker held steady (as in passive deflection). Differences in blood

sinus pressure and muscle tension between passive and active touch could potentially influ-

ence follicle compliance, damping, and how forces applied to the follicle are transduced by

mechanoreceptors and perceived by the brain [21, 38]. Since all touches examined in this

project were by produced by head-fixed mice using whisking to locate objects, our results

estimating follicle compliance and damping are best suited for modeling vibrations of active

touch. Accurate calculation of vibrations from passive touch may require different damping

coefficients.

There are also several sources of potential experimental measurement error. Due to droop

and whisker elevation change, the single top-down projection in our dataset results in an

underestimate of the true path length to contact, c/L, in the behavioral measurements (Fig 2).

Dual view imaging shows that this error is<4 percent for touches in the proximal half of the

whisker, but increases beyond that point. The fur on the face obscures the whisker insertion to

the follicle. We compensated for these factors by assuming the whisker continued into the fur

an additional 1–1.75mm depending on fur length, justified by our prior high-resolution mea-

surements of mouse whisker shape [14].

Whisker displacement following touch is composed of quasi-steady state and vibration

parts. Mice actively control the quasi-steady state trajectory in an irregular manner, so we

must estimate this part by smooth fits of the trajectory across time. Our choice of fit influences

the residual vibration component, particularly at the edges of the measured period.

Damping of whisker vibrations (Figs 3 and 6) could arise from dissipation within the whis-

ker, the follicle, the whisker-object interface, friction and coupling to tissue surrounding the

follicle [24, 30]. We modeled damping during free vibration using a single parameter linearly

applied to each vibrational mode. Changes in path length c during strong or distal contacts

could cause destructive interference of the range of eigenmodes excited during a single contact

and frictional dissipation, reducing vibration.

Given these caveats, our model predicts the phase, absolute and relative amplitude of vibra-

tion by active whisker touch well (Fig 6). There is a small mismatch in frequency and damping,

which we expect are due to estimating damping during free vibration, simplified whisker

geometry, curve fitting of whisker traces to overcome sub-pixel alignment noise, and
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uncompensated active accelerations of the whisker by the mouse. The accuracy of model is

particularly impressive because it is untuned, with zero free parameters.

Comparison to other work

Our model diverges from other recent work [20, 24] in several ways. We model the whisker in

its entirety, including beyond the contact point, allowing placement of the pole at any location

along the whisker. This is especially important for studying vibrational cues in close proximity

to the whisker base. We consider a Gaussian form of the force time-dependence mimicking

the experiment, but any force profile can be treated with our methods. We use a frequency-

independent damping constant, which is reasonable since the higher vibrational eigenfrequen-

cies are outside the animal’s perception limits. Critically, we avoid singularity in the whisker

acceleration upon impact by using a smooth force onset that keeps the first two time-deriva-

tives of the force continuous.

Most importantly, we analytically solve the spatial eigenmodes of conical whiskers, with

and without truncation in both motion phases, in contact with pole and in free motion. The

analytical solution provides closed-form expressions of the eigenmodes, which is significantly

more robust and less computationally expensive than obtaining them numerically. Using the

closed-form expressions avoids numerical errors, which becomes increasingly important for

higher eigenmodes needed for the expansion of vibrational motion trajectories. Numerical

instabilities limited the number of modes considered in prior work [20]. Thus, our approach

allows a more complete view of the time-evolution of whisker vibration. The derived analytical

solutions can be easily reproduced and used by others within Mathematica or MATLAB pack-

age without additional programming. The resultant expressions are transparent, can be easily

manipulated, and subjected to various boundary conditions. As a result, the developed analyti-

cal approach can be easily generalized and adjusted for more complex experimental condi-

tions, such as multi-point touching, slipping, or sliding.

Contributions of transverse vibrations to whisker-dependent behaviors

Identifying the location of objects relative to the face is important for social interaction, forag-

ing, navigation, and other behaviors. Rodents actively sweep their whiskers forward and back

during these behaviors. In head-centered spherical coordinates, the radial distance, azimuthal

angle, and polar angle of objects can determined by distinct active touch strategies. Polar angle

could be determined by labelled-line activation of whiskers across different rows [39], which

extend to different elevations above and below the face. Azimuthal angle could be determined

by the number of touches in a whisking bout [40], the timing of touch relative to neuronal

phase-locked loops [41], the roll angle of the whisker at touch [31, 42], or an integration of

whisking amplitude and midpoint signals with phase amplified touch responses [43]. Radial

distance could be determined with low resolution by labelled line activation of whiskers of dif-

ferent lengths [44]. Higher resolution distance discrimination requires other cues, potentially

including vibration.

Quasi-static analysis has shown that axial forces pushing the whisker into the face could

contribute to tactile perception [17, 18, 45]. However, axial vibrational displacements and

forces are expected to be negligible. Axial frequencies of whiskers are much higher than trans-

verse frequencies. The difference is controlled by the factor r/L where r is the whisker radius

and L is its length (compare Timoshenko Eq. 5.4 on page 36 and Eq. 5.102 on page 421). This

gives a factor 160 for our whiskers, corresponding to vibration frequencies>100 kHz. Mecha-

noreceptors are not sensitive to frequencies in this band. In addition, the associated displace-

ments are four orders of magnitude smaller compared to transverse vibrations, because the
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displacement is inversely proportional to the square of eigenmode frequency (Timoshenko

Eq. c on page 73). Thus, radial displacements from vibration are expected to be on the order of

one hundred nanometers. While steady state axial forces likely play important roles in tactile

sensation, axial vibrations can be neglected as tactile cues.

Mice can determine radial distance with a single touch of an individual whisker [18, 19].

Experimental manipulation of the compliance of the object and stiffness of the whisker sup-

ports a decision model where the ratio of quasi-static axial and lateral forces are used for dis-

crimination [18]. Could vibrational cues also contribute to distance discrimination? At least

two potential strategies could be used.

The first relies on comparing the temporal patterns of spikes evoked by touch (Fig 7). The

timing precision of evoked spikes is sufficiently high within primary sensory neurons (median

spike jitter 17.4 μs, [27]) to encode vibration frequency and pattern changes from the sum

of the first few eigenmodes. High temporal fidelity is a hallmark of intermediate locations

between follicle and cortex [46–48]. Vibrational frequency can be used to discriminate contact

distance in isolated preparations [5, 20]. Ideal observers of spike trains can use precise timing

in primary afferents to decode stimulus features [22, 49–51]. Changes in synchrony across

multiple afferents could potentially be read out by downstream neurons in S1 or other brain

regions to produce a neural representation of vibration frequency and corresponding object

distance. Since we do not know the relative sensitivity mice have for pitch shift vs. force ratio

changes on whiskers, it remains unclear whether the animal has the capability of using sub

millisecond differences in tactile sensory input patterns to influence perception and drive

behavior.

The second strategy involves comparison of the amplitude of two streams of sensory input,

static forces from bending, and dynamic forces from vibration. As mentioned above, these are

likely selectively encoded by slowly and rapidly adapting mechanosensory afferents. Due to the

increased flexibility of whiskers towards the tip, steady-state forces during contact are two or

more orders of magnitude smaller during contacts near the tip than near the base. In contrast,

the magnitude of vibrational forces are primarily dependent on whisker velocity at contact,

which is less distance dependent. Thus, the relative magnitude of vibration to steady state

forces could provide another important cue to distinguish radial distance (Fig 8).

Since the mammalian brain exhibits flexible learning, it seems likely that which cues drive

behavior will be a combination of static and dynamic signals that reflect task demands, motiva-

tion, and training history. Behavioral experiments could be used to ascertain if and how mice

use vibrations to judge radial object distance. Vibration, but not steady state force, depends on

whisker properties beyond the point of contact (Fig 6). Thus, whisker trimming will increase

vibration frequency without affecting steady state forces. If frequency serves as a critical cue,

our results predict that in mice trained to discriminate radial distances in the proximal half of

a single whisker, reported object distance will increase if the whisker tip is trimmed off, quanti-

fiable by a shift in psychometric curves.

Determining if and how neural circuits compare vibration and quasi-static forces to influ-

ence perception of object distance has recently become a tractable problem. Recent work has

measured firing properties of identified classes of mechanosensory afferents from the follicle

during whisker motion [22]. Genetic labelling has identified a diversity of convergence of

slowly and rapidly adapting afferents onto second-order projection neurons from mouse whis-

ker follicles [52]. Given appropriate upstream connectivity, these could provide an appropriate

set of sensory representations to make comparisons between dynamic and static information

during active touch. Further dissection of these circuits should be possible with advanced

genetic methods. Thus, our results computing whisker vibrations based on real whisker

touches during active sensing provides a strong foundation and justification for future

Dynamic cues for whisker-based object localization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006032 March 27, 2018 13 / 32

https://doi.org/10.1371/journal.pcbi.1006032


investigations into how neural circuits perform computations on tactile sensory input to pro-

duce perception.

Materials and methods

Ethics statement

All procedures were in accordance with protocols approved by the Institutional Animal Care

and Use Committees of the University of Southern California (Protocol 20169) and Janelia

Research Campus (Protocol 11–71).

Mathematical notation and coordinate system

1. The x-axis is the line between whisker tip and whisker base when the whisker is at rest

(Fig 1b).

2. ℓ is the location of the truncated whisker tip, or the truncation length (the extrapolated vir-

tual tip is located at the origin).

3. L is the distance from the origin to the whisker base.

4. c is the point of force application (pole position).

5. R is the whisker base radius at x = L.

6. r(x) = ξx is the whisker radius at point x, where ξ = R/L.

