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Abstract: Chemical compounds can be represented as attributed graphs. An attributed graph is
a mathematical model of an object composed of two types of representations: nodes and edges.
Nodes are individual components, and edges are relations between these components. In this case,
pharmacophore-type node descriptions are represented by nodes and chemical bounds by edges.
If we want to obtain the bioactivity dissimilarity between two chemical compounds, a distance
between attributed graphs can be used. The Graph Edit Distance allows computing this distance,
and it is defined as the cost of transforming one graph into another. Nevertheless, to define this
dissimilarity, the transformation cost must be properly tuned. The aim of this paper is to analyse
the structural-based screening methods to verify the quality of the Harper transformation costs
proposal and to present an algorithm to learn these transformation costs such that the bioactivity
dissimilarity is properly defined in a ligand-based virtual screening application. The goodness of the
dissimilarity is represented by the classification accuracy. Six publicly available datasets—CAPST,
DUD-E, GLL&GDD, NRLiSt-BDB, MUV and ULS-UDS—have been used to validate our methodology
and show that with our learned costs, we obtain the highest ratios in identifying the bioactivity
similarity in a structurally diverse group of molecules.

Keywords: virtual screening; molecular similarity; extended reduced graph; structure activity
relationships; machine learning; graph edit distance

1. Introduction

The high increase in chemical compounds data has created the need to develop
computational tools to reduce the drug synthesis and drug test cycle runtimes. When
activity data are analysed, these tools are required to generate new models for virtual
screening techniques [1–3]. In the drug discovery process, virtual screening is a common
step in which computational techniques are used to search and filter chemical compounds
in databases. Basically, there are two main types of methods in the virtual screening:
ligand-based virtual screening (LBVS) [4] and structure-based virtual screening (SBVS) [5].
In this work, we focus only in LBVS applications. The idea of the LBVS method is to predict
the unknown activity of new molecules [6] using the information about the known activity
of some molecules—specifically, their behaviour as ligands that bind to a receptor.

Some LBVS approaches are shape-based similarity [7], pharmacophore mapping [6],
fingerprint similarity and machine learning methods [8]. According to [9], structurally
similar molecules are presumed to have similar activity properties, then, in the context
of LBVS methods, the chosen molecular similarity metric is important because it can
determine the success of a virtual screening method to discover proper drug candidates.
Various similarity methods are used in several applications [10–14].

To compute molecular similarity, it is necessary to define a distance and define a
descriptor representing the molecule. Hundreds of molecular descriptors have been re-
ported in the literature [15]. For instance, one-dimensional descriptors include general
molecular properties, such as size, molecular weight, logP or dipole moment, or BCUT
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parameters [16–19]. Two-dimensional descriptors generate an array of representations of the
molecules by simplifying the atomic information within them, such as 2D fingerprints [20–22].
Finally, three-dimensional descriptors use 3D information, such as molecular
volume [23,24]. Other existing methods, instead of representing molecules by an N-
dimensional vector, use relational structures, such as trees [25] or graphs [26,27]. Regarding
the molecule representation by graphs, some methods represent compounds using reduced
graphs [28–31] and other ones, such as extended reduced graphs (ErGs) [28]. Reduced
graphs group atomic sub-structures that have related features, e.g., pharmacophoric fea-
tures, ring systems, hydrogen-bonding or others. Moreover, ErGs are an extension of
reduced graphs that introduce some changes to better represent shape, size and pharma-
cophoric properties of the molecules. The method presented in [28] has demonstrated its
use as a powerful tool for virtual screening.

To perform reduced graph comparisons, three different similarity measures have been
used: In [28,29,32], they map the reduced graphs into a 2D fingerprint. In [33], they map
reduced graphs into sets of shortest paths. Finally, in [34,35], they perform the comparison
on the graphs using the Graph Edit Distance (GED). GED considers the distance between
two graphs as the minimum cost of modifications required to transform one graph into
another. Each modification can be one of the following six operations: insertion, deletion
and substitution of both nodes and edges in the graph [36–38]. The main goal of this paper
is to present an algorithm that learns the edit costs in the GED to improve the classification
ratio returned by the system when the Harper costs were used.

In an initial paper [34], the edit costs were imposed and extracted from [33], given the
chemical expertise of the authors and considering the different node and edge types. Later,
in [35], authors presented an algorithm for optimising those edit costs based on minimising
the distance between correctly classified molecules and maximising the distance between
incorrectly classified molecules. That work was inspired in a similar one carried out by
Birchall et al. [39], in which the authors optimise the transformation costs of a String Edit
Distance method to compare molecules using reduced graphs.

