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Cancer immunotherapy has experienced remarkable advances in recent years.

Striking clinical responses have been achieved for several types of solid cancers

(e.g. melanoma, non-small cell lung cancer, bladder cancer and mismatch

repair-deficient cancers) after treatment of patients with T-cell checkpoint

blockade therapies. These have been shown to be particularly effective in

the treatment of cancers with high mutation burden, which places tumour-

mutated antigens (neo-antigens) centre stage as targets of tumour immunity

and cancer immunotherapy. With current technologies, neo-antigens can be

identified in a short period of time, which may support the development

of complementary, personalized approaches that increase the number of

tumours amenable to immunotherapeutic intervention. In addition to review-

ing the state of the art in cancer immunotherapy, we discuss potential avenues

that can bring the immunotherapy revolution to a broader patient group

including cancers with low mutation burden.
1. Introduction
The field of cancer immunotherapy has experienced alternating periods of success

and failure in the development of cancer therapies. In the late nineteenth century,

William Coley treated cancer patients by local injection with bacterial toxins,

which provoked anti-tumour immune responses in some patients [1]. In the

1960s, Thomas and Burnet postulated the cancer immune surveillance theory,

where the immune system would specifically eliminate malignant cells, most

probably through recognition of tumour-associated antigens [2,3]. This was

followed by the elucidation of the role of T cells in anti-tumour immune responses

which led to the clinical use of the T-cell growth factor interleukin-2 (IL-2).

In 1991, IL-2 was approved by the FDA for the treatment of metastatic renal

cell carcinoma and, in 1998, for metastatic melanoma. However, IL-2 treatments

produced high toxicity and yielded a relatively low response rate, underlining

the need to develop improved immunotherapeutic strategies [4,5].

The transition to targeted immunotherapy was made with the development of

the hybridoma technology, in 1975, which supported the production of mono-

clonal antibodies [6]. Rapidly, monoclonal antibody-based treatments were

set up and the first FDA approval was obtained for rituximab in 1997 for the treat-

ment of B-cell lymphomas. Rituximab is a genetically engineered monoclonal

antibody directed against the CD20 antigen which is ubiquitously expressed in

B cells and triggers cell death by antibody-dependent cell-mediated cytotoxicity,

complement activation and direct induction of apoptosis [7,8]. In the same

decade, chimaeric antigen receptor (CAR) T cells were developed to combine

the antigen-binding properties of antibodies with the cytolytic and self-renewal

capacity of T cells [9,10]. CAR T cells are genetically engineered to express an

extracellular antigen-recognition domain, such as antibody-derived, single-

chain variable fragments, coupled to T-cell activation endodomains. The most

significant clinical results have been achieved with CD19-targeting CAR T cells

in haematological malignancies [11,12].
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More recently, a number of antibodies targeting cellular

immune checkpoints (e.g. PD-1/PD-L1 and CTLA-4) have

been developed to promote the activation of T cells and sub-

sequent tumour control. This treatment strategy has been

shown to be particularly effective in tumours with high muta-

tion burden, putting tumour-mutated antigens (neo-antigens)

centre stage in cancer immunotherapy [13–19].
blishing.org
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2. Antigen presentation and cancer
immunotherapy

Antigen processing and presentation enables the immune

system to monitor cellular processes and to act accordingly

upon expression of aberrant/foreign proteins. Human leuko-

cyte antigen (HLA) class I molecules present antigens at the

surface of most cells throughout the organism. Such antigens

can, theoretically, be derived from most cellular proteins as

these are processed by the (immuno) proteasome and broken

down to peptides [20]. Subsequently, transporter associated

with antigen processing (TAP) proteins mediate the intake of

these peptides to the endoplasmic reticulum, where they are

loaded onto HLA class I molecules with the aid of several

chaperones [21,22]. HLA class I/peptide complexes translocate

via the Golgi apparatus to the cell surface where they are

exposed to CD8þ T cells [23]. Nevertheless, an effective

anti-tumour immune response is thought to be initiated by

the taking up of tumour antigens by antigen-presenting

cells (APCs) which in turn present them, and provide co-

stimulatory signals, to both CD4þ and CD8þ T cells [24]. In

order to do so, APCs, particularly dendritic cells, process anti-

gens through an exogenous antigen processing pathway where

(tumour) cellular material is phagocytosed and converted into

HLA class I- and class II-binding peptides that are presented to

CD8þ (cross-presentation) and CD4þ T cells, respectively [25].

