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Follicular lymphoma
Follicular lymphoma (FL) is the most common 
indolent lymphoma and the second most com-
mon lymphoma overall, with about 16,000 new 
diagnoses per year in the United States.1 Over the 
past 3 decades, the overall survival of patients 
with FL has improved, from an average of 6 years 
to more than 20 years.2 This is mainly due to the 
introduction of the monoclonal anti-CD20 anti-
body rituximab, in addition to an improvement in 
diagnostic tools and supportive care. Long-term 
follow-up of three large prospective trials, 
SWOG-S0016, PRIMA and FOLL05, in patients 
with advanced-stage FL presenting with a high 
tumor-burden showed that standard immuno-
chemotherapy can achieve a median progression 
free survival (PFS) close to 10 years.3–5

In addition, several new drugs have been approved 
for patients with FL in the past decade, including the 
new anti-CD20 antibody obinutuzumab, four phos-
phoinositide 3-kinase (PI3K) inhibitors (idelalisib, 
copanlisib, duvelisib, and umbralisib), and lenalido-
mide (in combination with rituximab). Most recently 
in the United States, the chimeric antigen receptor 
(CAR) T-cell therapy, axicabtagene ciloleucel, has 

also been approved.6–11 While a significant subset of 
patients achieve long-term remission after respond-
ing to upfront therapy, many patients will experience 
disease progression and require further treatment.12 
A detailed understanding of the underlying pathobi-
ology of the disease and a rational targeted drug 
development approach is crucial for ongoing pro-
gress in the management of patients with this 
disease.

The pathobiology of follicular lymphoma
FL is a mature B-cell neoplasm that arises from 
germinal center (GC) B-cells via a multistep pro-
cess.12 The hallmark of FL is the acquisition of 
the t(14;18)(q32;q21) translocation, which is 
thought to be an early event and which is present 
in approximately 90% of patients.13 This usually 
places the B-cell lymphoma 2 (BCL2) gene under 
the transcriptional control of a immunoglobulin 
heavy chain (IGH) gene promoter. This results in 
the constitutive expression of the anti-apoptotic 
protein BCL-2.14,15 It has been found that this 
genetic alteration is not, however, sufficient for 
lymphomagenesis; is also detectable in otherwise 
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healthy individuals.16 While the majority of said 
individuals will not develop FL, a small subset 
with a high frequency of the t(14;18)(q32;q21) 
translocation may be at increased risk.17

Using next generation sequencing, it has been 
revealed that mutations in histone modifying 
genes are present in the vast majority of FL sam-
ples; further experimental work has demonstrated 
their crucial role in the pathogenesis of FL.18

Morin and colleagues found mutations in the his-
tone methyltransferase MLL2 [also known as his-
tone-lysine N-methyltransferase 2D (KMT2D)], 
which play an important role in GC B-cell devel-
opment, which is present in approximately 90% of 
patients with FL.19,20 Other, frequently mutated 
genes include the acetyltransferases CREB-
binding protein (CREBBP) and histone acetyl-
transferase p300 (EP300). The methyltransferase 
enhancer of zester homologue 2 (EZH2) is also 
affected. All of these proteins are involved in cata-
lyzing posttranslational modifications of his-
tones.19,21 In general, many of these mutations 
lead to a more closed chromatin, with repression 
of transcription. This thereby favors the accumu-
lation of aberrant B-cells in GCs.

The role of EZH2 in normal and malignant 
B-cells and their microenvironments
EZH2 was one of the first mutated histone modifier 
genes to be identified in in FL; it is present in up to 
25% of cases.19 The EZH2 enzyme is the catalytic 
subunit of the chromatin remodeling Polycomb 
Repressive Complex 2 (PRC2); as a result, it con-
tributes to the silencing of gene transcription by 
mono-, di- and tri-methylating histone H3 at the 
lysine 27 residue (H3K27me3).22 EZH2 is highly 
expressed in lymphoid progenitors and its knock-
out results in profound defects in immunoglobulin 
heavy chain rearrangement and lymphopoiesis.23 
EZH2 is expressed at a low level in non-stimulated 
B-cells; however, these levels are higher in GC 
B-cells.24 GC formation is partly accomplished by 
the EZH2-mediated silencing of cell-cycle check-
point genes such as cyclin-dependent kinase inhibi-
tor 1a (CDKN1A) and the repression of genes 
responsible for plasma cell differentiation, such as 
interferon regulatory factor 4 (IRF4) and PR 
domain zinc finger protein 1 (PRDM1).25 As a 
result, EZH2 expression and activity are tightly 
regulated during normal B-cell maturation in GCs.