7. E is Young’s modulus of the whisker.

8. ρ is the volume density of the whisker.

9. z, γ, β, η = qx, qℓ, qL, qc are four of the previous variables written in a dimensionless form,

where q = (4ρω2/Eξ2)1/2 and ω is the eigenmode angular frequency.

10. M(x, t) is the bending moment at position x and time t created by a force applied at c.

11. I(x) = (π/4)r4(x) is the area moment of inertia at point x. At the whisker base,

I(L) = (π/4)R4� I0.

12. μ(x) = ρπr2(x) = ρπξ2 x2 is the linear density of the whisker.

13. α is the frequency-independent damping constant.

14. In the small angle approximation, the applied force F� F?, the force component perpen-

dicular to the whisker axis.

15. f(x, t) is the linear density of the force applied by pole.

16. tf is the duration of contact with pole.

17. τ is the duration of the smooth force onset, τ� tf.

18. y(x, y) is the total whisker displacement from straight line during contact with pole,

with ys(x, t) and ye(x, t) being the steady-state and vibrational components of y(x, t),
respectively.

19. u(x, y) is the total whisker displacement during the free motion following detachment

from pole.
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20. Xj(x) and ωj are the spatial function and angular frequency of the j-th vibrational eigen-

mode of a fixed-base free-tip conical whisker with a simple support at the point of force

application, x = c.

21. Zj(x) and $j are the spatial function and angular frequency of the j-th eigenmode of a

freely vibrating fixed-base free-tip conical whisker.

22. ϕj(t) and φj(t) are time-dependent coefficients in expansion of the whisker motion in spa-

tial eigenmodes during forced and free motion, respectively.

Derivation of the analytic solution for whisker dynamics

Static bending of a conical whisker in the small angle approximation. We start the deri-

vation from a description of the static whisker bending under applied force. In the small angle

approximation, the shape of a thin rod (i.e., a whisker) in response to an applied force is given

by:

d2ys
dx2
¼

MðxÞ
EIðxÞ

; ð1Þ

where ys is the steady state displacement of the whisker from the x axis (the straight line that

connects the whisker tip and base in the absence of force; see Fig 1), and E is the Young’s mod-

ulus. The area moment of inertia of a conical whisker is I(x) = (π/4)r4(x), where r(x) = ξx is the

whisker radius at position x, with ξ being a constant. We place the whisker base at x = L and its

trimmed tip at x = ℓ, such that the extrapolated virtual tip is at x = 0. For a full-length whisker,

ℓ = 0 and the real whisker tip is at the origin. The force F is applied at point x = c, and we take

it positive when it’s applied in the positive y-direction (upwards). The bending moment cre-

ated by the applied force can be expressed as:

MðxÞ ¼

(
0 ‘ � x � c

ðx � cÞF c � x � L
: ð2Þ

Integrating the differential Eq (1) twice results in:

ysðxÞ ¼
4F

pEx
4

1

2x
�

c
6x2
þ C1x þ C2

� �

c � x � L ;

y0sðxÞ ¼
4F

pEx
4
�

1

2x2
þ

c
3x3
þ C1

� �

c � x � L :

ð3Þ

In our calculations we assume fixed-base boundary conditions:

yðLÞ ¼ 0; y0ðLÞ ¼ 0 ; ð4Þ

which allow us to determine the integration constants C1 and C2. This leads to the following

expressions for ys(x) and y0sðxÞ in the interval c� x� L:

ysðxÞ ¼
2F

3pEx
4

3x � c
x2
þ
ð3L � 2cÞx þ 3Lðc � 2LÞ

L3

� �

;

y0sðxÞ ¼
2F

3pEx
4

2c � 3x
x3

þ
3L � 2c

L3

� �

:

ð5Þ
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At the point of force application, x = c, we calculate ys(c) and y0sðcÞ:

ysðcÞ ¼
4F

3pEx
4L3c
ðL � cÞ3 ;

y0sðcÞ ¼
2F

3pEx
4L3c2

ð3Lc2 � L3 � 2c3Þ :

ð6Þ

which allows us to define ys(x) in the interval ℓ� x� c as:

ysðxÞ ¼ y0sðcÞðx � cÞ þ ysðcÞ : ð7Þ

Eigenmodes and eigenfrequencies of a conical whisker. In this section we derive analyti-

cal expressions for eigenmodes and eigenfrequencies of truncated and full-length conical whis-

kers, with and without contact with pole. The whisker is modeled as an elastic conical beam

and the pole is modeled by a simple support placed at the point of force application.

General solution. The vibrational eigenmodes of a conical whisker are determined by the

following differential equation [53]:

@
2

@x2
EIðxÞ

@
2y
@x2

� �

¼ � mðxÞ
@

2y
@t2

; ð8Þ

which is the homogeneous part of Eq (55) below with force density and damping constant set

to zero, f(x, t)� 0 and α = 0, respectively. Here, y = y(x, t) is the whisker displacement from

the x-axis and μ(x) is the whisker’s linear density. For conical geometry we have:

mðxÞ ¼ rpx
2x2; IðxÞ ¼ ðp=4Þx

4x4 : ð9Þ

Substituting Eq (9) in Eq (8) we obtain:

@
2

@x2
x4
@

2y
@x2

� �

¼ �
4r

Ex
2
x2
@

2y
@t2

: ð10Þ

Separating the spatial and temporal dependences in the solution as y(x, t) = X(x)g(t), with g(t)
having harmonic time dependence satisfying €gðtÞ ¼ � o2gðtÞ, we obtain the equation for the

spatial part alone:

@
2

@x2
x4 @

2X
@x2

� �

¼
4ro2

Ex
2
x2XðxÞ : ð11Þ

Introducing a new dimensionless variable:

z ¼ qx with q2 ¼
4ro2

Ex
2
; ð12Þ

and a new function:

wðzÞ ¼ XðxÞ ¼ Xðz=qÞ; ð13Þ

we transform Eq (11) into a tidy dimensionless form:

@
2

@z2
z4 @

2
w

@z2

� �

¼ z2wðzÞ : ð14Þ
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It has been demonstrated [54] that the general solution of the fourth-order Eq (14) can be

constructed from two linearly-independent solutions of the Bessel equation of order two:

x2
d2y
dx2
þ x

dy
dx
þ ðx2 � 22Þy ¼ 0 ; ð15Þ

and from two linearly-independent solutions of the modified Bessel equation of order two:

x2
d2y
dx2
þ x

dy
dx
� ðx2 þ 22Þy ¼ 0 : ð16Þ

The two independent solutions of Eq (15) are the Bessel functions of the first and second kind,

J2 and Y2. The two solutions of Eq (16) are the modified Bessel functions of the first and second

kind, I2 and K2. The four linearly-independent solutions of Eq (14) have been shown [54] to be

of the form:

J2ð2
ffiffiffi
z
p
Þ

z
;

Y2ð2
ffiffiffi
z
p
Þ

z
;

I2ð2
ffiffiffi
z
p
Þ

z
;

K2ð2
ffiffiffi
z
p
Þ

z
; ð17Þ

which can be directly checked by their substitution into Eq (14).

Freely vibrating full-length conical whisker. Let us start from considering the eigen-

modes of a freely vibrating full-length (not truncated) conical whisker. The general solution of

Eq (14) can be written as:

wðzÞ ¼ c1

J2ð2
ffiffiffi
z
p
Þ

z
þ c2

Y2ð2
ffiffiffi
z
p
Þ

z
þ c3

I2ð2
ffiffiffi
z
p
Þ

z
þ c4

K2ð2
ffiffiffi
z
p
Þ

z
: ð18Þ

Using the Bessel function recurrence relations [55], one can write the first three derivatives of

the general solution:

w0ðzÞ ¼ � c1

J3ð2
ffiffiffi
z
p
Þ

z3=2
� c2

Y3ð2
ffiffiffi
z
p
Þ

z3=2
þ c3

I3ð2
ffiffiffi
z
p
Þ

z3=2
� c4

K3ð2
ffiffiffi
z
p
Þ

z3=2
;

w00ðzÞ ¼ c1

J4ð2
ffiffiffi
z
p
Þ

z2
þ c2

Y4ð2
ffiffiffi
z
p
Þ

z2
þ c3

I4ð2
ffiffiffi
z
p
Þ

z2
þ c4

K4ð2
ffiffiffi
z
p
Þ

z2
;

w000ðzÞ ¼ � c1

J5ð2
ffiffiffi
z
p
Þ

z5=2
� c2

Y5ð2
ffiffiffi
z
p
Þ

z5=2
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I5ð2
ffiffiffi
z
p
Þ

z5=2
� c4

K5ð2
ffiffiffi
z
p
Þ

z5=2
;

ð19Þ

which will be used below for application of various boundary conditions in each particular

case. In the case of a full-length conical whisker, the real tip is located at x = 0. The Bessel func-

tions Y2 and K2 diverge at x = 0 and we must put c2 = c4 = 0 (see [54] and [56]). Further, since

we are interested in the fixed-base boundary conditions at x = L, i.e., z = qL� β, we require

zero deflection and zero slope at the base:

wðbÞ ¼ 0; w0ðbÞ ¼ 0; c2 ¼ c4 ¼ 0 : ð20Þ

These boundary conditions allow to determine the eigenfrequencies and the remaining coeffi-

cients c1, c3. Using the first derivative from Eq (19) we obtain:

J2ð2
ffiffiffi
b
p
Þ I2ð2

ffiffiffi
b
p
Þ

� J3ð2
ffiffiffi
b
p
Þ I3ð2

ffiffiffi
b
p
Þ

 !
c1

c3

 !