HLA class II expression is also known to occur in some tumour

types although its functional significance and how it can be

exploited from an immunotherapeutic point of view require

further investigation [26,27].

Antigens that are considered to evoke anti-tumour

immune responses and which are therefore suitable as

immunotherapeutic targets can be divided into three groups:

tumour-mutated antigens (or neo-antigens), tumour-associated

antigens and cancer-testis antigens [28]. Viral antigens consti-

tute another class of targetable antigens in the context of viral

oncogenesis but will not be discussed here. Tumour-associated

and cancer-testis antigens are both self-antigens that are differ-

entially expressed in tumour tissues and rarely expressed (or to

lower extent) in normal tissues. The stimulation of endogenous

T-cell responses against self-antigens can be challenging as

auto-reactive T cells are subjected to negative selection in the

thymus [29]. Nevertheless, it has been shown that central toler-

ance can be broken and that immune responses can be

generated against self-antigens, analogous to what is observed

in autoimmunity [30]. Positive clinical indications have been

described for several tumour-associated antigens (e.g. gp100,

MART-1) and cancer-testis antigens (e.g. MAGE-A3 and

NY-ESO-1) [31–34]. However, subsequent clinical trials were

not always able to confirm patient survival benefits and side-

effects were regularly observed due to expression of the

targeted antigens in healthy tissues [35–37].

Neo-antigens are by definition tumour-specific as they

arise from somatic mutations that are not present in healthy
tissue. Theoretically, they constitute ideal targets for immu-

notherapy because no off-target reactivity and central

tolerance of T cells are expected [38]. The accumulation of

somatic mutations is a hallmark of tumour progression, but

only a minority of mutations is under positive selection

and, therefore, recurrently observed in different patients.

Hence, individual tumour mutation profiles are dominated

by the so-called passenger mutations which are highly vari-

able between cancers and patients [39]. The development of

next-generation sequencing (NGS) technologies has made it

possible to screen entire (coding) genomes for the detection

of potential neo-antigens in a clinically applicable time-

frame. In silico tools aiming at identifying neo-antigens

more likely to constitute good immunotherapy targets are

also under constant development [40–44].

The requirement of a personalized approach to target

neo-antigens can be a time-consuming and onerous procedure.

While this limitation could be circumvented by the targeting

of recurrent mutations at driver genes such as BRAF and

KRAS, accumulated evidence suggests that such mutations

are seldom immunogenic [45,46]. In fact, this might be

expected, as it would be unlikely that immunogenic mutations

would be so often favoured by clonal selection during tumour

progression. Another aspect complicating the targeting of

neo-antigens relates to intra-tumour heterogeneity. The

identification of neo-antigens requires that the tumour is

sampled and further processed for nucleic acid isolation and

sequencing. Several reports have identified sampling issues

as a major limitation for a comprehensive characterization of

somatic alterations in tumours [47,48]. On the other hand,

cancer therapies, including immunotherapies, will probably

be the most successful when targeting clonal alterations pre-

sent in any part of a tumour mass [13]. Another caveat that

must be considered is that neo-antigens, particularly the ones

derived from point mutations, have very similar sequences to

their wild-type counterpart. If amino acid substitutions at

anchor residues do not affect the binding affinity to HLA mol-

ecules or if substitutions at core residues do not significantly

alter the molecular properties of a peptide, the likelihood that

high avidity TCRs are present in an autologous T-cell repertoire

may be low. This supports a fundamental role for frameshift

mutations as these have the potential to generate highly immu-

nogenic peptides [49]. However, frameshifts are notoriously

difficult to detect, particularly in NGS data, and the capacity

to identify them varies greatly between research groups.
3. The state of the art in cancer
immunotherapy