The main problem of the algorithm in [35] was the huge computational cost, which
depends on the number of edit costs to be optimised. Thus, for practical reasons, in the
experimental section in [35], they presented four experiments, in which only one edit cost
was optimised in each experiment. They imposed the other costs (126 in total) to be the
ones defined in [33]. In contrast, starting from the costs defined by [33], our method learns
the whole edit costs of the GED to compare molecules with a lower computational cost
obtaining higher classification ratios in the ligand-based screening application, as shown in
the experimental section.

The outline of this paper is as follows. First, materials and methods are explained
in detail, including the datasets, the GED and the learning algorithm. Second, the results
of the practical experiments are described and discussed. Third and finally, a general
discussion about the method and the results is presented.

2. Materials and Methods
2.1. Datasets

In this study, we have used six available public datasets: ULS-UDS [40], GLL&GDD [41],
CAPST [42], DUD-E [43], NRLiSt-BDB [44] and MUV [45]. All these datasets had been
formatted and standardized by the LBVS benchmarking platform developed by Skoda and
Hoksza [46]. The datasets are composed of various groups of active and inactive molecules
arranged according to the purpose of a target. Each group is split in two halves, the test and
train sets, which are required when using machine learning methods. The train set is used
to optimize the transformation costs, and the test set is used to evaluate the classification
ratio. The targets of the datasets are shown in Table 1. In our experimentation, we have
taken a subset of the first 100 active molecules and 100 of the first inactive molecules per
target. Some datasets have less than 100 active molecules; in this case, all active molecules
are taken and also the same number of inactive molecules.
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Table 1. Datasets used for the experiments. Each dataset on the left contains the targets on the right.

Dataset Used Targets

CAPST CDK2, CHK1, PTP1B, UROKINASE

DUD-E COX2, DHFR, EGFR, FGFR1, FXA, P38, PDGFRB, SRC, AA2AR

GLL&GDD

5HT1A_Agonist, 5HT1A_Antagonist, 5HT1D_Agonist, 5HT1D_Antagonist,
5HT1F_Agonist, 5HT2A_Antagonist, 5HT2B_Antagonist, 5HT2C_Agonist,
5HT2C_Antagonist, 5HT4R_Agonist, 5HT4R_Antagonist, AA1R_Agonist,
AA1R_Antagonist, AA2AR_Antagonist, AA2BR_Antagonist, ACM1_Agonist,
ACM2_Antagonist, ACM3_Antagonist, ADA1A_Antagonist,
ADA1B_Antagonist, ADA1D_Antagonist, ADA2A_Agonist,
ADA2A_Antagonist, ADA2B_Agonist, ADA2B_Antagonist, ADA2C_Agonist,
ADA2C_Antagonist, ADRB1_Agonist, ADRB1_Antagonist, ADRB2_Agonist,
ADRB2_Antagonist, ADRB3_Agonist, ADRB3_Antagonist, AG2R_Antagonist,
BKRB1_Antagonist, BKRB2_Antagonist, CCKAR_Antagonist,
CLTR1_Antagonist, DRD1_Antagonist, DRD2_Agonist, DRD2_Antagonist,
DRD3_Antagonist, DRD4_Antagonist, EDNRA_Antagonist,
EDNRB_Antagonist, GASR_Antagonist, HRH2_Antagonist, HRH3_Antagonist,
LSHR_Antagonist, LT4R1_Antagonist, LT4R2_Antagonist, MTR1A_Agonist,
MTR1B_Agonist, MTR1L_Agonist, NK1R_Antagonist, NK2R_Antagonist,
NK3R_Antagonist, OPRD_Agonist, OPRK_Agonist, OPRM_Agonist,
OXYR_Antagonist, PE2R1_Antagonist, PE2R2_Antagonist, PE2R3_Antagonist,
PE2R4_Antagonist, TA2R_Antagonist, V1AR_Antagonist, V1BR_Antagonist,
V2R_Antagonist