The role of EZH2 in GC-derived B-cell malig-
nancies has been revealed over the last decade. 
It was first demonstrated in experimental and 
animal models that overexpression of EZH2 
results in GC hyperplasia and, in combination 
with BCL2 overexpression, can lead to lympho-
magenesis.25,26 The most frequent EZH2 muta-
tion (in ~25% of cases) in human lymphoma 
affects the tyrosine Y641 residue located within 
the catalytic SET domain of EZH2. It is an acti-
vating mutation, facilitating the conversion of 
mono-methylated to di- and tri-methylated 
H3K27.27,28 In addition, activating mutations 
involving EZH2 have been described. These 
include A687, A677, A682, and A692, with var-
iant allele frequencies (VAF) ranging from 2% 
to 61%, with the Y641 mutation found in 25% 
of FL cases.29,30 Other genetic alterations lead-
ing to EZH2 hyperexpression have also been 
described.31

Of note, Y641-mutated EZH2 alone is unable to 
monomethylate H3K27; it requires the heterozy-
gous wilt type allele to exert its pathogenic func-
tions.27,28 Therefore, it is not surprising that 
malignant GC B-cells also require EZH2 wild-
type function in order to maintain cell prolifera-
tion and survival.25,32,33

Additional steps are required for the development 
of FL. The role of the tumor microenvironment is 
increasingly appreciated in lymphomagenesis. FL 
cells rely on the expression of surface immuno-
globulins with a positive selection of motifs. This 
facilitates the addition of glycan into antigen-
binding sites and the placement of mannoses to 
engage the microenvironment.34 T-follicular 
helper cells (TFHs) and follicular dendritic cells 
(FDCs) also play crucial roles; they facilitate inter-
actions between surface receptors such as induci-
ble costimulatory (ICOS) and ICOS ligand, the 
major histocompatibility complex (MHC), the 
T-cell receptor (TCR), B-cell-activating factor 
(BAFF), and the BAFF-receptor.

EZH2 was recently found to profoundly modu-
late the B-cell tumor microenvironment.35 
Activating mutation of EZH2 leads to a decreased 
dependence on TFHs. It also results in the for-
mation of an aberrant immunological niche which 
may constitute an early step in the development 
of FL.36 It should be noted that EZH2 is also 
expressed in T cells, playing an important role in 
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the differentiation, lineage maintenance, and 
anti-tumor activity of these cells.37

Clearly, EZH2 plays a crucial role in FL biology 
by blocking the exit of B cells from GCs and by 
remodeling their environment. Genetic altera-
tions of its gene increase the EZH2-dependency 
of tumor cells.

The prognostic effect of EZH2 in FL
Given its important biological function in FL, 
EZH2 has also been investigated for its prognostic 
effect. EZH2 has been incorporated into the m7-FL 
international prognostic index (m7-FLIPI), which 
combines clinical parameters with biological infor-
mation, that is, the mutational status of 7 genes 
[EZH2, AT-rich interactive domain-containing 
protein 1a (ARID1A), myocyte enhancer binding 
factor 2B (MEF2B), EP300, forkhead box protein 
O1 (FOXO1), CREBBP, and caspase recruitment 
domain-containing protein 11 (CARD11)].38

While the m7-FLIPI score still needs to be vali-
dated prospectively, mutations in the EZH2 gene 
appear to be associated with a favorable outcome 
in several studies.31,39

The pre-clinical efficacy of tazemetostat
Given the extensive data demonstrating the 
importance of EZH2 in the development of FL, 
selective inhibitors have been an area of signifi-
cant focus.40–42 A lead compound, EPZ-6438 
(tazemetostat), selectively inhibits intracellular 
lysine 27 of histone H3 (H3K27) methylation in 
both EZH2 wild-type and mutant lymphoma 
cells. This leads to selective cell-killing, especially 
in cell lines bearing point mutations in the EZH2 
catalytic domain.43 The treatment of EZH2-
mutant non-Hodgkin’s lymphoma (NHL) xeno-
graft mice with this compound caused tumor 
growth inhibition, including complete and sus-
tained tumor regressions with a concordant 
decrease in H3K27Me3 levels. While Beguelin 
and colleagues found that GC-derived DLBCLs 
are addicted to EZH2, independent of its muta-
tional state, data by Knudson et al. suggests that 
EZH2 inhibition may only be cytotoxic in EZH-
mutated lymphoma cell lines and cytostatic in 
those that are EZH2 wild-type.25,43 These results 
may reflect differences in the experimental design, 

including the use of different EZH2-inhibitors 
with likely differential target effects.

The clinical efficacy of tazemetostat
The pre-clinical studies mentioned thus far laid 
the foundation for the first in-human, open-label, 
phase I study of tazemetostat in patients with 
relapsed or refractory B-cell NHL and advanced 
solid tumours [ClinialTrials.gov identifier: 
NCT01897571]. In this study, 64 patients (21 
with B-cell NHL, and 43 with advanced solid 
tumors) underwent treatment with tazemeto-
stat.44 The most common treatment-related 
adverse events (AEs) were asthenia (33%), ane-
mia (14%), anorexia (6%), muscle spasms (14%), 
nausea (20%), and emesis (9%), which were 
mostly grade 1 or 2 in severity. A single dose-lim-
iting toxicity of grade 4 thrombocytopenia was 
identified at the highest dose of 1600 mg twice 
daily, but no treatment-related deaths occurred. 
Grade 3 or worse treatment-related treatment-
emergent AEs were uncommon and limited to 
thrombocytopenia and neutropenia in two 
patients, respectively, and hypertension and 
transaminase/bilirubin elevation in one patient 
each. The recommended phase II dose was deter-
mined to be 800 mg twice daily, based on the 
evaluation of AEs, pharmacokinetics, and clinical 
efficacy. Interestingly, the study showed a down-
regulation of H3K27m3 in the skin biopsies of 
treated patients, supporting the on-target effect of 
the drug.