T cells are key players in anti-tumour immunity and, therefore,

the bulk of cancer immunotherapy research has focused on

inducing T-cell-mediated anti-tumour responses. The current

breakthrough in cancer immunotherapy results from the

identification and subsequent targeting of checkpoint mechan-

isms in T cells with antibodies against CTLA-4, PD-1 and

PD-L1 [50–53]. CTLA-4 and PD-1 are co-inhibitory receptors

found on the cell surface of T cells. Upon binding to their cor-

responding ligands (CD80/86 and PD-L1/-L2, respectively), T

cells become anergic: a physiological mechanism of peripheral

tolerance or halting of inflammatory responses [54]. In the con-

text of the tumour microenvironment, the aberrant expression

of immune checkpoint ligands (on tumour and immune cells),
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together with chronic exposure to tumour antigens, can lead to

the undesirable suppression of T-cell activity [55]. The blocking

of such mechanisms can therefore unleash a renovated anti-

tumour immune response. Moreover, checkpoint blockers

were found to broaden the target of cytotoxic T-cell responses

in cancer patients [56,57].

Treatment with checkpoint blocking antibodies has been

approved for a number of cancers including melanoma,

urothelial bladder cancer, head and neck squamous cell

carcinoma, non-small cell lung cancer and classical Hodgkin

lymphoma, while positive indications has been found for

many other malignancies [50,58–62]. Immune checkpoint

blockade has been shown to be most effective in tumours

with high mutation burden that arises either from chronic

exposure to DNA-damaging agents (e.g. smoking and ultra-

violet radiation) or as a consequence of intrinsic DNA

repair defects [16,17,63]. Accordingly, clinical responses have

also been correlated with the mutation burden of tumours

derived from the same organ [16,17,62]. Notably, pembrolizu-

mab, an anti-PD-1 antibody, constitutes the FDA’s first tissue/

site-agnostic, molecular-guided approval as it is indicated for

advanced mismatch repair-deficient cancers. These findings

support the central role of neo-antigens in the therapeutic

responses to immune checkpoint blockers. Nevertheless, the

majority of patients with the so-called hypermutated tumours

do not respond to checkpoint blockade and the ability to pre-

dict responses by discovering additional biomarkers is a

major focus of research in the field [64]. In order for CD8þ T

cells to fulfil their cytotoxic activity, they must infiltrate

tumour tissues and subsequently recognize cancer antigens

loaded on HLA class I molecules. Therefore, defects in the

antigen processing and presentation machinery are often

observed as immunoediting phenotypes in tumour cells

[65–69]. Additionally, tumour cells can escape cytokine-

mediated immune responses by mutating components of the

IFN-g pathway. Metastatic melanoma patients that did not

respond to CTLA-4 treatment were found to have tumours

with genetic defects in IFNGR1/2, IRF1 and JAK2 [70]. Similarly,

melanoma and MMR-deficient colorectal cancer patients were

found to be resistant to anti-PD-1 treatment due to inactivating

mutations in JAK1/2 [71,72]. Neo-antigen availability can also

change in a tumour, due to clonal selection by immunoediting,

enforced by neo-antigen-specific T cells [73,74].

Spontaneous, neo-antigen-driven, anti-tumour responses

arise in many cancer patients, as demonstrated by the isolation

of neo-antigen-reactive tumour-infiltrating lymphocytes (TIL)

[75]. Furthermore, the presence of TIL, particularly with a type

1 inflammatory profile (i.e. IFNg/IL-2-driven immune

responses), is generally associated with an improved prognosis

in cancer patients [76,77]. One approach to boost an autologous

lymphocyte-mediated anti-tumour response is through adop-

tive T-cell transfer (ACT), which relies on the ex vivo expansion

of tumour-reactive T cells and their reinfusion back in the patient

[78]. The infusion product can consist of TIL or peripheral blood-

derived tumour-specific T cells that are expanded in the pres-

ence of tumour cells or tumour antigens [79,80]. ACT-based

treatments have produced some encouraging results, particu-

larly for metastatic melanoma patients [73,80–83]. Verdegaal

et al. reported on the successful treatment of a metastatic mela-

noma patient with CD4þ and CD8þ tumour-specific T cells

[73,80]. In a fascinating example, the potency of neo-antigen-

specific ACT is illustrated by the treatment of a metastatic

cholangiocarcinoma patient, treated with a neo-antigen-reactive
CD4þ T-cell product derived from TIL, resulting in stable

disease [82]. These findings underscore the relevance that ACT

might have for some patients, but similar to for checkpoint

blockade, there is a need to discover biomarkers that indicate

a priori which patients may benefit from it.