MUV 466, 548, 600, 644, 652, 689, 692, 712, 713, 733, 737, 810, 832, 846, 852, 858, 859

NRLiSt_BDB

AR_Agonist, AR_Antagonist, ER_Alpha_Agonist, ER_Alpha_Antagonist,
ER_Beta_Agonist, FXR_Alpha_Agonist, GR_Agonist, GR_Antagonist,
LXR_Alpha_Agonist, LXR_Beta_Agonist, MR_Antagonist,
PPAR_Alpha_Agonist, PPAR_Beta_Agonist, PPAR_Gamma_Agonist,
PR_Agonist, PR_Antagonist, PXR_Agonist, RAR_Alpha_Agonist,
RAR_Beta_Agonist, RAR_Gamma_Agonist, RXR_Alpha_Agonist,
RXR_Alpha_Antagonist, RXR_Gamma_Agonist, VDR_Agonist

ULS-UDS 5HT1F_Agonist, MTR1B_Agonist, OPRM_Agonist, PE2R3_Antagonist

2.2. Molecular Representation

Reduced graphs are compact representations of chemical compounds, in which the
main information is condensed in feature nodes to give abstractions of the chemical
structures. Different versions of reduced graphs have been presented [26,28,30,32,33]
that depend on the features they summarise or the use that is given to them. In the virtual
screening context, the structures are reduced to track down features or sub-structures that
have the potential to interact with a specific receptor and, at the same time, try to keep
the topology and spatial distribution of those features. Figure 1 presents an example of
molecule reduction.

2.3. The Proposed Method

We explain our proposed method in the next three subsections. The first one explains
the classification of compounds based on structural information; in the second one, we
explain the learning algorithm; and in the third one, we detail the code of the algorithm.
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Figure 1. Example of molecule reduction using ErG. The original molecule is on the top and its ErG
representation is below. Elements of the same colour on the top are reduced to nodes on the ErG. R:
Ring system, Ac: Acyclic components.

2.3.1. Classification of Molecules

Once the molecules are represented as ErGs, we can compare them by means of
the Graph Edit Distance (GED) [47,48]. The GED is defined as the minimum cost of
transformations required to convert one graph into the other. Thus, in our application,
it is the cost to transform an ErG into the other one. These modifications are called edit
operations, and six of them have been defined: insertion, deletion and substitution of both
nodes and edges. To classify a molecule, we apply the Nearest Neighbour (NN) strategy
that consists of calculating the GED between this molecule and the other ones, which we
know their class, and predicting its class (active or inactive) to be the class of the nearest
molecule. In the case the molecule is equidistant from more than one classified molecule,
the method arbitrarily selects one of the closest molecules.

Edit costs have been introduced to quantitatively evaluate each edit operation. The aim
of the edit costs is to designate a coherent transformation penalty in proportion to the
extent to which it modifies the transformation sequence. For instance, when ErGs are
compared, it makes sense that the cost of substituting a “hydrogen-bond donor" feature
with a joint “hydrogen-bond donor-acceptor" feature be less heavily penalized than the cost
of substituting a “hydrogen-bond donor" feature with an “aromatic ring" system. Similarly,
inserting a single bond should have a lower penalization cost than inserting a double bond,
and so on. In a previous work [34], the edit costs proposed by Harper et al. [33] were used.
The node and edge descriptions are shown in Table 2, and the specific costs proposed by
Harper et al. are exposed in Tables 3 and 4.

The final edit cost for a given transformation sequence is obtained by adding up all
of the individual edition costs. Figure 2 shows a schematic example of a transformation
of a molecule G1 into another one, G2. As we can see, the executed operations in this
transformation are: a deletion of node type [1], a deletion of a simple edge, an insertion
of node type [5], an insertion of a simple edge a substitution of node type [7] by node of
type [2], and a substitution of a simple edge with a double edge. If we sum the values of
Harper costs associated with these operations in Tables 3 and 4, we obtain that the cost of
this transformation equals: 2 + 0 + 2 + 0 + 3 + 3 = 10.
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Table 2. Node and edge attributes description in an ErG.

Node Attributes

Attribute Description

[0] hydrogen-bond donor
[1] hydrogen-bond acceptor
[2] positive charge
[3] negative charge
[4] hydrophobic group
[5] aromatic ring system
[6] carbon link node
[7] non-carbon link node
[0, 1] hydrogen-bond donor + hydrogen-bond acceptor
[0, 2] hydrogen-bond donor + positive charge
[0, 3] hydrogen-bond donor + negative charge
[1, 2] hydrogen-bond acceptor + positive charge
[1, 3] hydrogen-bond acceptor + negative charge
[2, 3] positive charge + negative charge
[0, 1, 2] hydrogen-bond donor + hydrogen-bond acceptor + positive charge

Edge Attributes

Attribute Description

- single bond
= double bond
≡ triple bond

Figure 2. Transformation sequence from graph G1 to graph G2.

