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Abstract

Hexamerins are members of the hemocyanin superfamily and play essential roles in providing amino acids and 
energy for the nonfeeding stages of insects. In this study, we cloned and analyzed the expression patterns of four 
hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) at different worker development stages and queen 
diapause statuses in the bumble bee, Bombus terrestris. The results of this study showed that hex 110 has the 
longest open reading frame (ORF; 3,297 bp) compared to the ORFs of hex 70a (2,034 bp), hex 70b (2,067 bp), and 
hex 70c (2,055 bp). The putative translation product of Hex 70a, Hex 70b, Hex70c, and Hex 110 has 677, 688, 684, and 
1,098aa with predicted molecular mass of 81.13, 79.69, 81.58, and 119 kDa. In the development stages of workers, 
the expression levels of hex 70a, hex 70b, and hex 70c increased gradually from the larval stage and exhibited high 
expression levels at the pink eyed and brown eyed pupae stage, whereas hex 110 exhibited the highest expression 
level at the larval period. Four hexamerin genes were highly expressed at the prediapause status of queen (P < 0.05), 
and compared to the eclosion queen, the lowest upregulation was 3.7-fold, and the highest upregulation was 1,742-
fold. The expression levels of hex 70b, hex 70c, and hex 110 at diapause were significantly higher than those at 
postdiapause (P < 0.05). In conclusion, hexamerins may play important roles in queen diapause and metamorphosis 
of larval and pupal stages.
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Bumble bees are important pollinators for maintaining plant bio-
diversity in the wild and providing pollination services to crops 
(Garratt et al. 2014, Carvell et al. 2017). As annual insects, the colony 
of bumble bees was established by one queen in the early spring and 
collapsed during the autumn (Alford 1969). Storage proteins, as an 
amino acid reserve, are essential for the queen founded colony of 
social insects (Wheeler et al. 1996). In bumble bees, young fertilized 
queens need to accumulate enough storage protein and energy to en-
sure their survival during winter (Woodard et al. 2019). Moreover, 
the queen also needs to acquire sufficient protein for laying eggs 
and feeding offspring during the solitary stage in the early spring 
(Votavová et al. 2015, Bogo et al. 2017). Storage proteins were also 
proven to provide amino acids for the worker development of other 
social insects (Sorensen et al. 1981). Thus, analyzing the expression 
patterns of hexamerins during the nonfeeding period is very im-
portant for colony founding and success diapause of bumble bees.

Hexamerins, as an important storage protein, are widely present in 
insects (Telfer et al. 1991, Tang et al. 2010), and the native molecular 

mass of those proteins is approximately 500  kDa, which consists 
of six subunits each of approximately 80  kDa (Burmester, 2002). 
Hexamerins belong to the Arthropod hemocyanin superfamily, which 
includes hemocyanins, prophenoloxidases, and arylphorin-receptor 
proteins (Decker et  al. 2000). During evolution, hexamerins lost 
their ability to bind oxygen molecules and gradually became nutrient 
storage proteins (Beintema et al. 1994). Most hexamerins are predom-
inantly synthesized by fat body cells and are secreted into the hemo-
lymph during nonfeeding (Tang et al. 2010). Hence, the well-known 
function of hexamerins is to provide amino acids and energy during 
nonfeeding periods, which play vital roles in the metamorphic de-
velopment of insects. Moreover, hexamerins affect the reproduction 
of insects. Hexamerins are related to the egg production in Plutella 
xylostella (Wheeler et al. 2000). In termite species, hexamerins have an 
impact on reproductive plasticity (Zhou et al. 2006) and are closely re-
lated to colony foundation (Martinez et al. 1994, Johnston et al. 2007).