Today, many ongoing clinical trials are investigating the

clinical effect of combining different immunotherapies. The

use of anti-CTLA-4 in addition to anti-PD-1 antibodies resulted

in increased overall survival rates in previously untreated mel-

anoma patients [84,85]. Furthermore, other immune regulators,

such as LAG-3, TIM-3, ICOS or NKG2D are promising

new therapeutic targets [86–90]. Additional research will be

important to address resistance to first-generation immune

checkpoint blockers as, for instance, LAG-3 and TIM-3 upregu-

lation is observed following anti-PD-1 treatment [86]. Likewise,

CD137 co-stimulation is studied for its synergistic effects with

ACT [91,92]. Finally, checkpoint blockade therapies may also

be used in combination with standard chemo- and radio-

therapy interventions which are known to enhance tumour

immunogenicity [93,94].

Other avenues like therapeutic vaccination with synthe-

tic peptides corresponding to neo-antigens are being

explored. This strategy aims to prime autologous T cells

from cancer patients against tumour-specific antigens to

unleash anti-tumour immune responses. In addition to

providing neo-antigens as immunotherapy products, several

co-stimulatory factors are needed to induce an effective anti-

tumour T-cell response [95], including provision of danger

signals by adjuvants and/or homing of cellular-based vaccines

[96–98]. Encouraging clinical responses were obtained with

neo-antigen-based peptides plus polyICLC vaccinations

in previously untreated metastatic melanoma patients [99].

This intervention was shown to induce CD4þ and CD8þ anti-

tumour T-cell responses against several epitopes. Four out of

six patients had no recurrence after 25 months; two patients

with tumour recurrence received subsequent anti-PD1 therapy

leading to complete tumour regression [99]. In another phase I

study, stage III melanoma patients pre-treated with ipilimu-

mab and by surgical resection received a vaccine consisting

of autologous dendritic cells presenting neo-antigens that

were determined by sequencing [100]. Both vaccination

strategies induced tumour-directed immune responses with

concomitant broadening of the targeted antigen repertoire

without inducing side-effects [99,100]. Nevertheless, to date,

the number of vaccination studies involving neo-antigens

that reported positive clinical outcomes is limited. This might

be explained by the fact that the bulk of this research, in pre-

vious decades, has focused on targeting oncogenes and

tumour suppressors (e.g. TP53) with recurrent mutations

[101]. Therefore, these studies did not consider the largest

source of neo-antigens in tumour—passenger mutations.

The requirement that neo-antigens are presented in com-

plex with HLA class I hinders the widespread application of

neo-antigen-targeted therapies in the form of peptide vacci-

nation or ACT. Therefore, CAR T cells were designed to

enable the targeting of any cell surface molecule, in an HLA

non-restricted fashion [9]. This strategy has been particularly

successful for treating haematological malignancies, because

highly tissue/cell-restricted antigens are present on their

easily accessible cells of origin [10–12]. In 2010, the first suc-

cessful CAR T-cell therapy was reported in a lymphoma

patient who was pre-treated with chemotherapy [10]. The infu-

sion product consisted of autologous T cells transduced with
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retroviruses encoding the variable region of the anti-CD19,