¼ 0 : ð21Þ

The solution of Eq (21) exists only when the matrix determinant vanishes:

J2ð2
ffiffiffi
b
p
ÞI3ð2

ffiffiffi
b
p
Þ þ J3ð2

ffiffiffi
b
p
ÞI2ð2

ffiffiffi
b
p
Þ ¼ 0 : ð22Þ
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Using the recurrence relations [55], we rewrite Eq (22) in a slightly more convenient form:

J2ð2
ffiffiffi
b
p
ÞI1ð2

ffiffiffi
b
p
Þ � J1ð2

ffiffiffi
b
p
ÞI2ð2

ffiffiffi
b
p
Þ ¼ 0 : ð23Þ

The j-th root of Eq (23), βj, gives the eigenfrequencies of the full-length conical whisker:

oj ¼
bj

2

x

L

ffiffiffi
E
r

s

¼
bj

2

R
L2

ffiffiffi
E
r

s

; ð24Þ

and their corresponding eigenmodes:

wjðzÞ ¼
Cj

z
J2ð2

ffiffiffi
z
p
Þ �

J2ð2
ffiffiffiffi
bj

q
Þ

I2ð2
ffiffiffiffi
bj

q
Þ
I2ð2

ffiffiffi
z
p
Þ

0

B
@

1

C
A : ð25Þ

The actual eigenmodes Xj(x) (or Zj(x), see below) are then obtained from Eq (25) by replacing

χj(z)! Xj(x), z! qx and β! qL. The constant Cj in Eq (25) is found separately for each one

of the modes from the normalization condition:

Z L

0

x2X2

j ðxÞdx ¼
1

q3
j

Z bj

0

z2w2

j ðzÞdz ¼ 1 : ð26Þ

The first ten dimensionless eigenfrequencies βj of the freely vibrating full-length conical

whisker, as given by Eq (23), are 8.719, 21.146, 38.454, 60.680, 87.834, 119.919, 156.936,

198.887, 245.771, 297.589.

Freely vibrating truncated conical whisker. For a freely vibrating truncated conical whis-

ker the general solution of Eq (14) is also given by Eq (18). However, in the truncated cone

case, the whisker tip is not at the origin but at x = ℓ. The whisker base is still at x = L, as before

(the whisker length is then L − ℓ). We have to apply boundary conditions at both tip and base

of the cone. The whisker tip is free, so the boundary conditions are vanishing bending moment

and shear force at the tip x = ℓ, or, in a dimensionless form, at z = qℓ� γ. At the base, x = L or

z = qL� β, the boundary conditions are the same as before: zero deflection and zero slope.

These boundary conditions can be written as:

w ¼ 0;
dw

dz
¼ 0 at z ¼ qL � b whisker baseð Þ ;

z4
d2w

dz2
¼ 0;

d
dz

z4 d2w

dz2

� �

¼ 0 at z ¼ q‘ � g whisker tipð Þ :

ð27Þ

Using these equations and expressions for derivatives in Eq (19), we obtain the following

equation for the four coefficients c1, c2, c3, c4:
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b
p
Þ Y2ð2

ffiffiffi
b
p
Þ I2ð2

ffiffiffi
b
p
Þ K2ð2

ffiffiffi
b
p
Þ

J3ð2
ffiffiffi
b
p
Þ Y3ð2

ffiffiffi
b
p
Þ � I3ð2

ffiffiffi
b
p
Þ K3ð2

ffiffiffi
b
p
Þ

J4ð2
ffiffiffi
g
p
Þ Y4ð2

ffiffiffi
g
p
Þ I4ð2

ffiffiffi
g
p
Þ K4ð2

ffiffiffi
g
p
Þ

J5ð2
ffiffiffi
g
p
Þ Y5ð2

ffiffiffi
g
p
Þ � I5ð2

ffiffiffi
g
p
Þ K5ð2

ffiffiffi
g
p
Þ

0

B
B
B
B
@

1

C
C
C
C
A

c1

c2

c3

c4

0

B
B
B
B
@

1

C
C
C
C
A
¼ 0 : ð28Þ

Again, using the Bessel function recurrence relations [55] we can slightly simplify the last row
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in the above equation:

J2ð2
ffiffiffi
b
p
Þ Y2ð2

ffiffiffi
b
p
Þ I2ð2

ffiffiffi
b
p
Þ K2ð2

ffiffiffi
b
p
Þ

J3ð2
ffiffiffi
b
p
Þ Y3ð2

ffiffiffi
b
p
Þ � I3ð2

ffiffiffi
b
p
Þ K3ð2

ffiffiffi
b
p
Þ

J4ð2
ffiffiffi
g
p
Þ Y4ð2

ffiffiffi
g
p
Þ I4ð2

ffiffiffi
g
p
Þ K4ð2

ffiffiffi
g
p
Þ

J3ð2
ffiffiffi
g
p
Þ Y3ð2

ffiffiffi
g
p
Þ I3ð2

ffiffiffi
g
p
Þ � K3ð2

ffiffiffi
g
p
Þ

0

B
B
B
B
@

1

C
C
C
C
A

c1

c2

c3

c4

0

B
B
B
B
@

1

C
C
C
C
A
¼ 0 : ð29Þ

Finally, setting the determinant of the above matrix to zero, the roots and the four coefficients

c1, c2, c3, c4 can be found numerically. The corresponding eigenfrequencies of the freely vibrat-

ing truncated conical whisker are:

oj ¼
gj

2

x

‘

ffiffiffi
E
r

s

¼
bj

2

x

L

ffiffiffi
E
r

s

: ð30Þ

The normalization condition for the eigenmodes (see Eq (26) for comparison) is:

Z L

‘

x2X2

j ðxÞdx ¼
1

q3
j

Z bj

gj

z2w2

j ðzÞdz ¼ 1 : ð31Þ

The dependence of several βj of the truncation length ℓ is shown in Fig 7b.

Truncated conical whisker in contact with pole. When the whisker comes in contact

with pole, the eigenmodes of the free vibration described above are modified. The presence of

the pole imposes additional restrictions on the vibrational motion, which can be modeled by

placing an additional simple support at the point of force application, x = c, which we label by

η = qc in a dimensionless form. At this simple support, the whisker is allowed to rotate while

maintaining continuity of the slope and bending moment [57]. Also, its deflection from the

pole must remain zero as long as the external force is applied by the pole. We write the general

solution of Eq (14) separately in each one of the two regions, to the left and to the right from

the pole:

wLðzÞ ¼ c1

J2ð2
ffiffiffi
z
p
Þ

z
þ c2

Y2ð2
ffiffiffi
z
p
Þ

z
þ c3

I2ð2
ffiffiffi
z
p
Þ

z
þ c4

K2ð2
ffiffiffi
z
p
Þ

z
; g � z � Z

wRðzÞ ¼ c5

J2ð2
ffiffiffi
z
p
Þ

z
þ c6

Y2ð2
ffiffiffi
z
p
Þ

z
þ c7

I2ð2
ffiffiffi
z
p
Þ

z
þ c8

K2ð2
ffiffiffi
z
p
Þ

z
; Z � z � b

ð32Þ

Following [53] and [57], we write the following eight boundary conditions:

• As before, at the whisker base (x = L, β = qL) both the deflection and the slope are zero:

wRðbÞ ¼ 0 ; w0RðbÞ ¼ 0 : ð33Þ

• At the point of force application (x = c, η = qc), the deflection is zero, and both slope and

bending moment are continuous:

wLðZÞ ¼ wRðZÞ ¼ 0 ; w0LðZÞ ¼ w0RðZÞ ; w00LðZÞ ¼ w00RðZÞ : ð34Þ
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• As before, at the free tip (x = ℓ, γ = qℓ), we set the bending moment and shear force to zero:

w00LðgÞ ¼ 0 ; w000L ðgÞ ¼ 0 : ð35Þ

The required derivatives of χL(z) can be taken directly from Eq (19), and the derivatives of

χR(z) can then be obtained simply by the coefficient replacement c1, c2, c3, c4! c5, c6, c7, c8.