Four hexamerins were identified in honeybees in 1998, namely, 
hexamerin 70a (hex 70a), hexamerin 70b (hex 70b), hexamerin 70c 
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(hex 70c), and hexamerin 110 (hex 110; Danty et  al. 1998). The 
hex 70b was observed to be closely related to honey bee larval and 
prepupal development. Moreover, hex 70b can be utilized to com-
pensate for the lack of dietary protein, which responds to the regula-
tion of juvenile hormones (Ryan et al. 1984, Danty et al. 1998). The 
hex 110 was found to have similar expression characteristics to hex 
70b during the development stage (Bitondi et al. 2006). The cellular 
localization showed that hex 110 was in the cytoplasm and nucleoli 
of ovaries in adult females (Martins et al. 2016). The structure, mo-
lecular evolution, and functional prediction of four hexamerin genes 
were found to be regulated by JH in honeybees. The hex 70a and 
hex 110 genes were determined to be expressed in adults, and the 
hex 110 gene was observed to be highly expressed in the ovaries of 
queen (Martins et al. 2010). In other hymenopteran insects, such as 
Solenopsis invicta, four hexamerin genes were identified, and their 
expression levels were associated with reproductive division of labor 
and JH titer (Hawkings et al. 2019). In bumble bee, four hexamerin 
genes were found in the B. terrestris genome and three of these genes 
were found to be conserved by genomic clustering (Sadd et al. 2015). 
The hex 70b was found to have a relatively higher expression in 
B. terrestris larva using transcriptomic analyses (Colgan et al. 2011). 
Moreover, the expression of hexamerin genes would be upregulation 
in worker-destined larvae of B. terrestris (Pereboom et al. 2005).

In this study, four hexamerin genes from bumble bees, 
B. terrestris, were cloned, and their cDNA/gene structures were com-
pared. The conserved domain of putative proteins were analyzed. 
Homologs of hymenopteran insect hexamerins were employed to 
evaluate the phylogenetic relationships. In addition, we analyzed the 
expression profiles of four hexamerin genes at different worker de-
velopment stages and queen status. Our results expand the existing 
knowledge regarding the hexamerin gene family in social insects and 
may ultimately provide insights for the factory rearing of bumble 
bee, B. terrestris.

Materials and Methods

Samples
Bumble bee, Bombus terrestris, colonies were obtained from the 
Institute of Apicultural Research, Chinese Academy of Agricultural 
Sciences, Beijing, China. The bumble bee colony before the compe-
tition stage is used to collect samples which contains one queen and 
about 50 workers. The bees were maintained in nest-boxes under 
a constant darkness room with a temperature of 29  ± 0.5°C and 
relative humidity 55–65%. Bumble bees were supplied ad libitum 
with 50% sugar solution of Korean refined sugar (TS corporation, 
Korean) and fresh frozen pollen collected from honey bee colonies.

To understand the expression patterns of four hexamerin genes 
at various developmental stages of workers, nine ontogenetic stages 
of workers were collected, including eggs within 24 h of laying (egg), 
larvae (eggs hatched approximately 96 h, L), white eyed pupae with an 
unpigmented cuticle (Pw), pink eyed pupae with an unpigmented cu-
ticle (Pp), brown eyed pupae with an unpigmented cuticle (Pb), brown 
eyed pupae with thoracic pigmentation (Pb1), brown eyed pupae with 
a dark pigmented cuticle (Pbd), dark eyed pupae with a dark pigmented 
cuticle (Pdd), and dark eyed pupae with a dark pigmented and hair 
(Pdh; Tian et al. 2018, Guan et al. 2019, Dong et al. 2020). Samples 
were collected from the initial stage of the colony to ensure that bees 
were of the worker caste. Six eggs were pooled as a biological replicate. 
Three biological replicates of each stage were sampled.

To research the expression feature of four hexamerin genes at the 
queen life cycle, eclosion (newly emerged within 24 h), prediapause 
(six days after mating), diapause (diapause 15 d), and postdiapause 

(15 d after diapause) queens were collected. The fat body of per 
status queen were dissected under a stereomicroscope (Olympus, 
Japan), and three individuals per status were mixed as separate bio-
logical replicates. Then, the fat body was frozen in liquid nitrogen 
immediately after the dissection. All the tissues were stored at −80°C 
until use. Three biological replicates of each status were sampled.