B-cell antigen, which was joined to part of the co-stimulatory

CD28 molecule and CD3z signalling domain for T-cell

activation. Investigations in larger cohorts showed clinical

responses [102,103], but severe side-effects arose, including

treatment-related deaths [104–106]. These side-effects derive

from high cytokine concentrations (cytokine storm), produced

by the infused engineered T cells that become hyper-activated

as a result of high affinity of their receptor to the target

molecules. Recently, two second generation CAR therapies

targeting CD19 have been approved by the FDA for treatment

of patients with relapsed/refractory diffuse large B-cell

lymphoma and relapsed/refractory B-cell precursor acute

lymphoblastic leukaemia [107,108]. In search for optimal effec-

tivity and specificity, third generation CARs are currently

being developed, which contain two co-stimulatory domains

[109–112]. Furthermore, investigations are ongoing to improve

the treatment of haematological diseases while limiting the

severity of side-effects, as well as investigations on the clinical

efficacy of genetically engineered T cells in solid tumours

[109,113,114]. The targeting of the latter has proved to be

particularly challenging and complicating factors include the

identification of specific, targetable antigens and the homing

of CAR T cells to the tumour tissues where in turn they are

exposed to a complex tumour microenvironment [115]. On

the other hand, CAR T cells are a very attractive tool to treat

cancers arising in non-vital organs where specific antigens

are expressed (e.g. thyroid and ovaries).
4. The immune landscape of low mutation
burden tumours

As discussed, neo-antigens constitute attractive targets for

immunotherapy and clinical responses with checkpoint block-

ers have been correlated to the mutation burden of tumours

[16,62]. Cancers with 10 mutations/Mb or more have been pro-

posed as susceptible for checkpoint blockade, indicating the

importance of neo-antigen presence for a potent immune

response [116]. However, not all patients with high mutation

burden tumours benefit from these therapies, and the precise

determinants of response are undefined at the moment.

Furthermore, the division between tumours with high, moder-

ate and low mutation burden is somewhat arbitrary. In theory,

tumours with low/moderate mutation burden that present

neo-antigens in complex with HLA class I could still be eligi-

ble for T-cell-mediated immunotherapy. However, several

questions remain unanswered: does the low number of

neo-antigens translate to the improbability that a neo-antigen

‘survives’ the antigen processing machinery? On the other

hand, if a small number of neo-antigens is indeed presented

by a tumour cell, is it enough to provoke an inflammatory

response that is required for tumour elimination?

Medulloblastoma, the most common brain tumour in chil-

dren, has a low mutation burden, but was found to upregulate

IDO1 expression [117]. IDO1 enhances immunosuppressive

effects leading to an increase of Tregs and dampened activity

of effector T cells [118]. Therefore, upregulation of IDO1 can

be classified as an immune escape mechanism, indicating a

role for the immune system in the control of medulloblastoma

progression. Additionally, acute myeloid leukaemia (AML)

cells are known to overexpress PD-L1 [119] and IDO1 [120],

and AML blasts can secrete arginase II in order to promote
immune escape by suppressing T-cell proliferation and polariz-

ing monocyte differentiation towards an M2 phenotype [121].

Another tumour with low/moderate mutation burden,

Hodgkin lymphoma, is characterized by few tumour cells

and many immune cells that are attracted by the tumour-

secreted cytokines [122]. However, these tumour-infiltrating

immune cells display an immunosuppressive rather than

anti-tumourigenic phenotype [122]. Immunotherapies are reg-

ularly employed to treat this disease, including antibodies

targeting CD20, CD30 and checkpoint inhibitors targeting

PD-1 [7,61,123]. Effectiveness of the latter may reside in the

genetic overexpression of PD-L1 by the tumour cells [122].

TILs in Hodgkin lymphoma were found to express low levels

of PD-1, but the blockade of this co-inhibitory mechanism

was shown to result in an enhanced anti-tumour activity [61].

This finding underlines the existence of a T-cell-mediated

anti-tumour response, which might be circumvented by

the tumour through PD-L1 expression. Nevertheless, the

immune evasive mechanisms observed in AML and Hodgkin

lymphoma are probably closely connected to the function of

their precursor cells and the persistent interaction of these path-

ologies with the immune system. A last example of a tumour

type with low/moderate mutation burden that has potential

for treament with immunotherapeutic strategies is renal cell

carcinoma (RCC). Sensitivity to immunotherapeutic interven-

tion in this tumour type was already known from the clinical

responses of some RCC patients to IL-2 treatment [124].