The boundary conditions in Eqs (33)–(35) produce the following matrix equation for a

truncated conical whisker touching a pole:

0 0 0 0 J2ð2
ffiffiffi
b
p
Þ Y2ð2

ffiffiffi
b
p
Þ I2ð2

ffiffiffi
b
p
Þ K2ð2

ffiffiffi
b
p
Þ

0 0 0 0 � J3ð2
ffiffiffi
b
p
Þ � Y3ð2

ffiffiffi
b
p
Þ I3ð2

ffiffiffi
b
p
Þ � K3ð2

ffiffiffi
b
p
Þ

J2ð2
ffiffiffi
Z
p
Þ Y2ð2

ffiffiffi
Z
p
Þ I2ð2

ffiffiffi
Z
p
Þ K2ð2

ffiffiffi
Z
p
Þ 0 0 0 0

0 0 0 0 J2ð2
ffiffiffi
Z
p
Þ Y2ð2

ffiffiffi
Z
p
Þ I2ð2

ffiffiffi
Z
p
Þ K2ð2

ffiffiffi
Z
p
Þ

� J3ð2
ffiffiffi
Z
p
Þ � Y3ð2

ffiffiffi
Z
p
Þ I3ð2

ffiffiffi
Z
p
Þ � K3ð2

ffiffiffi
Z
p
Þ J3ð2

ffiffiffi
Z
p
Þ Y3ð2

ffiffiffi
Z
p
Þ � I3ð2

ffiffiffi
Z
p
Þ K3ð2

ffiffiffi
Z
p
Þ

J4ð2
ffiffiffi
Z
p
Þ Y4ð2

ffiffiffi
Z
p
Þ I4ð2

ffiffiffi
Z
p
Þ K4ð2

ffiffiffi
Z
p
Þ � J4ð2

ffiffiffi
Z
p
Þ � Y4ð2

ffiffiffi
Z
p
Þ � I4ð2

ffiffiffi
Z
p
Þ � K4ð2

ffiffiffi
Z
p
Þ

J4ð2
ffiffiffi
g
p
Þ Y4ð2

ffiffiffi
g
p
Þ I4ð2

ffiffiffi
g
p
Þ K4ð2

ffiffiffi
g
p
Þ 0 0 0 0

� J5ð2
ffiffiffi
g
p
Þ � Y5ð2

ffiffiffi
g
p
Þ I5ð2

ffiffiffi
g
p
Þ � K5ð2

ffiffiffi
g
p
Þ 0 0 0 0

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

c1c2c3c4c5c6c7c8

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼ 0; ð36Þ

where the order of the matrix rows agrees with the order of Eqs (33)–(35). As before, setting

the determinant of the matrix to zero and finding the roots provides us with the eigenfrequen-

cies and coefficients c1, c2, . . ., c8 for the eigenmodes. The eigenfrequencies of a truncated coni-

cal whisker touching a pole can be written as:

oj ¼
gj

2

x

‘

ffiffiffi
E
r

s

¼
bj

2

x

L

ffiffiffi
E
r

s

¼
Zj

2

x

c

ffiffiffi
E
r

s

; ð37Þ

The normalization condition for the eigenmodes in this case becomes:

Z L

‘

x2X2

j ðxÞdx ¼
1

q3
j

Z Zj

gj

z2w2

LðzÞdz þ
Z bj

Zj

z2w2

RðzÞdz

" #

¼ 1 : ð38Þ

Full-length conical whisker in contact with pole. Finally, we describe a full-length coni-

cal whisker touching a pole at x = c. The whisker tip is located at the origin, x = 0 (and the

truncation length is zero, ℓ = 0). As it was shown before, this implies that the coefficients multi-

plying the Bessel functions Y2 and K2 in the general solution to the left from the pole must be

set to zero because of the logarithmic divergence of Y2 and K2 at the origin. This leaves us with

6 independent coefficients. As before, the eigenmodes are written separately in two regions, to

the left and to the right from the pole:

wLðzÞ ¼ c1

J2ð2
ffiffiffi
z
p
Þ

z
þ c2

I2ð2
ffiffiffi
z
p
Þ

z
; 0 � z � Z

wRðzÞ ¼ c3

J2ð2
ffiffiffi
z
p
Þ

z
þ c4

Y2ð2
ffiffiffi
z
p
Þ

z
þ c5

I2ð2
ffiffiffi
z
p
Þ

z
þ c6

K2ð2
ffiffiffi
z
p
Þ

z
; Z � z � b

ð39Þ

Consequently, we drop the two boundary conditions at the origin (Eq (35)). These changes are

equivalent to dropping the 2nd and 4th columns and the two bottom rows in the matrix in Eq

(36). The set of boundary condition equations of a full-length conical whisker touching a pole
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can be written as:

0 0 J2ð2
ffiffiffi
b
p
Þ Y2ð2

ffiffiffi
b
p
Þ I2ð2

ffiffiffi
b
p
Þ K2ð2

ffiffiffi
b
p
Þ

0 0 � J3ð2
ffiffiffi
b
p
Þ � Y3ð2

ffiffiffi
b
p
Þ I3ð2

ffiffiffi
b
p
Þ � K3ð2

ffiffiffi
b
p
Þ

J2ð2
ffiffiffi
Z
p
Þ I2ð2

ffiffiffi
Z
p
Þ 0 0 0 0

0 0 J2ð2
ffiffiffi
Z
p
Þ Y2ð2

ffiffiffi
Z
p
Þ I2ð2

ffiffiffi
Z
p
Þ K2ð2

ffiffiffi
Z
p
Þ

� J3ð2
ffiffiffi
Z
p
Þ I3ð2

ffiffiffi
Z
p
Þ J3ð2

ffiffiffi
Z
p
Þ Y3ð2

ffiffiffi
Z
p
Þ � I3ð2

ffiffiffi
Z
p
Þ K3ð2

ffiffiffi
Z
p
Þ

J4ð2
ffiffiffi
Z
p
Þ I4ð2

ffiffiffi
Z
p
Þ � J4ð2

ffiffiffi
Z
p
Þ � Y4ð2

ffiffiffi
Z
p
Þ � I4ð2

ffiffiffi
Z
p
Þ � K4ð2

ffiffiffi
Z
p
Þ

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

c1

c2

c3

c4

c5

c6

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

¼ 0: ð40Þ

The eigenmodes and eigenfrequencies can be found numerically by the procedure described

above. The normalization condition for the eigenmodes is given in Eq (38). The dependence

of several conical whisker eigenfrequencies on the pole position c is shown in Fig 7a. One can

see that the pole position strongly affects the frequencies.

Orthogonality of conical eigenmodes of a free whisker. First, we show the orthogonality

of different eigenmodes of a freely vibrating conical whisker. Let us write Eq (11) for two coni-

cal eigenmodes Xi(x) and Xj(x) having angular frequencies ωi and ωj:

@
2

@x2
x4 @

2Xi

@x2

� �

¼
4ro2

i

Ex
2
x2XiðxÞ ;

@
2

@x2
x4
@

2Xj

@x2

 !

¼
4ro2

j

Ex
2
x2XjðxÞ :

ð41Þ

Multiplying each of the equations by the other eigenmode and integrating we obtain:

Z L

‘

Xj
@

2

@x2
x4
@

2Xi

@x2

� �

dx ¼
4ro2

i

Ex
2

Z L

‘

XjðxÞx
2XiðxÞdx ;

Z L

‘

Xi
@

2

@x2
x4
@

2Xj

@x2

 !

dx ¼
4ro2

j

Ex
2

Z L

‘

XiðxÞx
2XjðxÞdx :

ð42Þ

By subtracting the first equation from the second we get:

Z L

‘

Xj
@

2

@x2
x4
@

2Xi

@x2

� �

dx �
Z L

‘

Xi
@

2

@x2
x4
@

2Xj

@x2

 !

dx ¼

¼
4r

Ex
2
ðo2

i � o2

j Þ

Z L

‘

XiðxÞx
2XjðxÞdx :

ð43Þ

Integrating by parts twice the first term on the left-hand side of Eq (43) we obtain:

Z L

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼ Xj
@

@x
x4 @

2Xi

@x2

� ���
�
�
�

L

‘

�

Z L

‘

@Xj

@x
@

@x
x4 @

2Xi

@x2

� �

dx

¼ Xj
@

@x
x4 @

2Xi

@x2

� ���
�
�
�

L

‘

�
@Xj

@x
x4 @

2Xi

@x2

� ���
�
�
�

L

‘

þ

Z L

‘

@
2Xj

@x2
x4 @

2Xi

@x2

� �

dx :

ð44Þ

For boundary conditions considered in this paper, that is fixed-base at x = L and free-tip at
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x = ℓ (Eqs (20) or (27)), the first two terms vanish, resulting in:

Z L

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼
Z L

‘

@
2Xj

@x2
x4 @

2Xi

@x2

� �

dx : ð45Þ

The same result holds for the second term on the left-hand side of Eq (43), which can be

obtained by merely interchanging the indices i and j in Eq (45). This means that the left-hand

side of Eq (43) vanishes and we arrive at:

4r

Ex
2
ðo2

i � o2

j Þ

Z L

‘

XiðxÞx
2XjðxÞdx ¼ 0 : ð46Þ

The eigenfrequencies of two different eigenmodes, i 6¼ j, are not equal, ωi 6¼ ωj, and we get the

first orthogonality condition:

Z L

‘

XiðxÞx
2XjðxÞdx ¼ 0; i 6¼ j : ð47Þ

Further, any of Eq (42) gives the second orthogonality condition:

Z L

‘

Xj
@

2

@x2
x4
@

2Xi

@x2

� �

dx ¼ 0; i 6¼ j : ð48Þ

Using the normalization condition
R L
‘
x2X2

i ðxÞdx ¼ 1, and Eq (42) with i = j, we obtain:

Z L

‘

Xi
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼
4ro2

i

Ex
2
: ð49Þ

To summarize, we can write the two useful orthogonality properties of the vibrational eigen-

modes as:

Z L

‘

XiðxÞx
2XjðxÞdx ¼ dij ;

Z L

‘

Xi
@

2

@x2
x4
@

2Xj

@x2

 !

dx ¼
4ro2

i

Ex
2

dij ;

ð50Þ

where δij is the Kronecker delta.

