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Abstract

A common step in the analysis of multiparent populations (MPPs) is genotype reconstruction: identifying the founder origin of haplotypes
from dense marker data. This process often makes use of a probability model for the pattern of founder alleles along chromosomes, includ-
ing the relative frequency of founder alleles and the probability of exchanges among them, which depend on a model for meiotic recombi-
nation and on the mating design for the population. While the precise experimental design used to generate the population may be used
to derive a precise characterization of the model for exchanges among founder alleles, this can be tedious, particularly given the great vari-
ety of experimental designs that have been proposed. We describe an approximate model that can be applied for a variety of MPPs. We
have implemented the approach in the R/qtl2 software, and we illustrate its use in applications to publicly available data on Diversity
Outbred and Collaborative Cross mice.
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Introduction
Multiparent populations (MPPs) are valuable resources for the
analysis of complex traits (de Koning and McIntyre 2017), includ-
ing the mapping of quantitative trait loci (QTL). A wide variety of
MPPs have been developed, including heterogeneous stock (HS) in
mice (Mott et al. 2000) and rats (Solberg Woods et al. 2010), eight-
way recombinant inbred lines (RIL) in mice (Complex Trait
Consortium 2004) and Drosophila (King et al. 2012), and multipar-
ent advanced generation intercross (MAGIC) populations in a va-
riety of plant species including Arabidopsis (Kover et al. 2009),
wheat (Cavanagh et al. 2008), maize (Dell’Acqua et al. 2015), and
rice (Bandillo et al. 2013).

QTL mapping in MPPs can be performed through statistical
tests at individual single nucleotide polymorphisms (SNPs), as
used in genome-wide association studies. However, many investi-
gators first seek to reconstruct the mosaic of founder haplotypes
along the chromosomes of MPP individuals and use this recon-
struction to test for association between founder alleles and the
quantitative phenotype. This approach was first introduced by
Mott et al. (2000) for the analysis of HS mice, implemented in the
HAPPY software, and has been continued in packages such as R/
mpMap (Huang and George 2011), DOQTL (Gatti et al. 2014), and
R/qtl2 (Broman et al. 2019a).

The process of genotype reconstruction in an MPP individual is
illustrated in Figure 1. The genotypes in the founder strains
(Figure 1A) and the MPP offspring (Figure 1B) are used to calcu-
late the probability of each possible founder genotype at each

position along the chromosome (Figure 1C). Thresholding of

these probabilities can be used to infer the founder genotypes

and the locations of recombination breakpoints (Figure 1D).
Such genotype reconstructions are valuable not just for QTL

analysis but also for data diagnostics (Broman et al. 2019b). For

example, the inferred number of recombination breakpoints is a

useful diagnostic for sample quality. Further, the reconstructed

genotypes can be used to derive predicted SNP genotypes; com-

paring these to the observed SNP genotypes can help to identify

problems in both samples and SNPs.
The probability calculation in Figure 1C depends on a model

for the process along MPP chromosomes in Figure 1D. In the

HAPPY software for HS mice, Mott et al. (2000) used a model of

random mating in a large population. Broman (2005) extended

the work of Haldane and Waddington (1931) to derive two-locus

genotype probabilities in multiparent RIL. This was later devel-

oped for the case of multiparent advanced intercross populations

(Broman 2012a, 2012b), including Diversity Outbred (DO) mice

(Churchill et al. 2012).
Genotype reconstruction for a variety of MPP designs has been

implemented in the R/qtl2 software (Broman et al. 2019a, https://

kbroman.org/qtl2). But it can be tedious analytical work to derive

the appropriate transition probabilities for each new MPP design

that is proposed. An alternative is to develop a more general ap-

proach for genotype reconstruction, such as used in the software

RABBIT (Zheng et al. 2015). However, this approach has a variety

of parameters that can be difficult to specify.
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Here, we propose a similarly general method for genotype re-
construction in MPPs. We imagine that an MPP was derived from
a population of homozygous founder strains at known propor-
tions, ai, followed by n generations of random mating among a
large number of mating pairs. We can derive the exact transition
probabilities for this situation. The ai should be simple to specify
from the MPP design, and the effective number of generations of
random mating, n, can be determined by computer simulation, to
match the expected density of recombination breakpoints.