Recently, patient overall survival was shown to increase from

19.6 to 25 months with anti-PD-1 therapy compared to stan-

dard care with the mTOR inhibitor everolimus [125]. The

underlying mechanisms making this tumour susceptible

for immunotherapeutics are not understood yet, but the

composition of the tumour microenvironment might play an

important role. High lymphocyte infiltration was found to

correlate with high risk for disease progression, which is a

paradox characteristic of RCC. This might relate to the

exhausted phenotype of infiltrating lymphocytes which con-

tributes to an immunosuppressive microenvironment [126].

Furthermore, neo-antigen depletion due to immune selection

was demonstrated to occur in RCC and a positive correlation

was observed between mutations in the antigen-presenting

machinery and cytotoxic activity by immune cells, suggesting

the presence of ongoing anti-tumour immune reactions [67].

Finally, RCC was found to have the highest number of frame-

shift mutations out of 19 different cancer types, which might

explain the immunogenicity observed in these tumours despite

their moderate total mutation burden [49]. These examples of

tumours with low mutation burden presenting susceptibility

to immunotherapeutic strategies indicate the existence of auto-

logous tumour-specific T cells with the potential to recognize

(neo-) antigens, even when present in small numbers.
5. Immunotherapies for tumours with low
mutation burden

Previous works by Tran et al. [82,127] support the idea that

most tumours present neo-antigens and that these can be tar-

geted by the immune system, e.g. gastrointestinal cancers

with low and moderate mutation burden including a cholan-

giocarcinoma patient with only 26 non-synonymous

mutations. Therefore, the clinical applicability of neo-antigen-

targeted ACT or peptide-based vaccination strategies for low
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mutation burden tumours should be explored. The detection

rate of autologous T-cell reactivity to neo-antigens is often

described to be approximately 1% of the non-synonymous

mutations that are transcribed in a tumour [83,127,128]. Cur-

rently, NGS is regularly used to determine neo-antigen

presence, but improvements in capture methods for targeted

panels (e.g. exome) and mutation detection algorithms might

enhance the initial pool of targetable mutations in tumours

with low mutation burden. For these, the use of in silico predic-

tion models for antigen processing and HLA binding affinity

might not be necessary for a first T-cell reactivity screening

using long peptides, because the number of mutations is low

and all neo-antigens can be tested for their ability to induce

T-cell activation. However, to directly investigate T-cell

reactivity against short peptides, in silico tools are still required.

Immunotherapies have a high synergistic potential with

standard chemo- and radiotherapies as these are known to

induce immunogenic cell death [129,130]. This synergy might

be especially valuable for tumours with low mutation

burden which do not respond to immunotherapy alone, and

which could benefit from the transformation of a ‘cold’

immune microenvironment into a ‘hot’ microenvironment

with an inflammatory profile (figure 1) [131,132]. The rationale

of classical chemotherapy and radiotherapy encompasses the

targeting of fast-dividing tissues by impairing mitosis and

inducing DNA damage. This leads to the release of tumour

antigens and damage-associated molecular patterns which

activate APCs [133]. Macrophages are attracted to consume

the damaged tumour cells, which further enhances the anti-

tumour response of T cells upon presentation of the tumour

antigens [134]. In addition, radiotherapy leads to the release

of nuclear DNA in the cytoplasm, activating the stimulator of
interferon genes (STING) pathway, which is a direct link

between the innate immune system and DNA damage

[135,136]. Furthermore, the tumour microenvironment is dis-

rupted by chemoradiation, thereby disturbing the immune

suppressive milieu in tumours. This includes increased antigen

presentation and expression of co-stimulatory molecules as

well as inhibition of regulatory T-cell and myeloid-derived

suppressor cell function [129,137–139]. In melanoma patients,

an improved clinical response rate was observed upon treat-

ment with a combination of anti-CTLA-4/PD-1 with

radiotherapy, compared to treatment without radiation [130].