Molecular Cloning Full Length of Four 
Hexamerin Gene
Total RNA was isolated from the larvae of B. terrestris using TRIzol 
reagent (Invitrogen, USA) following the manufacturer’s instruc-
tions. The concentration and quality of RNA were quantified using 
Nanodrops (ND-2000, USA), and the integrity of RNA was assessed 
by agarose gel electrophoresis. Primers were designed from the pre-
dicted hexamerin gene sequence of B. terrestris with GenBank acces-
sion numbers: XM_003401730, XM_012314274, XM_003401733, 
and XM_003401734 (Supp Table 1 [online only]). The 5′ UTRs of 
hexamerin genes were cloned using a Smart RACE cDNA amplifi-
cation kit (Clontech, USA) according to the manufacturer’s instruc-
tions. Amplification was performed for 5′ UTR as follows: 35 cycles 
of 30 s at 94°C, 30 s at 68°C and 3 min at 72°C and a final exten-
sion step at 72°C for 5 min. The 3′ UTR of hexamerin genes was 
cloned using Takara RNA PCR Kit (AMV) Ver.3.0 (Takara, China) 
according to the manufacturer’s instructions. Thermal cycling con-
ditions were as follows: 35 cycles of 30 s at 94°C, 30 s at 55°C and 
2 min at 72°C and a final extension step at 72°C for 5 min. To ob-
tain the four hexamerin gene fragments between the 5′ UTR and 3’ 
UTR, La-Taq DNA polymerase (Takara, China) was used in PCRs. 
PCR parameters were as follows: 94°C for 5 min, 35 cycles of 94°C 
for 30 s, 55–62°C for 30 s, and 72°C for 3 min followed by extension 
at 72°C for 10 min. The PCR products were analyzed by agarose 
gel electrophoresis and purified using an Agarose Gel DNA recovery 
kit (Real-Times, China) according to the manufacturer’s protocol. 
Then, gel-purified PCR fragments were cloned into pMD19-T vec-
tors (Takara, China) and transformed into Trans-T1 competent cells 
(Transgen, China). Positive colonies were sequenced using universal 
M13 primers from both ends by commercial sequencing company.

Real-Time Quantitative PCR Analysis
Total RNA of all samples was extracted using TRIzol reagent 
(Invitrogen, USA). One microgram of total RNA was used as a 
template for cDNA synthesis using the PrimeScript RT reagent kit 
with gDNA Eraser (Takara, China) according to the manufacturer’s 
protocol. Amplification was performed on an Mx3000p system 
(Agilent, USA) and carried out in 20-μl reaction volumes containing 
10 μl SYBR Premix Ex Taq II kit (Takara, China), 1 μl first-stranded 
cDNA, 1  μl upstream primer, 1  μl downstream primer, and 7  μl 
ddH2O (Supp Table 1 [online only]). The expression levels of four 
hexamerin genes were normalized to the geometric mean of refer-
ence genes, β-actin and rp49 (Lourenço et al. 2008). PCR conditions 
were 94°C for 5 min followed by 40 cycles of 94°C for 10 s and 
60°C for 34 s. Three technical replicates were performed. The rela-
tive expression levels of the four hexamerin genes were estimated 
using the 2−ΔΔCt method (Livak et al. 2001). Three biological repli-
cates and three technical replicates per sample were employed.

Sequence and Molecular Phylogenetic Analysis
The nucleotide sequences were verified, merged, and aligned using 
BioEdit (version 7.2.1; Hall 1999). Open reading frame (ORF) de-
tection was performed using the NCBI online tools (http://www.ncbi.
nlm.nih.gov/gorf/gorf.html). The protein isoelectric point values (pI), 
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amino acid composition, and molecular weight (Mw) were calculated 
using the sequence manipulation suite (Version 2; http://www.detaibio.
com/sms2; Stothard 2000). Conserved domains of hex 70a, hex 70a, 
hex 70c, and hex 110 were predicted by the NCBI conserved domain 
database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/). The 
site of a signal peptide was predicted by the web program SignalP 
5.0 (http://www.cbs.dtu.dk/services/SignalP/; Almagro Armenteros 
et al. 2019). Putative protein sequences of the four hexamerin genes 
were used as queries to search for other homologs using the BLASTP 
programs (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The protein 
sequences were aligned using MUSCLE. The JTT+G model, which had 
the lowest values of Akaike information criteria and Bayesian infor-
mation criterion, was chosen for subsequent phylogenetic analyses. 
Neighbor-joining trees were built using MEGA X (Kumar et al. 2018) 
using the bootstrap (1,000 replications) method. The sequence align-
ment and identity of the exon was performed by DNAMAN software 
version 9 (https://www.lynnon.com/dnaman.html).