Our approach has been implemented in R/qtl2. While we cur-
rently focus on data with SNP genotype calls, such as from micro-
arrays, our model could potentially be incorporated into methods
for genotype imputation from low-coverage sequencing, such as
that of Zheng et al. (2018). We illustrate our approach through ap-
plication to publicly available datasets on DO (Al-Barghouthi et al.
2021) and Collaborative Cross (CC) mice (Srivastava et al. 2017).

Methods
For genotype reconstruction in an MPP, we use a hidden Markov

model (HMM; see Rabiner 1989). Our basic approach is as de-

scribed in Broman and Sen (2009, Appendix D) for a biparental

cross; the extension to an MPP is straightforward and described

below.
Consider an MPP derived from k inbred lines. We focus on a

single individual, and on a single chromosome with M marker

positions (including pseudomarkers: positions between markers

at which we have no data but would like to infer the underlying

genotype). Let Gm be the underlying genotype at position m. In a

homozygous population, such as RIL, the Gm take one of k possi-

ble values, the k homozygous genotypes. In a heterozygous popu-

lation, such as advanced intercross lines (AIL), the Gm take one of
k
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Figure 1 Illustration of genotype reconstruction in a 1 Mbp region in a single DO mouse. (A) Genotypes of eight founder strains at a set of SNPs, with
open and closed circles corresponding to being homozygous for the more-frequent and less-frequent allele, respectively. (B) Genotype of the DO mouse
at the SNPs, with gray indicating the mouse is heterozygous. (C) Genotype probabilities for the DO mouse along the chromosome segment, given the
observed data. Genotypes other than the two shown have negligible probability across the region. (D) Inferred haplotypes in the DO mouse.
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homozygotes. Let Om be the observed SNP genotype at position m
(possibly missing). We assume that the Gm form a Markov chain
(that G1; . . . ;Gm�1 are conditionally independent of Gmþ1; . . . ;GM,
given Gm), and that Om is conditionally independent of everything
else, given Gm. The forward-backward algorithm (see Rabiner
1989) takes advantage of the conditional independence structure
of the HMM to calculate PrðGmjOÞ.

The key parameters in the model are the initial probabilities,
pg ¼ PrðG1 ¼ gÞ, the transition probabilities, tmðg; g0Þ ¼ PrðGmþ1 ¼
g0 jGm ¼ gÞ, and the emission probabilities, emðgÞ ¼ PrðOmjGm ¼ gÞ.
A particular advantage of the HMM for genotype reconstruction
is the easy incorporation of a model for genotyping errors
(Lincoln and Lander 1992), which is done through the emission
probabilities, which condition on the founder SNP genotypes but
allow some fixed probability � that the observed SNP genotype in
the MPP individual is in error and incompatible with the underly-
ing genotype Gm and the SNP genotypes in the founder lines.

The initial and transition probabilities govern the underlying
Markov chain, including the relative frequency of founder alleles
and the frequency of recombination breakpoints along MPP chro-
mosomes. In principle, these probabilities may be derived on the
basis of the crossing design for the MPP. In practice, the transition
probabilities can be tedious to derive, and exact calculations may
provide no real advantage for genotype reconstruction.

Here, we derive the transition probabilities for a generic MPP
design, which may then be applied generally. We consider a
founder population with k inbred lines in proportions ai, and
imagine subsequent generations are produced by random mating
with a very large set of mating pairs.