Moreover, combined radiotherapy with anti-CTLA-4 treat-

ment induced abscopal effects (shrinkage of tumour lesions

outside of the target region of radiotherapy), in this case con-

sisting of complete regression of metastases at different sites

[140]. Similarly, abscopal effects were observed in a treat-

ment-refractory metastatic lung adenocarcinoma patient after

therapy with radiotherapy and ipilimumab [141]. Tumours

treated pre-surgically with neo-adjuvant therapy might be par-

ticularly interesting for the investigation of the synergistic

effect of chemoradiation and immunotherapy in cancers with

low mutation burden. Among these, rectal cancers and oeso-

phageal tumours are excellent candidates for clinical trials

aiming at reducing mortality and treatment-related morbidity.

Another avenue that may lead to the sensitization of

additional tumours to immunotherapeutic intervention is epi-

genetic modulation of cancer cells [142]. Epigenetic regulation

is fundamental for gene expression and, consequently, for

neo-antigen availability. Furthermore, in order to evade the

immune system, tumours might acquire epigenetic footprints

that change the expression of immunomodulatory genes. For

instance, the expression of specific HLA alleles, with affinity
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to neo-antigens, can be suppressed in tumour cells due to

epigenetic changes [143,144]. Such observations are strongly

supportive of adopting epigenetic modifiers to restore or

improve immunogenicity of some cancers [145]. More specifi-

cally, epigenetic modifiers have been shown to increase

CD8þ T-cell infiltration in ovarian cancer and the immunogeni-

city of colorectal cancer cells was increased upon treatment

with DNA-demethylating agents [146,147]. Epigenetic drugs

could thus tackle the heterogenic expression of, among

others, HLA molecules and neo-antigens, thereby enhancing

anti-tumour immunity.

Another obstacle to employing immunotherapies for the

treatment of tumours with low mutation burden relates to

the fact that they are usually poorly infiltrated by immune

cells. The initiation of an adaptive anti-tumour immune

response probably relies on a robust inflammatory trigger

that is absent in poorly immunogenic tumours. On the other

hand, such inflammatory threshold in tumours with high

mutation burden is most likely reached due to the abundance

of mutated antigens. A strategy to artificially induce an inflam-

matory response that complements immunotherapeutic

approaches is oncolytic virotherapy (figure 1). Talimogene

laherparepvec, a genetically engineered herpes virus, replicates

specifically in cancer cells and induces tumour cell death [148].

It was also shown to induce the expression of GM-CSF in

tumours, which attracts dendritic cells that take up tumour

antigens after cancer cell death. A phase Ib clinical trial

obtained objective response rates (62%) and complete response

rates (33%) in advanced melanoma patients, which were

treated with a talimogene laherparepvec vaccination combined

with pembroluzimab (anti-PD-1 blocker) [149]. The vaccination

treatment was shown to induce infiltration of T cells that often

expressed PD-1, especially in otherwise non-infiltrated ‘cold’
tumours, explaining the patients’ sensitivity to PD-1 blockade.

While such combination therapies were mainly performed in

immunogenic tumours, their success and rationale supports

the investigation of their applicability in tumours with low

mutation burden.
6. Concluding remarks
Immunotherapy, particularly checkpoint blockade, can induce

robust and durable anti-tumour responses in a significant pro-

portion of patients, predominantly when applied for the

treatment of cancers with high mutation burden. Until today,

the applicability of these treatments for other cancer types is

very limited. During the last decade, different groups have

demonstrated the possibility of identifying neo-antigen-tar-

geted immune cell repsonses in tumours with intermediate/

low mutation burden. Recent work in our laboratory confirms

that neo-antigen-reactive T cells are present in low mutation

burden, mismatch repair-proficient colorectal carcinomas

(van den Bulk et al. 2018, unpublished data). These findings

underscore the relevance of developing neo-antigen targeting

immunotherapies for low mutation burden tumours by

tuning anti-tumour inflammatory responses. ‘Cold’, poorly

immunogenic, tumours will require rationale-based interven-

tions that make use of combinatorial therapies, including

radio/chemotherapy or oncolytic viruses, to switch cancer

immune microenvironments to a ‘hot’ state.
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