Orthogonality of conical eigenmodes of a whisker in contact with pole. Now we show

that different eigenmodes of a conical whisker touching a pole are orthogonal as well. As in the

free whisker case, we write Eq (11) for two different conical eigenmodes Xi(x) and Xj(x), multi-

ply each of the equations by the other eigenmode, integrate, and subtract one equation from

another (analogously to Eqs (41)–(43)):

Z L

‘

Xj
@

2

@x2
x4
@

2Xi

@x2

� �

dx �
Z L

‘

Xi
@

2

@x2
x4
@

2Xj

@x2

 !

dx ¼

¼
4r

Ex
2
ðo2

i � o2

j Þ

Z L

‘

XiðxÞx
2XjðxÞdx :

ð51Þ

As the whisker is now piecewise described by two functions XL,i(x) and XR,i(x) (to the left and

to the right from the pole at x = c), the integration should be split into two corresponding
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intervals, ℓ< x< c and c< x< L, for example:

Z L

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼
Z c

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dxþ
Z L

c
Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx : ð52Þ

Integrating by parts twice the first term in Eq (51) and noting that the terms at x = ℓ and x = L
vanish (as in Eq (44)), we get:

Z L

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼ XL;j
@

@x
x4
@

2XL;i

@x2

 !�
�
�
�
�
x¼c

�
@XL;j

@x
x4
@

2XL;i

@x2

 !�
�
�
�
�
x¼c

� XR;j
@

@x
x4
@

2XR;i

@x2

 !�
�
�
�
�
x¼c

þ
@XR;j

@x
x4
@

2XR;i

@x2

 !�
�
�
�
�
x¼c

þ

Z L

‘

@
2Xj

@x2
x4 @

2Xi

@x2

� �

dx :

ð53Þ

The boundary conditions at the pole, Eq (34), require zero dispacement and continuity of the

first and second derivatives at x = c. Therefore, the four terms evaluated at x = c vanish, result-

ing in:

Z L

‘

Xj
@

2

@x2
x4 @

2Xi

@x2

� �

dx ¼
Z L

‘

@
2Xj

@x2
x4 @

2Xi

@x2

� �

dx : ð54Þ

This equation is identical to Eq (45) we obtained above for a freely vibrating whisker. Follow-

ing the same reasoning as in transition from Eqs (45) to (50), we conclude that the orthogonal-

ity properties of the vibrational eigenmodes of a whisker in contact with pole are identical to

those of a freely vibrating whisker as given in Eq (50).

Time dependence of the whisker motion

Whisker motion in contact with pole. The time dependent shape of the whisker subject

to external forces and damping is described by the following inhomogeneous differential equa-

tion in the small angle approximation [5, 53]:

@
2

@x2
EIðxÞ

@
2y
@x2

� �

þ mðxÞ
@

2y
@t2
þ mðxÞa

@y
@t
¼ f ðx; tÞ ; ð55Þ

where y = y(x, t) is the total displacement of the whisker from x-axis, E is the Young’s modulus,

α is the frequency-independent viscous damping coefficient, I(x) and μ(x) are given in Eq (9),

and f(x, t) is the linear density of applied force. In comparison to the corresponding homoge-

neous eigenmode Eq (8), the generalized Eq (55) contains a linear damping term and an inho-

mogeneous term describing the external force. For a point force applied by pole at x = c, we

can write f(x, t) = F(t)δ(x − c), where δ(x) is the Dirac delta function. To find the vibration of

the whisker induced by its interactions with an object, such as the poles used in behavioral

experiments [58], we decompose the solution, similar to [24], into a steady state displacement,

ys(x, t), and a vibrational contribution, ye(x, t), as y(x, t) = ys(x, t) + ye(x, t). No approximation

is made in decomposing the solution in this way.

First, we need to obtain the steady state term, ys(x, t), in response to the time varying force

F(t). This term satisfies the following steady state equation:

@
2

@x2
EIðxÞ

@
2ys
@x2

� �

¼ FðtÞdðx � cÞ : ð56Þ

This equation is equivalent to Eq (1), which describes steady state bending under a point force
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F. Eq (56) is obtained by slightly rearranging Eq (1), substituting M(x) from Eq (2), and differ-

entiating twice. The solution of both Eqs (1) and (56) is described in Eqs (3)–(7). One can see

that in the small angle approximation the steady state deflection of the whisker is directly pro-

portional to the applied force F(t), so we can write ys in a factorized form:

ysðx; tÞ ¼ FðtÞ~ysðxÞ : ð57Þ

Substituting the general form of the solution y(x, t) = ys(x, t) + ye(x, t), with ysðx; tÞ ¼ FðtÞ~ysðxÞ,
into Eq (55), we arrive at the following equation for the vibrational term ye(x, t):

@
2

@x2
EIðxÞ

@
2ye
@x2

� �

þ mðxÞ
@

2ye
@t2
þ amðxÞ

@ye
@t
¼ � mðxÞ €FðtÞ þ a _FðtÞ

� �
~ysðxÞ ; ð58Þ

where the over-dots indicate time derivatives. The standard technique [59] is used to solve this

inhomogeneous equation for ye(x, t). We use the vibrational eigenmodes, which were found

analytically above by solving the corresponding homogeneous equation, as a basis to find the

time-dependent solutions of the inhomogeneous Eq (58). Following [59], we expand the solu-

tion of Eq (58) as:

yeðx; tÞ ¼
X

j

�jðtÞXjðxÞ ; ð59Þ

where ϕj(t) are time-dependent functions to be found. Substituting this expansion into Eq (58),

multiplying by one of the spatial eigenmodes, integrating over x, and using the orthogonality of

the vibrational eigenmodes in Eq (50), we obtain the following equation for the time-dependent

expansion coefficients ϕj(t):

€�jðtÞ þ a _�jðtÞ þ o2
j �jðtÞ ¼ � ½€FðtÞ þ a _FðtÞ�Pj ; ð60Þ

where ωj is the angular frequency of the j-th eigenmode and Pj ¼
R L
‘

~ysðxÞx2XjðxÞdx. In the

under-damped case, ωj> α/2, the solution of the inhomogeneous Eq (60) can be found using

standard techniques [60]:

�jðtÞ ¼ �
Pj

~o j

Z t

0

€Fðt0Þ þ a _Fðt0Þ
� �

e
�

a

2
ðt � t0Þ

sin ~o jðt � t0Þ
� �

dt0 ; ð61Þ

where ~o j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
j � ða=2Þ

2
q

. The integrals in Eq (61) can be easily evaluated numerically for any

force profile F(t) in question. The full solution describing the whisker motion under applied

force F(t) can then be written as:

yðx; tÞ ¼ FðtÞ~ysðxÞ þ
X

j

�jðtÞXjðxÞ : ð62Þ

Whisker motion after detachment from pole. We also need to describe the whisker

motion after its detachment from the pole. Obviously, after whisker detachment the external

force vanishes and the whisker behavior is determined by Eq (55) with f(x, t)� 0. In the case

of such a free motion, instead of decomposing the solution into steady state and vibrational

parts, we seek the full solution of Eq (55), which we label by u(x, t), as an expansion in the
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free-motion spatial eigenmodes Zj(x) of the fixed-base free-tip conical whisker:

uðx; tÞ ¼
X

j

φjðtÞZjðxÞ : ð63Þ

As before, the eigenmodes Zj(x) of the homogeneous version of Eq (55) with zero damping are

found analytically. Substituting this expansion into the equation of motion, multiplying by one

of the modes, integrating, and using orthogonality relations in Eq (50) we obtain (see Eq (60)

for comparison):

€φjðtÞ þ a _φjðtÞ þ$2
j φjðtÞ ¼ 0 ; ð64Þ

where$j is the angular frequency of the eigenmode Zj(x). It is important to note that the free

motion vibrational eigenmodes Zj(x) and their corresponding frequencies $j are different

from the eigenmodes Xj(x) and frequencies ωj that were found for a whisker touching the pole.

In our under-damped case,$j > a=2, the solution of Eq (64) can be written as:

φjðtÞ ¼ Aje
kþj ðt� tf Þ þ Bje

k�j ðt� tf Þ; ð65Þ

where k�j ¼ � a=2� i ~$ j, and where ~$ j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

$2
j � ða=2Þ

2
q

. The coefficients Aj and Bj for each

one of the eigenmodes are determined by the initial conditions of continuity of the whisker

deflection and velocity at the instant of detachment, t = tf, at each point of the whisker, ℓ� x�
L. These continuity conditions can be written as:

yðx; tf Þ ¼ uðx; tf Þ ¼
X

j

φjðtf ÞZjðxÞ ;

_yðx; tf Þ ¼ _uðx; tf Þ ¼
X

j

_φjðtf ÞZjðxÞ ;
ð66Þ

where y(x, t) describes the whisker motion at times t� tf (see Eq (62)), and u(x, t) describes

the motion at t� tf (see Eq (63)). Projecting each one of Eq (66) on one of the eigenmodes,

and using their orthogonality, we can write:

φjðtf Þ ¼
Z L

‘

ZjðxÞx
2yðx; tf Þdx ;

_φjðtf Þ ¼
Z L

‘

ZjðxÞx
2 _yðx; tf Þdx :

ð67Þ

The time derivative of y(x, t) is given by:

_yðx; tÞ ¼ _FðtÞ~ysðxÞ þ
X

j

_� jðtÞXjðxÞ ; ð68Þ

and that of ϕj(t):

_� jðtÞ ¼ � Pj

Z t

0

€Fðt0Þ þ a _Fðt0Þ
� �

e
�

a

2
ðt � t0Þ

cos ~o jðt � t0Þ
� �

�
a

2~oj
sin ~o jðt � t0Þ
� �

" #

dt0 : ð69Þ

Finally, combining Eqs (67) with (65) at t = tf, we find:

Aj þ Bj ¼ φjðtf Þ ; kþj Aj þ k�j Bj ¼ _φjðtf Þ ; ð70Þ
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resulting in:

Aj ¼
k�j φjðtf Þ � _φjðtf Þ

k�j � kþj
; Bj ¼

_φjðtf Þ � kþj φjðtf Þ
k�j � kþj

: ð71Þ

Substituting Aj and Bj into Eq (65), we obtain expression for the time-dependent coefficients

describing the whisker dynamics after its detachment from the pole at t� tf:

φjðtÞ ¼ e
�

a

2
ðt � tf Þ φjðtf Þ

a

2 ~$ j
sin ~$ jðt � tf Þ
� �

þ cos ~$ jðt � tf Þ
� �

 " !