Consider a pair of loci separated by a recombination fraction
of r (assumed the same in both sexes) and let pðnÞij be the probabil-
ity of that a random haplotype at generation n has alleles i and j.
At n¼ 0, we have just the founding inbred lines, and so pð0Þij ¼ ai if
i¼ j and ¼ 0 if i 6¼ j.

The probabilities from one generation to the next are related
by a simple recursion, as in Broman (2012b). Consider a random
haplotype at generation n. It was either a random haplotype from
generation n�1 transmitted intact without recombination, or it is
a recombinant haplotype bringing together two random alleles.
Thus

pðnÞij ¼ ð1� rÞpðn�1Þ
ij þ raiaj: (1)

Using the same techniques described in Broman (2012b), we find
the solutions:

pðnÞij ¼
a2

i þ ð1� rÞnaið1� aiÞ if i ¼ j
aiaj½1� ð1� rÞn� if i 6¼ j:

(
(2)

The transition probabilities along a haplotype are derived by di-
viding the above by the marginal probability, ai. Thus if G1 and G2

are the genotypes at the two loci, we have the following transition
probabilities.

PrðG2 ¼ j jG1 ¼ iÞ ¼ ai þ ð1� rÞnð1� aiÞ if i ¼ j
aj½1� ð1� rÞn� if i 6¼ j:

(
(3)

For a heterozygous population (such as HS or DO mice), an indi-
vidual will have two random such haplotypes. For homozygous
population (such as MAGIC), we treat them like doubled haploids,
by taking a single random chromosome and doubling it.

For the X chromosome, we use the same equations but replace
n with ð2=3Þn, since recombination occurs only in females, so in
2/3 of the X chromosomes. This provides a remarkably tight ap-
proximation.

You can potentially use the expected number of crossovers to
calibrate the number generations of random mating, or the map
expansion, which is the relative increase in the number of cross-
overs. Let R(r) be the chance that a random haplotype has an ex-
change of alleles across an interval with recombination fraction
r, so RðrÞ ¼ 1�

P
i pðnÞii . The map expansion is dR/dr evaluated at

r¼ 0 (see Teuscher and Broman 2007). Using Equation (2) above,
we then get that the map expansion in this population is
nð1�

P
a2

i Þ. In the special case that ai � 1=k for all i, this reduces
to nðk� 1Þ=k.

The map expansion at generation s in DO mice on an auto-
some is ð7=8Þðs� 1Þ þM1 where M1 is the weighted average of
map expansion in the pre-CC founders (Broman 2012b), or about
ð7sþ 37Þ=8. Equating this with ð7=8Þn, we can thus take n � sþ 5
when using this model to approximate the DO. For the CC,
Broman (2005) showed that R¼ 7r/(1þ 6r), and so the map expan-
sion is 7. Thus we can take n¼ 8 as the effective number of gener-
ations of random mating.

Applications
We illustrate our approach with application to datasets on DO
mice (Al-Barghouthi et al. 2021) and CC mice (Srivastava et al.
2017). In both cases, the approach provided results that were gen-
erally equivalent to those from the more exact model, though
with important differences in the results for the X chromosome
in the CC application.

DO mice
The DO mouse data of Al-Barghouthi et al. (2021) concerns a set
of 619 mice from DO generations 23–33, in 11 batches by genera-
tion and including 304 females and 315 males. The mice were
genotyped on the GigaMUGA array (Morgan et al. 2016) and the
cleaned data consist of genotypes at 109,427 markers. A wide va-
riety of phenotypes are available; we focus on the 20 contributing
to the results in Table 1 of Al-Barghouthi et al. (2021).

We performed genotype reconstruction using the transition
matrices derived specifically for DO mice (Broman et al. 2019b) as
well as by the approximate model proposed above. For the DO
mice at generation n, we used the transition probabilities for gen-
eral eight-way AIL at nþ 5.