Since several transformation sequences can be applied to transform a graph into
another one, the GED resulting for any pair of graphs is defined as the minimum cost
under all those possible transformation sequences. Usually, the final distance is normalized
according to the number of nodes in both graphs being compared. This is performed in
order to make the measure independent of the size of the graphs.

More formally, we define the GED as follows,

GED(Ga, Gb, C1, . . . , Cn) = min
{Ni :i=1,...,n}

C1N1 + . . . + CnNn

L
(1)

where Ct is the imposed cost of the tth edit operation on nodes and edges, and Nt is
the number of times this edit operation has been applied. Moreover, the combination of
N1, N2, . . . is restricted to be one that transforms Ga into Gb. Finally, L is the sum of the
number of nodes of both graphs, and n is the number of different edit operations on nodes
and edges.

Several GED computational methods have been proposed during the last three
decades, they can be classified into two groups: those returning the exact value of the GED
in the exponential computational cost with respect to the number of nodes [49], and those
returning an approximation of the GED in the polynomial cost [50–53]. These two groups
of GED computational methods have been widely studied [54,55]. In our experiments,
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we used the fast bipartite graph matching method [50] (polynomial computational cost),
although our learning method is independent of the matching algorithm.

Table 3. Substitution, insertion and deletion costs for nodes proposed by Harper et al. [33].

Substitution Costs for Nodes

[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 2 2 2 2 2 2 3 1 1 1 2 2 2 1

[1] 2 0 2 2 2 2 2 3 1 2 2 1 1 2 1

[2] 2 2 0 2 2 2 2 3 2 1 2 1 2 1 1

[3] 2 2 2 0 2 2 2 3 2 2 1 2 1 1 2

[4] 2 2 2 2 0 2 2 3 2 2 2 2 2 2 2

[5] 2 2 2 2 2 0 2 3 2 2 2 2 2 2 2

[6] 2 2 2 2 2 2 0 3 2 2 2 2 2 2 2

[7] 3 3 3 3 3 3 3 0 3 3 3 3 3 3 3

[0, 1] 1 1 2 2 2 2 2 3 0 2 2 2 2 2 2

[0, 2] 1 2 1 2 2 2 2 3 2 0 2 2 2 2 2

[0, 3] 1 2 2 1 2 2 2 3 2 2 0 2 2 2 2

[1, 2] 2 1 1 2 2 2 2 3 2 2 2 0 2 2 2

[1, 3] 2 1 2 1 2 2 2 3 2 2 2 2 0 2 2

[2, 3] 2 2 1 1 2 2 2 3 2 2 2 2 2 0 2

[0, 1, 2] 1 1 1 2 2 2 2 3 2 2 2 2 2 2 0

Insertion/Deletion Costs for Nodes

[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2

delete 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2

Table 4. Substitution, insertion and deletion costs for edges proposed by Harper et al. [33].

Substitution Costs
For Edges

- = ≡

- 0 3 3

= 3 0 3

≡ 3 3 0

Insertion/Deletion Costs
For Edges

- = ≡
insert 0 1 1

delete 0 1 1

Initially, the edit costs were manually set in a trial and error process considering the
application at hand [33,34]. (As previously commented, Tables 3 and 4 show their edit
cost proposal.) Nevertheless, there has been a tendency to automatically learn these costs
since it has been seen that a proper tuning of them is crucial to achieve good classification
ratios in virtual screening [35] and other applications [56–60]. In [35], authors presented
a learning algorithm that is forced to learn only one edit cost at once due to runtime
restrictions. Thus, they perform four different experiments on the same data as [34] in
which they use all the costs of [34] except the one that is learned. These experiments are:
C1: Learning the deletion/insertion cost of the carbon link ([6]). C2: Learning the cost of
substituting a carbon link node ([6]) with an aromatic ring system ([5]). C3: Learning the
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insertion/deletion cost of the bond edge ([-]). C4: Learning the substitution cost between a
single bond edge ([-]) and a double bond edge ([=]). Table 5 shows their learnt costs.

Table 5. Costs obtained in [35]. Each row corresponds to one of their experiments.

Type of Cost CAPST DUD-E GLL&GDD MUV NRLiSt_BDB ULS-UDS

C1 Ins/Del [6] 0.000002 0.005 0.014 0.490 0.012 0.115
C2 Subs [5] by [6] 0.013 0.145 0.333 0.867 0.104 0.500
C3 Ins/Del [-] 0.004 0.001 0.003 0.327 0.003 0.011
C4 Subs [-] by [=] 0.017 0.186 0.206 1.005 0.024 0.607

The next section presents our method, which has the advantage of learning the whole
set of edit costs at once.