þ
_φjðtf Þ

~$ j
sin ~$ jðt � tf Þ
� �

#

;

ð72Þ

with φj(tf) and _φjðtf Þ given in Eq (67).

Time-dependent forces at the whisker base. Rodents extract the structure of the tactile

world through forces applied to mechanosensors embedded in the follicle. Although the pre-

cise mechanism by which these forces excite primary sensory neurons has yet to be fully eluci-

dated, we investigate two classes of vibrational cues rodents may use. These are the bending

moment, M(x = L; t) = EI0 y@(L; t), and the shear force, V(x = L; t) = M0(L; t), at the whisker

base. Here, I0 = I(L) = (π/4)R4, where R is the whisker base radius. During the force applica-

tion, 0� t� tf, we can find the bending moment and shear force at the whisker follicle using

the expression for y(t, x) in Eq (62). For the bending moment we get:

MðL; tÞ ¼ FðtÞðL � cÞ þ EI0
X

j

�jðtÞX
00

j ðLÞ ; ð73Þ

where the first and second terms are contributions of the static and vibrational components to

the total bending moment, respectively. Analogously, for the shear force at the follicle we

obtain:

VðL; tÞ ¼ FðtÞ þ EI0
X

j

�jðtÞ
4

L
X00j ðLÞ þ X000j ðLÞ

� �

; ð74Þ

where, again, the two terms are contributions of the steady state and vibrational components.

After the detachment from pole, t> tf, the time dependence of the bending moment and

the shear force can be written by using the function u(x, t) of the free vibrational motion in Eq

(63):

MðL; tÞ ¼ EI0
X

j

φjðtÞZ
00

j ðLÞ ;

VðL; tÞ ¼ EI0
X

j

φjðtÞ
4

L
Z00j ðLÞ þ Z000j ðLÞ

� �

:

ð75Þ

The derivatives of the spatial eigenmodes in Eqs (73)–(75) can be obtained from the analytical

expressions of Xj(x) and Zj(x) using Bessel function recurrence relations, as in Eq (19), and

using Eqs (12) and (13).

Gaussian force with smooth onset. Here we model the time-dependent profile of the

force, F(t), applied to the whisker by pole at the point x = c. The force is acting during the time

interval 0� t� tf, and we assume that its time-dependence is described by the upper part of a

Gaussian. At the instant of contact t = 0, to avoid discontinuity and/or singularity in _FðtÞ and
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€FðtÞ entering Eq (61), we insert a smooth connecting function Fs(t) into the onset of the

Gaussian curve FG(t) at short times 0� t� τ, where τ� tf:

FðtÞ ¼

( FsðtÞ 0 � t � t

FGðtÞ t � t � tf
: ð76Þ

At the end of the force application, t = tf, the pole detaches from the whisker with finite veloc-

ity, proportional to _Fðtf Þ, without decelerating the whisker.

We write the truncated Gaussian profile of the force in the time interval τ� t� tf as:

FGðtÞ ¼
Fmax

1 � C
exp �

t � a
b

� �2
� �

� C
� �

; ð77Þ

where Fmax is the force maximum and 0< C< 1 is the Gaussian cutoff. For the uncut Gauss-

ian shape, C! 0. The parameters a and b are found as follows. First, from the condition of

vanishing of FG(t) at t = tf we get the relation between a and b:

FGðtf Þ ¼ 0 ) b ¼
tf � a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=CÞ

p : ð78Þ

Then, the implicit equation Fs(τ) = FG(τ), which ensures continuity of the force at t = τ, is

solved for the remaining parameter a.

The smooth connecting function Fs(t) describing the onset of the force at short times

0� t� τ, is constructed to satisfy the following conditions: (i) Fsð0Þ ¼
_Fsð0Þ ¼

€Fsð0Þ ¼ 0,

(ii) Fs(τ) = FG(τ), (iii) _FsðtÞ ¼
_FGðtÞ, (iv) €FsðtÞ ¼

€FGðtÞ, and (v) Fs(t) is continuous and at

least twice differentiable in the interval 0� t� τ. The function that satisfies these conditions

can be taken as:

FsðtÞ ¼
t

3

h
3 _FGðtÞ � t€FGðtÞ

i t
t

� �3

þ
t

4

h
t€FGðtÞ � 2 _FGðtÞ

i t
t

� �4

: ð79Þ

Specifically, at t = τ we have:

FsðtÞ ¼
t

2
_FGðtÞ �

t2

12
€FGðtÞ : ð80Þ

In Eqs (61), (69) and (79) we also use the first two derivatives of FG(t) and Fs(t), which are:

_FGðtÞ ¼ �
2Fmax

bð1 � CÞ
t � a
b

� �
exp �

t � a
b

� �2
� �

;

€FGðtÞ ¼
2Fmax

b2ð1 � CÞ
2

t � a
b

� �2

� 1

� �

exp �
t � a
b

� �2
� �

;

ð81Þ

and:

_FsðtÞ ¼
h
3 _FGðtÞ � t€FGðtÞ

i t
t

� �2

þ
h
t€FGðtÞ � 2 _FGðtÞ

i t
t

� �3

;

€FsðtÞ ¼
2

t
3 _FGðtÞ � t€FGðtÞ
h i t

t

� �
þ

3

t
t€FGðtÞ � 2 _FGðtÞ
h i t

t

� �2

:

ð82Þ

Wave propagation upon impact with pole. When the whisker rapidly hits the pole,

waves propagating along the whisker are created. This phenomenon was described by [24],
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where the following form of the force was assumed:

FðtÞ ¼

(
0 t < 0

st t � 0 :
ð83Þ

This corresponds to the whisker being stationary before the application of the force. Once the

force is applied, following an instantaneous infinite acceleration at t = 0, the whisker starts

bending at a constant rate proportional to s. In this case the derivatives are:

_FðtÞ ¼ sYðtÞ ; €FðtÞ ¼ sdðtÞ ; ð84Þ

where Θ(t) is the unit step function. Substitution of _FðtÞ and €FðtÞ into Eq (61) gives:

�jðtÞ ¼ �
sPj

~o j
e� a

2
t sin ~o jt þ a

Z t

0

e� a
2
ðt� t0Þ sin ~o jðt � t0Þdt0

� �

: ð85Þ

One can see from Eq (85) that a rapid application of force to the whisker results in excitation

of multiple eigenmodes, and the amplitude of their excitation decreases slowly, as 1=~o j, with

the mode number, j. Simultaneous excitation of multiple eigenmodes results in propagating

waves, as was shown by [24].

In our model, the rapidity of force application is controlled at short times by the smooth

connecting function Fs(t) defined in Eq (79). This function helps avoid singularities as it

ensures that the applied force and its first two derivatives are continuous. The duration τ of

this connecting function is a critical parameter characterizing the rapidity of force application.

In the limit τ! 0, the force profile F(t) reduces to Eq (83), at least for the part of the Gaussian,

FG(t), that is approximately linear at early times. The calculations show that eigenmodes with

period 2π/ωj longer than τ are effectively excited upon hitting the pole, while the excitation of

higher eigenmodes becomes increasingly less efficient. The results of these calculations are

shown in Fig 5.

Measurement of whisker geometry and dynamics

Details of the object localization task, behavioral apparatus, high-speed videography, whisker

tracking and force calculation have been described elsewhere [18, 58, 61, 62]. Head-fixed mice

were trimmed to a single C2 whisker for behavioral experiments. Using this whisker they local-

ized a steel pole (class ZZ gage pin, Vermont Gage, diameter 0.5 mm) placed in one of five

positions on the anterior-posterior axis, licking for a water reward if the pole was in one of the

four anterior positions. Radial distance of the pole ranged from 6.7–12.9mm from the follicle.

Backlit (940nm IR LED) whiskers were imaged from above at 1000 or 4000 fps, (90–150 μs
exposure) using a Basler 504k or Basler Ace acA2000-340km camera, digitized and tracked

using the Janelia Whisker Tracker [62]. Dual-perspective imaging was performed by project-

ing two orthogonal views onto a single Basler camera via mirrors. Curvature measurements at

5–6mm from the follicle base were used to calculate the steady state bending moment assum-

ing an Euler-Bernoulli quasi-static approximation for whisker bending in a single plane, see

Eq (3) [16]. Contact detection was performed automatically via custom MATLAB scripts using

a threshold based on whisker curvature and distance from whisker to pole, followed by manual

correction. In some experiments we tracked a piece of dust or another imperfection on the

whisker (Fig 1a, arrow). This allowed us to estimate movement of the whisker into the face in

response to applied axial force.

To measure whisker vibration during 4000fps imaging, we fit traced whisker coordinates

from the Janelia Whisker Tracker with a fifth order polynomial. To prevent distortions by
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mistracking near fur or pole shadow, we excluded the 2 percent of points closest to follicle and

pole from the fit. We then computed the displacement along the y-axis at 8 evenly spaced

points along the fitted curve for twenty timepoints (0.25ms step size). The time of the first

frame with contact was defined as 0.125ms from touch start. We extracted vibrational displace-

ment from quasi steady-state displacement by subtracting a 3rd order polynomial fit of dis-

placement along the anteroposterior axis over time, defining vibration to be the residual.