Statistical Analysis
All data were statistically analyzed using IBM SPSS Statistics 20. 
One-way ANOVAs were employed for the analyses followed by 
Tukey’s test. The data were determined to have homogeneity of vari-
ances with the Levene test, and data were log-transformed where 
necessary (Huang et al. 2009). The data are presented as the means ± 
SEM of at least three independent experiments, and P-values < 0.05 
were considered to indicate significant differences.

Results

Structural and Sequential Characteristics of Four 
B. terrestris Hexamerin Genes
Four full-length cDNAs of hexamerin genes were obtained 
from bumble bee B.  terrestris by RACE PCR. Results demon-
strated that the full-length cDNA of hex 70a (GenBank accession 
number: MW067149) was 2,155  bp and contained a 35-bp 5′ 
UTR and 86  bp 3′ UTR with polyadenylation signal (AATAAA), 
the full-length cDNA of hex 70b (GenBank accession number: 
MW067150) was 2,193 bp and contained a 15-bp 5′ UTR and 111-
bp 3′ UTR with polyadenylation signal (AATAAA), the full-length 
cDNA of hex 70c (GenBank accession number: MW067151) was 
2,201 bp and contained a 52-bp 5′ UTR and 94-bp 3′ UTR with 
polyadenylation signal (AATAAA), and the full-length cDNA of hex 
110 (GenBank accession number: MW067152) was 3,445 bp and 
contained a 26-bp 5′ UTR and 122-bp 3′ UTR with nonclassical 
polyadenylation signal (ATTAAA; Fig. 1A). The coding sequences 
of four hexamerin genes aligned to the reference genomes (GenBank 
accession number: GCA_000214255.1) and showed that hex 70a 
and hex 70c contained six exons and five introns, and hex 70b and 
hex 110 contained seven exons and six introns (Fig. 1B). In addition, 
the similarities of hexamerins at the level of nucleotide and amino 
acids between the obtained sequences and predicted sequences was 
a little difference (Supp Fig. 1 [online only]). Four hexamerins have 
conserved domains according to the alignment of homologous re-
gions of four gene exons (Supp Fig. 2 [online only]).

Amino Acid Composition of Four Hexamerins in 
B. terrestris
The number of amino acids of Hex 70a, Hex 70b, Hex 70c, and Hex 
110 was 677, 688, 684, and 1,098 amino acids, and their predicted 
molecular weights were 81.13, 79.69, 81.58, and 119 kDa with theor-
etical isoelectric point values of 6.34, 6.74, 6.64, and 6.70, respectively 

(Table 1). Compared with Hex 70a, Hex 70b, and Hex 70c proteins, 
Hex 110 protein has lower aromatic amino acid content and high 
content of Glx (glutamic acid and glutamine). The amino acid com-
position of four hexamerins was list in Supp Table 2 (online only). All 
hexamerin genes were composed of conserved hemocyanin N, M, and 
C domains (Fig. 1C). The cleavage site of the signal peptide from Hex 
70a and Hex 70c was between positions 18 and 19 amino acids. The 
cleavage site of the signal peptide from Hex 70b was between posi-
tions 17 and 18 amino acids, and the cleavage site of the signal peptide 
from Hex 110 was between positions 16 and 17 amino acids.

Phylogenetic Analysis of Four Hexamerin Genes
The evolutionary relationships of hexamerin amino acid sequences 
from hymenopteran insects were investigated. Bootstrap support 
values for nodes on the tree range from 75 to 100%. The results 
showed that the hexamerin gene family was clustered into two clades 
in Hymenoptera. One of the clades is Hex 110, and the other clades 
are divided into Hex 70a, Hex 70b, and Hex 70c branches. Moreover, 
Hex 70a was clustered more closely with Hex 70c (Fig. 2).