Following Al-Barghouthi et al. (2021), we assumed a 0.2% geno-
typing error rate and used the Carter–Falconer map function
(Carter and Falconer 1951). Calculations were performed in R (R
Core Team 2021) with R/qtl2 (Broman et al. 2019a), on an 8-core
Linux laptop with 64 GB RAM. The calculations with the DO-
specific model took approximately 35 min, while those with the
general AIL model took 27 min, an almost 25% reduction in com-
putation time.

The transition probabilities used by the two models are only
subtly different and become less different in later generations.
The probability of an exchange across an interval on a random
DO chromosome, as a function of the recombination fraction for
the interval and the number of generations, is shown in Figure 2.

QTL analysis proceeded by the method described in Gatti et al.
(2014) and also used by Al-Barghouthi et al. (2021). Namely, we fit
a linear mixed model assuming an additive model for the founder
haplotypes, with a residual polygenic effect to account for rela-
tionships among individuals with kinship matrices calculated
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using the “leave-one-chromosome-out” method (see Yang et al.

2014), and with a set of fixed-effect covariates defined in Al-

Barghouthi et al. (2021).
The genotype probabilities were almost indistinguishable. The

maximum difference was 0.011 on the X chromosome followed

by a difference of 0.007 on chromosome 8. For that reason, the

QTL mapping results were hardly different. Across all 20 traits

considered, the maximum difference in LOD scores in the two

sets of results was 0.02.
The LOD curves by the two methods for tissue mineral density

(TMD) and the differences between them are shown in Figure 3.

The QTL on chromosomes 1 and 10 have LOD scores of 23.9 and

14.6, respectively, but the maximum difference in LOD, genome

wide, between the two methods is just 0.014.

CC mice
As a second application of our approach, we consider the data for

a set of 69 CC lines (Srivastava et al. 2017). These are eight-way

RIL derived from the same eight founders as the DO mice, as the

DO was formed from 144 partially inbred lines from the process

of developing the CC (Svenson et al. 2012).

Each CC line was formed from a separate “funnel,” bringing

the eight founder genomes together as rapidly as possible, for ex-

ample [(A�B)�(C�D)]�[(E� F)�(G�H)], where the female par-

ent is listed first in each cross. Inbreeding was accomplished by

repeated mating between siblings.
The recombination probabilities for the autosomes in the CC

do not depend on the order of the founders in the funnel for a

line (Broman 2005). This is in contrast with the case of eight-way

RIL by selfing (see Broman 2005, Table 2). For the X chromosome,

however, the cross order is important, as only five of the eight

founders can contribute. For example, in a line derived from the

cross [(A�B)�(C�D)]�[(E� F)�(G�H)], the single-locus genotype

probabilities on the X chromosome are 1/6 each for alleles A, B, E,

and F, and 1/3 for allele C, while alleles D, G, and H will be absent.

And note that the mitochondrial DNA will come from founder A,

while the Y chromosome will be from founder H.
The cross funnel information was missing for 14 of the 69 CC

lines. While the sources of the mitochondria and Y chromosome

were provided for all lines, there were several inconsistencies in

these data: line CC013/GeniUnc has the same founder listed as

the source for its mitochondria and Y chromosome, and for three

lines (CC031/GeniUnc, CC037/TauUnc, and CC056/GeniUnc) the
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Figure 2 Differences in transition probabilities for DO mice from more-exact calculations and the proposed approximations. Probability of an exchange
of alleles across an interval as a function of generation with the more-exact calculations (solid lines) and the proposed approximation (dashed lines) for
autosomes (A) and the X chromosome (B). Ratio of the probabilities (more-exact vs approximation) for autosomes (C) and the X chromosome (D).
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founder on the Y chromosome is also seen contributing to the X
chromosome. We used the genotype probabilities reported in
Srivastava et al. (2017) to construct compatible cross funnels,
with small modifications to handle the inconsistent information.