Following behavioral sessions, the C2 whiskers were plucked and photographed at 6.3x

magnification under a light macroscope. Whisker length and width was determined using

ImageJ and the NeuronJ plugin. Total length includes the portion of the whisker embedded in

the follicle. Whiskers were then weighed on a microgram balance.

Statistics and fitting

Time-dependent forces applied by the pole during active whisking were modeled by the top

half of a gaussian distribution F(t) = Fmax{exp[−(t − 2td)2/(1.2011td)2] − 0.5} for F(t)> 0,

where 2td is the touch duration and peak force Fmax occurs at t = 0. Whisker oscillation and

decay during slip-off events were fit by a Levenberg-Marquardt algorithm with 0.95 confidence

intervals provided by the MATLAB cftool function.

Numerical simulations of whisker dynamics during tactile exploration

The vibrational eigenmodes and eigenfrequencies of trimmed and full-size conical whiskers

with fixed-base and free-tip boundary conditions were found in analytical form using the

results of [54]. The found eigenfrequencies for the first six modes for full-size whisker are iden-

tical to published data [53]. To simulate whisker motion during the contact with pole, the

eigenmodes and eigenfrequencies of a truncated and full-size conical whisker with an addi-

tional simple support at the pole position were used. The analytical calculations show that

these eigenmodes depends strongly on the pole position along the whisker. After the whisker’s

detachment from the pole, its motion was considered as a free vibration. All numerical simula-

tions were performed in MATLAB. Time-dependent displacements of both forced and free

periods of the whisker motion were calculated using sums of the first *100 eigenmodes to

ensure full convergence.
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20. Claverie LN, Boubenec Y, Debrégeas G, Prevost AM, Wandersman E. Whisker Contact Detection of

Rodents Based on Slow and Fast Mechanical Inputs. Front Behav Neurosci. 2016; 10:251. https://doi.

org/10.3389/fnbeh.2016.00251 PMID: 28119582

21. Szwed M, Bagdasarian K, Ahissar E. Encoding of vibrissal active touch. Neuron. 2003; 40(3):621–630.

https://doi.org/10.1016/S0896-6273(03)00671-8 PMID: 14642284

22. Kyle SSeverson MVdLLBDDGDuo Xu, O’Connor DH. Active Touch and Self-Motion Encoding by Mer-

kel Cell-Associated Afferents. Neuron. 2017;.

23. Lottem E, Azouz R. Mechanisms of tactile information transmission through whisker vibrations. J

Neurosci. 2009; 29(37):11686–97. https://doi.org/10.1523/JNEUROSCI.0705-09.2009 PMID:

19759315

Dynamic cues for whisker-based object localization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006032 March 27, 2018 30 / 32

https://doi.org/10.1080/0899022031000083825
https://doi.org/10.1080/0899022031000083825
http://www.ncbi.nlm.nih.gov/pubmed/12745443
https://doi.org/10.1038/nn.3804
http://www.ncbi.nlm.nih.gov/pubmed/25174006
https://doi.org/10.1126/science.1166467
https://doi.org/10.1126/science.1166467
http://www.ncbi.nlm.nih.gov/pubmed/19179493
https://doi.org/10.3389/fnbot.2012.00004
http://www.ncbi.nlm.nih.gov/pubmed/22783186
http://www.ncbi.nlm.nih.gov/pubmed/12878691
http://www.ncbi.nlm.nih.gov/pubmed/14534248
https://doi.org/10.1038/nn.2328
http://www.ncbi.nlm.nih.gov/pubmed/19430473
https://doi.org/10.1523/JNEUROSCI.0534-14.2014
https://doi.org/10.1523/JNEUROSCI.0534-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25122886
http://www.ncbi.nlm.nih.gov/pubmed/21096512
https://doi.org/10.1109/70.681246
https://doi.org/10.1152/jn.00511.2015
http://www.ncbi.nlm.nih.gov/pubmed/27250911
https://doi.org/10.1152/jn.00054.2016
https://doi.org/10.1152/jn.00054.2016
http://www.ncbi.nlm.nih.gov/pubmed/27881718
https://doi.org/10.1152/jn.00707.2006
http://www.ncbi.nlm.nih.gov/pubmed/17553946
https://doi.org/10.1098/rstb.2011.0166
https://doi.org/10.1098/rstb.2011.0166
http://www.ncbi.nlm.nih.gov/pubmed/21969686
https://doi.org/10.1523/JNEUROSCI.4316-12.2013
https://doi.org/10.1523/JNEUROSCI.4316-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23595731
https://doi.org/10.1038/nn.3378
https://doi.org/10.1038/nn.3378
http://www.ncbi.nlm.nih.gov/pubmed/23563582
https://doi.org/10.3389/fnbeh.2016.00251
https://doi.org/10.3389/fnbeh.2016.00251
http://www.ncbi.nlm.nih.gov/pubmed/28119582
https://doi.org/10.1016/S0896-6273(03)00671-8
http://www.ncbi.nlm.nih.gov/pubmed/14642284
https://doi.org/10.1523/JNEUROSCI.0705-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19759315
https://doi.org/10.1371/journal.pcbi.1006032


24. Boubenec Y, Shulz DE, Debregeas G. Whisker encoding of mechanical events during active tactile

exploration. Front Behav Neurosci. 2012; 6:74. https://doi.org/10.3389/fnbeh.2012.00074 PMID:

23133410

25. Hires SA, Gutnisky DA, Yu J, O’Connor DH, Svoboda K. Low-noise encoding of active touch by layer 4

in the somatosensory cortex. Elife. 2015; 4.

26. Hires SA, Gutnisky D, Yu J, Svoboda K. Juxtacellular recordings from primary somatosensory cortex

(vS1) neurons of adult mice performing whisker-mediated object localization. CRCNSorg. 2017;.

27. Bale MR, Campagner D, Erskine A, Petersen RS. Microsecond-scale timing precision in rodent trigemi-

nal primary afferents. J Neurosci. 2015; 35(15):5935–40. https://doi.org/10.1523/JNEUROSCI.3876-

14.2015 PMID: 25878266

28. Quist BW, Faruqi RA, Hartmann MJ. Variation in Young’s modulus along the length of a rat vibrissa.

J Biomech. 2011; 44(16):2775–2781. https://doi.org/10.1016/j.jbiomech.2011.08.027 PMID:

21993474

29. Han SM, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories.

Journal of Sound and Vibration. 1999; 225(5):935–988. https://doi.org/10.1006/jsvi.1999.2257

30. Kelly SG. Mechanical Vibrations: Theory and Applications. Nelson Education Limited; 2011. Available

from: http://books.google.com/books?id=lD7VE0LQweIC.

31. Knutsen PM, Biess A, Ahissar E. Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and tor-

sion across different whisking modes. Neuron. 2008; 59(1):35–42. https://doi.org/10.1016/j.neuron.

2008.05.013 PMID: 18614027

32. Quist BW, Hartmann MJ. Mechanical signals at the base of a rat vibrissa: the effect of intrinsic vibrissa

curvature and implications for tactile exploration. J Neurophysiol. 2012; 107(9):2298–2312. https://doi.

org/10.1152/jn.00372.2011 PMID: 22298834

33. Quist BW, Seghete V, Huet LA, Murphey TD, Hartmann MJZ. Modeling forces and moments at the

base of a rat vibrissa during noncontact whisking and whisking against an object. J Neurosci. 2014; 34

(30):9828–44. https://doi.org/10.1523/JNEUROSCI.1707-12.2014 PMID: 25057187

34. Melaragno HP, Montagna W. The tactile hair follicles in the mouse. Anat Rec. 1953; 115(2):129–149.

https://doi.org/10.1002/ar.1091150202 PMID: 13031129

35. Hartmann MJ, Johnson NJ, Towal RB, Assad C. Mechanical characteristics of rat vibrissae: resonant

frequencies and damping in isolated whiskers and in the awake behaving animal. J Neurosci. 2003; 23

(16):6510–6519. PMID: 12878692

36. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D. Biomechanics of the vibrissa motor plant in rat: rhythmic

whisking consists of triphasic neuromuscular activity. The Journal of Neuroscience. 2008; 28(13):3438–

3455. https://doi.org/10.1523/JNEUROSCI.5008-07.2008 PMID: 18367610

37. Haidarliu S, Simony E, Golomb D, Ahissar E. Collagenous skeleton of the rat mystacial pad. Anat Rec

(Hoboken). 2011; 294(5):764–773. https://doi.org/10.1002/ar.21371

38. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL. Similarities and differences in the inner-

vation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J

Comp Neurol. 2002; 449(2):103–19. https://doi.org/10.1002/cne.10277 PMID: 12115682

39. Ahissar E, Zacksenhouse M. Temporal and spatial coding in the rat vibrissal system. Prog Brain Res.

2001; 130:75–87. https://doi.org/10.1016/S0079-6123(01)30007-9 PMID: 11480290

40. O’Connor DH, Hires SA, Guo ZV, Li N, Yu J, Sun QQ, et al. Neural coding during active somatosensa-

tion revealed using illusory touch. Nat Neurosci. 2013; 16(7):958–65. https://doi.org/10.1038/nn.3419

PMID: 23727820

41. Ahissar E, Arieli A. Figuring space by time. Neuron. 2001; 32(2):185–201. https://doi.org/10.1016/

S0896-6273(01)00466-4 PMID: 11683990

42. Yang AET, Hartmann MJZ. Whisking Kinematics Enables Object Localization in Head-Centered Coor-

dinates Based on Tactile Information from a Single Vibrissa. Front Behav Neurosci. 2016; 10:145.