Expression Profile of Four Hexamerin 
Genes at Different Developmental Stages of 
B. terrestris Worker
The expression-level analysis showed that the four hexamerin 
genes have different expression levels at different developmental 
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stages. The expression of the hex 70a gene was significantly in-
creased in the larva stage and reached a high level in the Pp, Pb, 
and Pb1 stages; next, the expression level significantly decreased 

at the Pbd and Pdd stages and reduced again in the Pdh stages (F8, 

18 = 398.38, P  < 0.001; Fig. 3A). The expression of the hex 70b 
gene gradually increased from the L stage and reached the highest 
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Fig. 2. Neighbor-joining phylogenetic tree of hexamerins using MEGA X. Hexamerins of B. terrestris labeled with gray dots. Each branch has bootstrap values 
based on 1,000 replicates. The hexameric sequences used in this study are listed in (Supp Table 3 [online online]).

Table 1. Characteristics of four hexamerin proteins of Bombus terrestris

Gene name Amino acids Molecular 
weight

Theoretical pI 
value

Aromatic amino acids 
(%)

Leucine (%) Methionine (%) Glutamic acid 
and glutamine 

(%)

hex 70a 677aa 81.13 kDa 6.34 19.65 10.34 2.07 10.04
hex 70b 688aa 79.69 kDa 6.74 13.21 9.29 3.63 9.43
hex 70c 684aa 81.58 kDa 6.64 19.27 6.86 6.57 8.32
hex 110 1098aa 119 kDa 6.70 7.29 8.83 1.00 21.40
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level in the Pb stage, later significantly decreased at the Pb1 stage 
and decreased significantly to very low levels at the Pbd, Pdd, and 
Pdh stages (F8, 18 = 304.95, P < 0.001; Fig. 3B). The expression of 
the hex 70c gene was significantly increased in the L stage and 
reached a peak in the Pp stage and gradually significantly decreased 
thereafter until the Pdh stage (F8, 18 = 364.35, P < 0.001; Fig. 3C). 
The hex 110 gene achieved the highest expression level at the L 
stage, significantly decreased at the Pw, Pp, Pb, and Pb1 stages, 
and later decreased significantly at the Pbd, Pdd, and Pdh stages  
(F8, 18 = 415.22, P < 0.001; Fig. 3D).

Expression Profile of Four Hexamerin Genes in 
Eclosion, Prediapause, Diapause, and Postdiapause 
B. terrestris Queens
The expression-level analysis showed that the expression of the 
four hexmerin genes varied at different queen statuses. The hex 
70a gene was significantly increased at prediapause compared to 
the eclosion queens (hex 70a: F3, 8 = 191.25, P < 0.001), but there 
were no significant differences compared to the diapause and 
postdiapause queens (Fig. 4A). The expression of hex 70b gene 
reached a peak at prediapause and later significantly decreased in 
the diapause and postdiapause queens, but the postdiapause queens 

exhibited significantly higher levels than the eclosion queens (hex 70b:  
F3, 8 = 1,009.15, P < 0.001; Fig. 4B). The expression of the hex 70c 
gene was significantly increased at the prediapause stage, significantly 
decreased at the postdiapause stage and again exhibited a significant 
reduction at postdiapause (hex 70c: F3, 8 = 54.25, P < 0.001; Fig. 4C). 
The expression of the hex 110 gene was significantly increased in 
the prediapause and diapause queens compared to the eclosion and 
postdiapause queens (hex 110: F3, 8 = 587.49, P < 0.001; Fig. 4D).