We performed genotype reconstruction using the transition
matrices derived specifically for CC mice (Broman 2005) as well
as by the approximate model proposed above, using n¼ 8 genera-
tions of random mating, chosen to match the expected frequency
of recombination breakpoints.

The resulting probabilities were nearly identical on all auto-
somes in all CC lines. The maximum difference in probabilities
on the autosomes was just 0.0006.

There were some important differences on the X chromosome,
however. There were no cases with high probability pointing to
different founder alleles by the two models, but there were sev-
eral cases where two or more founders cannot be distinguished,
but some would be excluded by the assumed cross design.

For example, in Figure 4, we show the genotype probabilities
along the X chromosome for strain CC038/GeniUnc, as calculated
with the more-exact model (Figure 4A) and with the approximate
model (Figure 4B). We also include the results for the case that

the more-exact model but when an incorrect cross design was
used (Figure 4C). Note the segment near 135 Mbp, which is in-
ferred to be from founder NOD with the more-exact model but is
equally likely B6 or NOD with the approximate model; the B6 and
NOD founder strains are identical in the region, but the assumed
cross design for the CC038/GeniUnc strain excluded B6. For the
results using the incorrect cross design (which excluded not just
B6 but also 129 and NOD), the results across the entire chromo-
some become a chopped-up mess, with an apparent 39 recombi-
nation breakpoints, vs 5 when the correct cross information is
used.

Overall, there were seven strains where the maximum differ-
ence in the probabilities from the more-exact model and the pro-
posed approximate model were in the range 0.25–0.50, and
another eight strains with maximum difference in the range
0.10–0.25. All of the differences concern cases where multiple
founders are identical for a region and either some would be ex-
cluded by the cross design, or where the difference in prior fre-
quencies affects the results. For example, in the cross
[(A�B)�(C�D)]�[(E� F)�(G�H)], the frequency of the C allele
on the X chromosome is twice that of A, B, E, and F.
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Figure 3 Genome scan for TMD for the DO mouse data from Al-Barghouthi et al. (2021). (A) LOD curves across the genome using the genotype
probabilities from the DO-specific model (solid blue curves) and the proposed general model (dotted pink curves). (B) Differences between the two sets of
LOD curves.
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Discussion
We have proposed an approximate model for use with genotype
reconstruction in MPPs. We derived the two-point probabilities
on autosomes in the case of random mating in large, discrete
generations, derived from a founder population of a set of inbred
lines in known proportions. We use the same frequencies for the
X chromosome, but with 2/3 the number of generations. The ap-
proach is shown to give equivalent results for the mouse DO and
CC populations, though with important differences for the X
chromosome in CC lines, where some founder alleles can be ex-
cluded based on the cross design. The more-exact model for the

X chromosome in the CC excludes three of the eight founders
based on the cross design. This is particularly useful in cases that
multiple founders are identical by descent across a region.
However, the approximate model is not affected by errors in the
specified cross design (see Figure 4).

The value of this generic model points toward the general use-
fulness of the original software for MPPs, HAPPY (Mott et al. 2000),
developed for the analysis of mouse HS. The results may depend
on marker density and informativeness, but with a dense set of
informative markers, a generic approach can provide good-
quality genome reconstructions.
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Figure 4 Genotype probabilities along the X chromosome for CC strain CC038/GeniUnc. (A) Results using the more-exact model that excludes founders
B6, CAST, and WSB. (B) Results using the proposed approximate model. (C) Results using the more-exact model but with the wrong cross information,
excluding founders B6, 129, and NOD.
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The HMM itself is an approximation. Meiosis generally exhib-

its positive crossover interference, but the Markov property is

closer to being correct in MPPs with multiple generations of mat-

ing, because nearby recombination events come from indepen-

dent generations. This was apparent in the three-point

probabilities derived by Haldane and Waddington (1931) for two-

way RIL and was further explored in Broman (2005) for multiway

RIL.
The proposed method has been implemented in the R/qtl2

software (Broman et al. 2019a). It requires specification of the

founder proportions and one other parameter (the number of

generations of random mating) which governs the frequency of

recombination breakpoints. The founder proportions should be

straightforward from the cross design; the effective number of

generations of random mating may require some calibration,

such as through computer simulation to match the expected fre-

quency of recombination breakpoints.