https://doi.org/10.3389/fnbeh.2016.00145 PMID: 27486390

43. Kleinfeld D, Deschenes M. Neuronal basis for object location in the vibrissa scanning sensorimotor sys-

tem. Neuron. 2011; 72(3):455–468. https://doi.org/10.1016/j.neuron.2011.10.009 PMID: 22078505

44. Brecht M, Preilowski B, Merzenich MM. Functional architecture of the mystacial vibrissae. Behav Brain

Res. 1997; 84(1–2):81–97. https://doi.org/10.1016/S0166-4328(97)83328-1 PMID: 9079775

45. Stuttgen MC, Kullmann S, Schwarz C. Responses of rat trigeminal ganglion neurons to longitudinal

whisker stimulation. J Neurophysiol. 2008; 100(4):1879–1884. https://doi.org/10.1152/jn.90511.2008

PMID: 18684907

46. Simons DJ. Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol.

1978; 41(3):798–820. https://doi.org/10.1152/jn.1978.41.3.798 PMID: 660231

Dynamic cues for whisker-based object localization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006032 March 27, 2018 31 / 32

https://doi.org/10.3389/fnbeh.2012.00074
http://www.ncbi.nlm.nih.gov/pubmed/23133410
https://doi.org/10.1523/JNEUROSCI.3876-14.2015
https://doi.org/10.1523/JNEUROSCI.3876-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/25878266
https://doi.org/10.1016/j.jbiomech.2011.08.027
http://www.ncbi.nlm.nih.gov/pubmed/21993474
https://doi.org/10.1006/jsvi.1999.2257
http://books.google.com/books?id=lD7VE0LQweIC
https://doi.org/10.1016/j.neuron.2008.05.013
https://doi.org/10.1016/j.neuron.2008.05.013
http://www.ncbi.nlm.nih.gov/pubmed/18614027
https://doi.org/10.1152/jn.00372.2011
https://doi.org/10.1152/jn.00372.2011
http://www.ncbi.nlm.nih.gov/pubmed/22298834
https://doi.org/10.1523/JNEUROSCI.1707-12.2014
http://www.ncbi.nlm.nih.gov/pubmed/25057187
https://doi.org/10.1002/ar.1091150202
http://www.ncbi.nlm.nih.gov/pubmed/13031129
http://www.ncbi.nlm.nih.gov/pubmed/12878692
https://doi.org/10.1523/JNEUROSCI.5008-07.2008
http://www.ncbi.nlm.nih.gov/pubmed/18367610
https://doi.org/10.1002/ar.21371
https://doi.org/10.1002/cne.10277
http://www.ncbi.nlm.nih.gov/pubmed/12115682
https://doi.org/10.1016/S0079-6123(01)30007-9
http://www.ncbi.nlm.nih.gov/pubmed/11480290
https://doi.org/10.1038/nn.3419
http://www.ncbi.nlm.nih.gov/pubmed/23727820
https://doi.org/10.1016/S0896-6273(01)00466-4
https://doi.org/10.1016/S0896-6273(01)00466-4
http://www.ncbi.nlm.nih.gov/pubmed/11683990
https://doi.org/10.3389/fnbeh.2016.00145
http://www.ncbi.nlm.nih.gov/pubmed/27486390
https://doi.org/10.1016/j.neuron.2011.10.009
http://www.ncbi.nlm.nih.gov/pubmed/22078505
https://doi.org/10.1016/S0166-4328(97)83328-1
http://www.ncbi.nlm.nih.gov/pubmed/9079775
https://doi.org/10.1152/jn.90511.2008
http://www.ncbi.nlm.nih.gov/pubmed/18684907
https://doi.org/10.1152/jn.1978.41.3.798
http://www.ncbi.nlm.nih.gov/pubmed/660231
https://doi.org/10.1371/journal.pcbi.1006032


47. Arabzadeh E, Zorzin E, Diamond ME. Neuronal encoding of texture in the whisker sensory pathway.

PLoS Biol. 2005; 3(1):e17. https://doi.org/10.1371/journal.pbio.0030017 PMID: 15660157

48. Montemurro MA, Panzeri S, Maravall M, Alenda A, Bale MR, Brambilla M, et al. Role of precise spike

timing in coding of dynamic vibrissa stimuli in somatosensory thalamus. J Neurophysiol. 2007; 98

(4):1871–1882. https://doi.org/10.1152/jn.00593.2007 PMID: 17671103

49. Arabzadeh E, Panzeri S, Diamond ME. Deciphering the spike train of a sensory neuron: counts and

temporal patterns in the rat whisker pathway. J Neurosci. 2006; 26(36):9216–9226. https://doi.org/10.

1523/JNEUROSCI.1491-06.2006 PMID: 16957078

50. Campagner D, Evans MH, Bale MR, Erskine A, Petersen RS. Prediction of primary somatosensory neu-

ron activity during active tactile exploration. Elife. 2016; 5. https://doi.org/10.7554/eLife.10696 PMID:

26880559

51. Bush NE, Schroeder CL, Hobbs JA, Yang AE, Huet LA, Solla SA, et al. Decoupling kinematics and

mechanics reveals coding properties of trigeminal ganglion neurons in the rat vibrissal system. Elife.

2016; 5. https://doi.org/10.7554/eLife.13969

52. Sakurai K, Akiyama M, Cai B, Scott A, Han BX, Takatoh J, et al. The organization of submodality-spe-

cific touch afferent inputs in the vibrissa column. Cell Rep. 2013; 5(1):87–98. https://doi.org/10.1016/j.

celrep.2013.08.051 PMID: 24120861

53. Timoshenko S. Vibration Problems in Engineering. D. Van Nostrand Company, Inc.; 1937. Available

from: http://books.google.com/books?id=RIu7dwQTkUYC.

54. Wrinch D. On the Lateral Vibration of Bars of Conical Type. Proc Roy Soc. 1922; 101:493. https://doi.

org/10.1098/rspa.1922.0061

55. Abramowitz M, Stegun IA. Handbook of mathematical functions with formulas, graphs, and mathemati-

cal tables. Washington: U.S. Govt. Print. Off.; 1964.

56. Conway HD, Becker ECH, Dubil JF. Vibration Frequencies of Tapered Bars and Circular Plates. ASME

J Appl Mech. 1964;(31):329–331. https://doi.org/10.1115/1.3629606

57. Darnley ER. On the Transverse Vibration of Beams and the Whirling of Shafts Supported at Intermedi-

ate Points. Phil Mag. 1921; 41:81.

58. O’Connor DH, Clack NG, Huber D, Komiyama T, Myers EW, Svoboda K. Vibrissa-based object locali-

zation in head-fixed mice. J Neurosci. 2010; 30(5):1947–1967. https://doi.org/10.1523/JNEUROSCI.

3762-09.2010 PMID: 20130203

59. Mathews J, Walker RL. Mathematical methods of physics. W.A. Benjamin; 1964. Available from: http://

books.google.com/books?id=oiHvAAAAMAAJ.

60. Tenenbaum M, Pollard H. Ordinary Differential Equations. Dover Publications, New York; 1985.

61. O’Connor DH, Peron SP, Huber D, Svoboda K. Neural activity in barrel cortex underlying vibrissa-

based object localization in mice. Neuron. 2010; 67(6):1048–1061. https://doi.org/10.1016/j.neuron.

2010.08.026 PMID: 20869600

62. Clack NG, O’Connor DH, Huber D, Petreanu L, Hires A, Peron S, et al. Automated tracking of whiskers

in videos of head fixed rodents. PLoS Comput Biol. 2012; 8(7):e1002591. https://doi.org/10.1371/

journal.pcbi.1002591 PMID: 22792058

Dynamic cues for whisker-based object localization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006032 March 27, 2018 32 / 32

https://doi.org/10.1371/journal.pbio.0030017
http://www.ncbi.nlm.nih.gov/pubmed/15660157
https://doi.org/10.1152/jn.00593.2007
http://www.ncbi.nlm.nih.gov/pubmed/17671103
https://doi.org/10.1523/JNEUROSCI.1491-06.2006
https://doi.org/10.1523/JNEUROSCI.1491-06.2006
http://www.ncbi.nlm.nih.gov/pubmed/16957078
https://doi.org/10.7554/eLife.10696
http://www.ncbi.nlm.nih.gov/pubmed/26880559
https://doi.org/10.7554/eLife.13969
https://doi.org/10.1016/j.celrep.2013.08.051
https://doi.org/10.1016/j.celrep.2013.08.051
http://www.ncbi.nlm.nih.gov/pubmed/24120861
http://books.google.com/books?id=RIu7dwQTkUYC
https://doi.org/10.1098/rspa.1922.0061
https://doi.org/10.1098/rspa.1922.0061
https://doi.org/10.1115/1.3629606
https://doi.org/10.1523/JNEUROSCI.3762-09.2010
https://doi.org/10.1523/JNEUROSCI.3762-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20130203
http://books.google.com/books?id=oiHvAAAAMAAJ
http://books.google.com/books?id=oiHvAAAAMAAJ
https://doi.org/10.1016/j.neuron.2010.08.026
https://doi.org/10.1016/j.neuron.2010.08.026
http://www.ncbi.nlm.nih.gov/pubmed/20869600
https://doi.org/10.1371/journal.pcbi.1002591
https://doi.org/10.1371/journal.pcbi.1002591
http://www.ncbi.nlm.nih.gov/pubmed/22792058
https://doi.org/10.1371/journal.pcbi.1006032