Discussion

Hexamerins, as storage proteins, are essential for maintaining energy 
metabolism during the nonfeeding period (Cunha et  al. 2005). In 
this study, we obtained four hexamerin genes from B. terrestris and 
mastered the expression characterization of bumble bee workers at 
the developmental stage and four stages of the life cycle of bumble 
bee queens. Four hexamerin genes were demonstrated to have 
high expression levels in the larvae and prepupae of workers and 
prediapause queens. These genes are involved in sustaining pupal 
development and the diapause status of bumble bees. To the best of 
our knowledge, this study is the first to identify and characterize four 
hexamerin genes in bumble bees.
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Four hexamerin genes have transcript stop signals that are 
slightly different. The 3′ UTRs of hex 70a, hex 70b, and hex 70c 
contain a polyadenylation signal (AATAAA), whereas a nonclassical 
polyadenylation signal (ATTAAA) was observed in hex 110. This 
nonclassical polyadenylation signal was also detected in Liriomyza 
sativa (Huang et al. 2009, Chang et al. 2019). Four putative hexamerin 
proteins contained the hexamerin family conserved domains hemo-
cyanin N, hemocyanin M, and hemocyanin C, as in other insects 
(Martins et al. 2010, Liu et al. 2019). Hex 70a and Hex 70c belong 
to the class of aromatic amino acid-rich proteins that contain a rela-
tively high quantity of aromatic amino acids (phenylalanine, tryp-
tophan, and tyrosine > 15%). The percentage of methionine in Hex 
70c is 6.57%, which can be recognized as methionine-rich protein 
(>4% methionine; Martins et al. 2010, Hawkings et al. 2019). Hex 
110 contains very rich glutamine and glutamic acid (Glx = 21.4%), 
which is similar to homologous protein of honey bee (Glx = 20.9%; 
Martins et al. 2010) and lower than ants (Glx = 25.4%; Hawkings 
et al. 2019). The phylogenetic analysis suggested that Hex 70a, Hex 
70b, and Hex 70c clustered into one branch, which separated from 
the Hex 110 branch. This clustering pattern was also recorded in 
ants and honeybees, suggesting that the hexamerin family of social 
insects was conserved (Martins et al. 2010, Hawkings et al. 2019).

During worker development, the expression of four hexamerin 
genes was increased at the larval stages. High expression of hexamerin 
genes during the larval stage will ensure sufficient amino acids and en-
ergy for the metamorphosis of workers during the nonfeeding period 
(Moreira et al. 2004). The hex 70a, hex 70b, and hex 70c has a highly 
expression from larval to the midpupal stage (Pw, Pp, and Pb) and was 
notably depleted during adult ecdysis (Pdh). This expression profile 
of accumulation and depletion is common to most holometabolous 
insects (Korochkina et al. 1997, Hunt et al. 2007, Martins et al. 2012, 
Liang et al. 2019). Hex 110 exhibited a different expression profile. 
It reached a peak in the larval stage and decreased at the pupal stage 
in bumble bees, which was in keeping with the findings obtained in 
honeybees (Martins et al. 2012). The highest expression of hex 70a 
and hex 70b during cuticle pigmentation stages (Pb and Pb1) indi-
cated that they may be related to the formation of insect epidermis.

Hexamerins have been proven to play vital roles in insect dia-
pause (Salama et al. 1992, Lewis et al. 2002, Wolschin and Gadau 
2009, Mishra et al. 2011). It was demonstrated that four hexamerin 
genes of B.  terrestris express clear increases in prediapause status. 
This will promote the accumulation of hexamerin proteins for dia-
pause (Vaudo et al. 2017, Woodard et al. 2019, Costa et al. 2020). 
Therefore, this process could help queens resist cold stress and 
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nutrient sequestration. The increased expression levels of the four 
hexamerin genes in prediapause were significantly different (hex 
70a upregulated 3.7-fold, hex 70b upregulated 1,742-fold, hex 70c 
upregulated 306-fold, and hex 110 upregulated 245-fold). According 
to the expression profile, hex 70b may play the most important roles 
among the four hexamerins before diapause. However, it was re-
ported that the biosynthesis of hex 70b was affected by the protein 
content in food in honeybees (Cunha et al. 2005). Hence, the effect 
of food on the expression of hex 70b in bumble bees should be fur-
ther demonstrated in the future.

Conclusions
Four hexamerin genes (hex 70a, hex 70b, hex 70c, and hex 110) 
were first cloned and characterized from bumble bees. These genes 
play important roles in bumble bee metamorphosis and queen 
diapause. It was demonstrated that hex 70a, hex 70b, and hex 
70c are vital to the Pb pupae development stage. Gene hex 110 
contributes strongly to larval development. High expression of 
four hexamerin genes at queen prediapause status indicated that 
they may provide supplementary amino acids and energy for dia-
pause. Unfortunately, the functions of four hexamerin genes were 
not validated in this study, especially their functions during the 
nonfeeding period.
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