Data availability
The R/qtl2 software is available at the Comprehensive R Archive

Network (CRAN), https://cran.r-project.org/package¼qtl2, as well

as GitHub, https://github.com/rqtl/qtl2. Further documentation

is available at the R/qtl2 website, https://kbroman.org/qtl2.
The DO mouse data from Al-Barghouthi et al. (2021) are avail-

able at Zenodo, https://doi.org/10.5281/zenodo.4265417. Also see

their companion repository of analysis scripts at GitHub, https://

github.com/basel-maher/DO_project, and archived at Zenodo,

https://doi.org/10.5281/zenodo.4718146.
The CC mouse data from Srivastava et al. (2017) are available

at Zenodo, https://doi.org/10.5281/zenodo.377036. Reorganized

files in R/qtl2 format are at https://github.com/rqtl/qtl2data/tree/

main/CC.
Our detailed analysis code is available at GitHub, https://

github.com/kbroman/Paper_GenericHMM, and archived at

Zenodo, https://doi.org/10.5281/zenodo.5718739.

Acknowledgments
Two anonymous reviewers provided valuable comments for im-

provement of the manuscript.

Funding
This work was supported in part by the National Institutes of

Health grant R01GM070683.

Conflicts of interest
The author declares that there is no conflict of interest.

Literature cited
Al-Barghouthi BM, Mesner LD, Calabrese GM, Brooks D, Tommasini

SM, et al. 2021. Systems genetics in Diversity Outbred mice inform

BMD GWAS and identify determinants of bone strength. Nat

Commun. 12:3408.

Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, et al.

2013. Multi-parent advanced generation inter-cross (MAGIC) pop-

ulations in rice: progress and potential for genetics research and

breeding. Rice (N Y). 6:11.

Broman KW. 2005. The genomes of recombinant inbred lines.

Genetics. 169:1133–1146.

Broman KW. 2012a. Genotype probabilities at intermediate genera-

tions in the construction of recombinant inbred lines. Genetics.

190:403–412.

Broman KW. 2012b. Haplotype probabilities in advanced intercross

populations. G3 (Bethesda). 2:199–202.

Broman KW, Gatti DM, Simecek P, Furlotte NA, Prins P, et al. 2019a.

R/qtl2: software for mapping quantitative trait loci with

high-dimensional data and multiparent populations. Genetics.

211:495–502.

Broman KW, Gatti DM, Svenson KL, Sen �S, Churchill GA. 2019b.

Cleaning genotype data from Diversity Outbred mice. G3

(Bethesda). 9:1571–1579.

Broman KW, Sen S. 2009. A Guide to QTL Mapping with R/qtl. New

York: Springer.

Carter T, Falconer D. 1951. Stocks for detecting linkage in the mouse,

and the theory of their design. J Genet. 50:307–323.

Cavanagh C, Morell M, Mackay I, Powell W. 2008. From mutations to

MAGIC: resources for gene discovery, validation and delivery in

crop plants. Curr Opin Plant Biol. 11:215–221.

Churchill GA, Gatti DM, Munger SC, Svenson KL. 2012. The Diversity

Outbred mouse population. Mamm Genome. 23:713–718.

Complex Trait Consortium. 2004. The Collaborative Cross, a com-

munity resource for the genetic analysis of complex traits. Nat

Genet. 36:1133–1137.

de Koning D, McIntyre L. 2017. Back to the future: multiparent popu-

lations provide the key to unlocking the genetic basis of complex

traits. Genetics. 206:527–529.

Dell’Acqua M, Gatti DM, Pea G, Cattonaro F, Coppens F, et al. 2015.