2.3.2. The Learning Method

We present an iterative algorithm, in which, in each iteration, the NN strategy is ap-
plied and the initial edit costs are modified such that one molecule that has been incorrectly
classified becomes correctly classified. Modifying the edit costs could cause other incor-
rectly classified molecules to also be properly classified, but, unfortunately, some other ones
that were properly classified become incorrectly classified. This is the reason why we want
to generate the minimum modification on the edit costs. To do so, the selected molecule is
the one that it is easier to move from the incorrectly classified ones to the correctly classified
ones. In the next paragraphs, our learning algorithm is explained in detail.

Let Gj be a molecule in the learning set that has been incorrectly classified using the
NN strategy and the current costs C1, . . . , Cn. We define Dj as the minimal GED between
Gj and all the molecules but restricted to be the ones that have a different class:

Dj = min
q

GED(Gj, Gq, C1, . . . , Cn) , where class(Gq) 6= class(Gj). (2)

Moreover, we define D′j as the minimal GED between Gj and all the molecules of the
learning set but restricted to be the ones that have the same class:

D′j = min
p

GED(Gj, Gp, C1, . . . , Cn), where class(Gp) = class(Gj) (3)

Since Gj is incorrectly classified, we can confirm that D′j > Dj. Figure 3 schematically
shows this situation. It turns out that Gj and Gq belong to different classes even though the
distance between them is smaller than the distance between Gj and its closest molecule
that has the same class, Gp.

Figure 3. Classification of molecule Gj. The true classes are in solid colours. Gj is classified in the
wrong class (blue), but the correct class is the red one. The distance between Gj and Gq is lower than
the distance between Gj and Gp.
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The main idea of our method is to permute D′j and Dj, modifying the edit costs.
With this exchange, we achieve a lower distance between Gj and the molecule of its same
class (Gp) than the distance between Gj and the molecule with different classes (Gq). Thus,
Gj will be correctly classified. However, considering that adapting these distances affects
all the molecules’ classifications, we select a molecule Gi among the incorrectly-classified
ones, {Gj|D′j > Dj, ∀Gj}, which satisfies that the difference of the distances D′j − Dj is the
minimum one, as shown in Equation (4). Note that in Equation (4), all the values of D′j −Dj

are always positive because D′j > Dj by definition of Gj.

Gi = arg min
{Gj |D′j>Dj}

(D′j − Dj) (4)

Figure 4 shows this idea. However, what is crucial to understand is that this modifi-
cation is performed in the distances since the molecule representations are not modified.
Furthermore, this is carried out by modifying the edit costs. Thus, the strategy is to define
the new edit costs such that D′i becomes Di and vice versa.

The rest of this section is devoted to explaining how to modify the edit costs.

Figure 4. Stripped molecules have been improperly classified using NN strategy. Gi is the one that
minimises D′j − Dj being D′j > Dj.

Considering Equation (1), the distance is composed of edit costs C1, . . . , Cn and the
number of times the specific edit operations have been taken N1, . . . , Nn. Our method
modifies the edit costs without altering the number of operations N1, . . . , Nn.

Thus, we define Di and D′i as follows:

Di =
C1N1 + . . . + CnNn

L

D′i =
C1N′1 + . . . + CnN′n

L′

(5)

Then, we exchange the distances Di and D′i and modify the edits costs by adding
new terms:

Di =
(C1 + α′1)N′1 + . . . + (Cn + α′n)N′n

L′

D′i =
(C1 + α1)N1 + . . . + (Cn + αn)Nn

L

(6)
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Note that these new terms α1, . . . , αn and also α′1, . . . , α′n are defined such that the new
value of Di is D′i instead of Di and vice versa. Moreover, the edit costs C1, . . . , Cn are the
same in both expressions. We proceed to explain below how to deduce the terms α1, . . . , αn
and also α′1, . . . , α′n.