Genetic properties of the MAGIC maize population: a new plat-

form for high definition QTL mapping in Zea mays. Genome Biol.

16:167.

Gatti DM, Svenson KL, Shabalin A, Wu L-Y, Valdar W, et al. 2014.

Quantitative trait locus mapping methods for Diversity Outbred

mice. G3 (Bethesda). 4:1623–1633.

Haldane JBS, Waddington CH. 1931. Inbreeding and linkage.

Genetics. 16:357–374.

Huang BE, George AW. 2011. R/mpmap: a computational platform

for the genetic analysis of multiparent recombinant inbred lines.

Bioinformatics. 27:727–729.

King EG, Merkes CM, McNeil CL, Hoofer SR, Sen S, et al. 2012. Genetic

dissection of a model complex trait using the Drosophila synthetic

population resource. Genome Res. 22:1558–1566.

Kover PX, Valdar W, Trakalo J, Scarcelli N, Ehrenreich IM, et al. 2009.

A multiparent advanced generation inter-cross to fine-map

quantitative traits in Arabidopsis thaliana. PLoS Genet. 5:e1000551.

Lincoln SE, Lander ES. 1992. Systematic detection of errors in genetic

linkage data. Genomics. 14:604–610.

Morgan AP, Fu C-P, Kao C-Y, Welsh CE, Didion JP, et al. 2016. The

Mouse Universal Genotyping Array: from substrains to subspe-

cies. G3 (Bethesda). 6:263–279.

Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. 2000. A method for

fine mapping quantitative trait loci in outbred animal stocks.

Proc Natl Acad Sci U S A. 97:12649–12654.

R Core Team. 2021. R: A Language and Environment for Statistical

Computing. Vienna: R Foundation for Statistical Computing.

Rabiner LR. 1989. A tutorial on hidden Markov models and selected

applications in speech recognition. Proc IEEE. 77:257–286.

Solberg Woods LC, Stelloh C, Regner KR, Schwabe T, Eisenhauer J,

et al. 2010. Heterogeneous stock rats: a new model to study the

genetics of renal phenotypes. Am J Physiol Renal Physiol. 298:

F1484–F1491.

K. W. Broman | 7

https://cran.r-project.org/package=qtl2
https://cran.r-project.org/package=qtl2
https://github.com/rqtl/qtl2
https://kbroman.org/qtl2
https://doi.org/10.5281/zenodo.4265417
https://github.com/basel-maher/DO_project
https://github.com/basel-maher/DO_project
https://doi.org/10.5281/zenodo.4718146
https://doi.org/10.5281/zenodo.377036
https://github.com/rqtl/qtl2data/tree/main/CC
https://github.com/rqtl/qtl2data/tree/main/CC
https://github.com/kbroman/Paper_GenericHMM
https://github.com/kbroman/Paper_GenericHMM
https://doi.org/10.5281/zenodo.5718739


Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, et al.

2017. Genomes of the mouse Collaborative Cross. Genetics. 206:

537–556.

Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, et al. 2012.

High-resolution genetic mapping using the mouse Diversity

Outbred population. Genetics. 190:437–447.

Teuscher F, Broman KW. 2007. Haplotype probabilities for

multiple-strain recombinant inbred lines. Genetics. 175:

1267–1274.

Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. 2014.

Advantages and pitfalls in the application of mixed-model asso-

ciation methods. Nat Genet. 46:100–106.

Zheng C, Boer MP, van Eeuwijk FA. 2015. Reconstruction of genome

ancestry blocks in multiparental populations. Genetics. 200:

1073–1087.

Zheng C, Boer MP, van Eeuwijk FA. 2018. Accurate genotype imputa-

tion in multiparental populations from low-coverage sequence.

Genetics. 210:71–82.

Communicating editor: R. W. Doerge

8 | G3, 2022, Vol. 12, No. 2