From Equation (6), we obtain:

Di =
C1N′1 + . . . + CnN′n

L′
+

α′1N′1 + . . . + α′nN′n
L′

D′i =
C1N1 + . . . + CnNn

L
+

α1N1 + . . . + αnNn

L

(7)

We observe that the first terms in both expressions are D′j and Dj, respectively:

Di = D′i +
α′1N′1 + . . . + α′n′N

′
n

L′

D′i = Di +
α1N1 + . . . + αnNn

L

(8)

By regrouping the terms again, we have:

Di − D′i =
α′1N′1 + . . . + α′n′N

′
n

L′

D′i − Di =
α1N1 + . . . + αnNn

L

(9)

Furthermore, finally, we divide by Di − D′i and D′i − Di in each expression to arrive at
the following normalised expressions:

1 =
α′1N′1

(Di − D′i)L′
+ . . . +

α′nN′n
(Di − D′i)L′

1 =
α1N1

(D′i − Di)L
+ . . . +

αnNn

(D′i − Di)L

(10)

Note that, as commented in the definition of the GED, not all of the edit operations are
used to transform a molecule into another. These edit operations are the ones that Nt = 0
or N′t = 0. Because of this, in Equation (10), there are some addends that are null. We use
m and m′ to denote the number of edit operations that have been used, that is, the ones
that Nt 6= 0 or N′t 6= 0, respectively.

We want to deduce α1, α2, . . . and also α′1, α′2, . . . such that Equation (10) is fulfilled.
The easiest way is to impose that each non-null term in these expressions equal 1/m′ or
1/m, respectively. Then, we achieve the following expressions,

1/m′ =
α′tN′t

(Di − D′i)L′
being N′t > 0

1/m =
αtNt

(D′i − Di)L
being Nt > 0

(11)

From the previous expressions, we arrive at the definitions of αt that allow the mod-
ification from Di to D′i . Moreover, we also arrive at the definitions of α′t′ that allow the
modification from D′i to Di.

α′t =
(Di − D′i)L′

m′N′t′
, N′t > 0

αt =
(D′i − Di)L

mNt
, Nt > 0

(12)
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Note that considering Equations (5), (6) and (12), we have, on one hand, that the new
costs Ct = Ct + αt and, on the other hand, that Ct = Ct + α′t. Since it may happen that
αt 6= α′t, we assume the average option is the best choice when both weights are computed,

Ct =


Ct +

αt+α′t
2 , if Nt > 0 and N′t > 0

Ct + αt, if Nt > 0 and N′t = 0
Ct + α′t, if Nt = 0 and N′t > 0
Ct, if Nt = 0 and N′t = 0

(13)

In the next subsection, we present our algorithm.

2.3.3. Algorithm

Algorithm 1 consists of an iterative process in which, in each iteration, the edit costs
are updated to correct the classification of one selected molecule. The updated costs are
used in the next iteration to classify all the molecules again, select a molecule and modify
the costs again.

Algorithm 1 Costs learning.
Input (Learning Set, Initial edit costs, Max_Iter)
Output (Learnt edit costs)

1. Initialise:
iter = 1.
C1,. . . , Cn = Initial edit costs.
While iter ≤ Max_Iter:

2. Classify all molecules with nearest neighbour and GED (Equation (1)) using
C1, . . . , Cn.

3. Compute Dj and D′j: (Equations (2) and (3)) for all Gj incorrectly classified.
4. Deduce Gi (Equation (4)).
5. Compute αt, t = 1, . . . , m and α′t, t = 1, . . . , m′: (Equation (12)).
6. Compute C1,. . . , Cn (Equation (13)).
7. Update costs: Ct = Ct, t = 1, . . . , n.
8. iter = iter + 1.

End While

End Algorithm

This algorithm has been coded in Matlab, and it is available in https://deim.urv.cat/
~francesc.serratosa/SW/, accessed on 12 November 2021.

3. Results

Table 6 shows the classification ratios obtained in each dataset using different edit cost
configurations, algorithms and initialisations. The first row corresponds to the accuracies
obtained with the costs proposed by Harper [33], the second row corresponds to the
accuracies deduced by setting all the costs to 1 (no learning algorithm). The next four rows
correspond to the accuracies obtained using the costs deduced in García et al. [35] in their
four experiments (C1, C2, C3 and C4). Finally, the last two rows present the accuracies
obtained by our method: the first row by initialising the algorithm by the Harper costs and
the second one by initialising all the costs to 1. We note the used costs are the mean of the
learned costs in all the databases, and our algorithm performed 50 iterations.

https://deim.urv.cat/~francesc.serratosa/SW/
https://deim.urv.cat/~francesc.serratosa/SW/


Int. J. Mol. Sci. 2021, 22, 12751 11 of 16

Table 6. Accuracy (%) obtained in each dataset. In bold, the highest ones. The last column shows the
mean accuracy.

CAPST DUD-E GLL&GDD MUV NRLiSt_BDB ULS-UDS Mean

Harper 93.75 95.88 85.68 92.76 93.17 96.10 92.89

1s 92.93 91.25 93.03 56.01 94.75 92.94 86.82

C1 89.25 92.63 82.47 86.06 88.58 89.65 88.11

C2 89.75 91.13 82.51 87.35 88.21 91.69 88.44

C3 91.25 91.25 83.25 86.65 87.75 92.34 88.75

C4 89.50 90.88 82.43 86.00 89.92 92.59 88.55

Our method 95.85 96.38 93.67 88.63 95.90 94.00 94.07(Harper init.)

Our method 88.15 93.50 93.30 61.76 94.98 95.25 87.82(1s init.)

We realise that in all the datasets, except for MUV and ULS-UDS, our costs with
Harper initialisation obtained the highest classification ratios. In these two datasets, the best
accuracy is obtained by Harper costs. Note that our method initialised by all-ones costs
returns lower accuracies than our method initialised by Harper costs, except for the ULS-
UDS dataset. This behaviour makes us think that the initialisation point is very important
in this type of algorithm. Another highlight is that we have achieved better accuracies than
the four experiments presented by García et al. [35] in all the tests. In the ULS-UDS dataset,
our method returns close accuracy to the Harper costs. Nevertheless, that is not the case
for MUV dataset. To deeply analyse this behaviour, we have computed the accuracy using
the costs learned by only the MUV targets. In this case, the accuracy is 64.9%, which is
significantly lower than using mean costs. This is not the normal behaviour in learning
algorithms since while conducting specific learning, the classification ratio tends to increase.
We think there are other reasons for this abnormal behaviour: one could be the small size
of this dataset and the other the separability between ligands and decoys in MUV is low,
which makes our algorithm not to converge to a proper solution.

In Figure 5, we present the classification ratio obtained in the 127 targets in the six
datasets. At a glance, we realise that our method achieves most of the highest accuracies in
all the targets in CAPST, DUD-E, GLL&GDD and NRLiSt-BDB databases. Specifically, we
point out targets from 19 to 31 in the GLL&GDD dataset where the other cost combinations
have very low accuracies while our method achieves much higher results. We observe that
targets in the datasets MUV and ULS-UDS, in which our method does not return the highest
accuracies, have a high variability because the same costs produce very different results.

Note that in [35], authors computed a cost per each of the six datasets and each target.
Conversely, we learn the edit costs given the six datasets at once. In general, using several
datasets at once makes the learnt parameters less specific for the application at hand, and
thus, the classification ratios tend to decrease. In spite of this possible disadvantage, our
method returns better classification ratios than the one in [35] in all the datasets.

Figure 6 shows the percentage of times that each cost configuration obtains the highest
classification ratio taking into account all the 127 targets, given the four configurations
proposed in [35], one configuration proposed in [33] and our deduced configuration. Our
method obtains the best classification ratio the highest number of times.
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Figure 5. Classification ratio in the test set over the 127 targets available in the six datasets. The horizontal axis represents
the index of the targets presented in Table 1.
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Figure 6. Percentage of times that each set of costs returns the best classification ratio.

Tables 7 and 8 show our learned edition costs for nodes and edges, respectively. In red
and bold are the ones that are different to the ones proposed by Harper et al. [33]. As we
can see, the results are very similar to Harper costs because we introduce a very small
modification in each step. In addition, there are many costs that have not been modified.
This is because these costs were not involved in the modifications of molecules that are
improperly classified, minimising D′i − Di.

Table 7. Substitution, insertion and deletion costs of nodes obtained with our method. In bold, the ones that are different
from Tables 3 and 4.

Substitution Costs for Nodes

[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

[0] 0 1.99 2.02 2.00 1.99 2.04 2.05 3.00 1.06 0.99 1.00 2.00 2.00 2.00 0.97

[1] 1.99 0 2.00 2.00 1.98 1.99 1.96 3.00 1.02 1.99 2.00 1.02 1.00 2.00 1.04

[2] 2.02 2.00 0 2.00 2.00 2.00 1.99 3.00 2.00 0.99 2.00 1.00 2.00 1.00 0.98

[3] 2.00 2.00 2.00 0 2.00 2.00 2.05 3.00 1.99 2.00 1.00 2.00 1.00 1.00 2.00

[4] 1.99 1.98 2.00 2.00 0 1.99 2.01 3.00 2.01 2.01 2.00 2.00 2.00 2.00 2.00

[5] 2.04 1.99 2.00 2.00 1.99 0 1.99 3.00 1.96 1.96 2.00 2.00 2.00 2.00 2.02

[6] 2.05 1.96 1.99 2.05 2.01 1.99 0 3.00 2.00 2.01 2.00 2.00 2.00 2.00 1.98

[7] 3.00 3.00 3.00 3.00 3.00 3.00 3.00 0 3.00 3.00 3.00 3.00 3.00 3.00 3.00

[0, 1] 1.06 1.02 2.00 1.99 2.01 1.96 2.00 3.00 0 2.02 2.00 2.00 2.00 2.00 2.01

[0, 2] 0.99 1.99 0.99 2.00 2.01 1.96 2.01 3.00 2.02 0 2.00 2.00 2.00 2.00 2.00

[0, 3] 1.00 2.00 2.00 1.00 2.00 2.00 2.00 3.00 2.00 2.00 0 2.00 2.00 2.00 2.00

[1, 2] 2.00 1.02 1.00 2.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00 0 2.00 2.00 2.00

[1, 3] 2.00 1.00 2.00 1.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00 2.00 0 2.00 2.00

[2, 3] 2.00 2.00 1.00 1.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00 2.00 2.00 0 2.00

[0, 1, 2] 0.97 1.04 0.98 2.00 2.00 2.02 1.98 3.00 2.01 2.00 2.00 2.00 2.00 2.00 0

Insertion/Deletion Costs for Nodes

[0] [1] [2] [3] [4] [5] [6] [7] [0, 1] [0, 2] [0, 3] [1, 2] [1, 3] [2, 3] [0, 1, 2]

insert 1.95 1.98 2.00 2.00 1.99 1.89 0.97 1.00 2.03 2.02 2.00 1.99 2.00 2.00 1.96

delete 1.95 1.98 2.00 2.00 1.99 1.89 0.97 1.00 2.03 2.02 2.00 1.99 2.00 2.00 1.96
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Table 8. Substitution, insertion and deletion costs of edges obtained with our method.

Substitution Costs
For Edges

- = ≡
- 0 3.00 3.00

= 3.00 0 3.00

≡ 3.00 3.00 0

Insertion/Deletion Costs
For Edges

- = ≡
insert 0 1.02 1.00

delete 0 1.02 1.00

4. Discussion

We present an iterative algorithm such that, in each iteration, the current costs are
modified to properly classify an improperly classified molecule. While updating the costs,
other improperly classified molecules could also be properly classified and vice versa.
This is the reason why we cannot guarantee the algorithm’s convergence. To reduce the
no-convergence impact and the possible solution oscillation, the algorithm selects the
molecule that requires the minimum modification of the costs with the aim of slightly
moving to the best solution.

The algorithm requires some initial costs. We have initialised the algorithm by some
aleatory costs and by the costs proposed by Harper [33]. In all the tests, the highest
accuracies appeared while initialising the costs by the Harper proposal. We believe this
behaviour appears because the optimisation function of the learning algorithm is highly
non-convex. Generally, in these situations, the selected initialisation has a high impact on
the solution. Finally, we have seen that the classification accuracy is highly dependent on
the edit costs. That is, a slight modification of one of the costs could make the classification
be completely different. Considering that the computational cost of this learning problem
is extremely high, sub-optimal algorithms, as the one presented, are needed to achieve an
acceptable classification accuracy. Thus, any proposal that achieves better classification
ratios would have to be considered and analysed.

5. Conclusions and Future Research

In some ligand-based virtual screening (LBVS) methods, molecules are represented by
extended reduced graphs. In this case, the Graph Edit Distance can be used to compute the
dissimilarity between molecules.

In this article, we have presented a new method that automatically learns the edit costs
in the Graph Edit Distance. In each iteration, our method introduces slight modifications in
the current costs to correct the classification of a selected molecule that had been incorrectly
classified in the previous step.

The obtained costs have been tested in six publicly available datasets and have been
compared to previous works published in [34,35]. We achieve better classification ratios
than [35] in the six datasets and better classification ratios than [34] in four of them.

In the experimental section, we realised that small modifications in the costs could
produce considerable improvement in the classification ratio.

In future work, we will analyse which types of molecules cause the algorithm to
converge and which are the best initial values to obtain higher classification accuracy.
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