Durable objective responses, including complete 
responses, were observed in eight (38%) of 21 
patients with B-cell NHL and two (5%) of 43 
patients with solid tumors. The three patients 
with B-cell NHL who achieved a complete 
response had durable responses and continued on 
treatment for over 2 years.

This study formed the basis for the subsequent 
registrational multicenter, single-arm phase II 
trial in patients with relapsed/refractory FL 
[ClinicalTrials.gov identifier: NCT01897571]. A 
total of 99 patients were enrolled in the study: 45 
in the EZH2mut cohort and 54 in the EZH2WT 
cohort. The primary endpoint was objective 
response rate, as determined by the 2007 
International Working Group criteria for NHL.45 
Secondary endpoints were the duration of 

https://journals.sagepub.com/home/tah


Therapeutic Advances in Hematology 12

4	 journals.sagepub.com/home/tah

response and PFS, as well as safety and 
tolerability.

The median follow-up was 22 months [interquar-
tile range (IQR) 12–27] for the EZH2mut cohort 
and 36 months (25–41) for the EZH2WT cohort. 
The objective response rate was 69% [95% confi-
dence interval (CI) 53–82; 31 of 45 patients] in 
the EZH2mut cohort and 35% (23–49) in the 
EZH2WT cohort. This included complete 
responses in 13% (6) of patients in the EZH2mut 
cohort and 4% (2) of patients in the EZH2WT 
cohort. The median time to first response was 
3.7 months in both the EZH2mut and the EZH2WT 
cohorts. The median duration of response was 
11 months (95% CI 7–not estimable [NE]) in the 
EZH2mut cohort and 13 months (6–NE) in the 
EZH2WT cohort. The median PFS was respec-
tively 14 months (11–22) and 11 months (4–15). 
Responses were observed across previously estab-
lished adverse subgroups, including in patients 
with bulky disease, with refractory disease or early 
relapse. This suggests that this targeted therapy 
may partially overcome some of these risk 
factors.

It should be noted, that while both the overall and 
the complete response rates have been as expected 
markedly higher in the EZH2mut cohort compared 
with the EZH2WT cohort, the duration of response 
and the PFS were surprisingly similar. This sug-
gests that tazemetostat activity on this epigenetic 
pathway may impair the FL cells survival, even in 
the absence of an EZH2 mutation and/or that 
other effects of this drug on the B-cell microenvi-
ronment might have clinical relevance.

Among all 99 patients, treatment-related grade 3 
or worse AEs included thrombocytopenia and 
neutropenia in 3%, respectively, and anemia in 
2%. Serious treatment-related AEs were reported 
in 4% of 99 patients and included neutropenia, 
pancytopenia, and transient global amnesia in 
one patient each, and arrhythmia and myelodys-
plastic syndrome in one patient. There were no 
treatment-related deaths. Dose reductions 
occurred in 9% of patients, while dose interrup-
tions occurred in 27% of the patients. Eight (8%) 
patients discontinued tazemetostat because of a 
treatment-emergent AE, five (5%) of which were 
deemed to be treatment related. There were eight 
deaths in the EZH2mut cohort and 21 in the 

EZH2WT cohort; median overall survival was not 
reached in either cohort.

These results formed the basis for the acceler-
ated approval by the United States Federal 
Drug Agency (FDA) in June 2020, for the use of 
tazemetostat in the treatment of adult patients 
with relapsed or refractory FL. These patients 
must have received a least two lines of prior 
therapy and have tumors that carry an EZH2 
mutation (documented with an FDA-approved 
test). The treatment was also approved for those 
patients with relapsed or refractory FL who 
have no satisfactory alternative treatment 
options, independent of their EZH2 mutation 
status.

A variety of other EZH-2 inhibitors have been 
evaluated and are at various stages of early devel-
opment in patients with lymphoma or solid 
tumors (see Table 1). Of these, the EZH1/2 dual 
inhibitor valemetostat appears to be the furthest 
along in its development; it has demonstrated 
activity on a broad range of lymphomas, includ-
ing peripheral T-cell lymphomas.46 A phase I 
study of the intravenously administered, highly 
selective EZH2 inhibitor GSK2816126 was con-
ducted with 41 patients with solid tumors or 
B-cell lymphomas. While the authors were able to 
establish a maximum tolerated dose, the relatively 
short half-life limited effective exposure, resulting 
in a very modest anticancer activity and early clo-
sure of the study.47

DLBCL, diffuse large B-cell lymphoma; EZH1/2, 
enhancer of zester homolog 1/2; FDA, US Food 
and Drug Administration; FL, follicular lym-
phoma; NHL, non-Hodgkin’s lymphoma; RR, 
relapsed/refractory.

Although most of the therapeutic approaches 
evolve around EZH2 enzymatic inhibition, 
recently, MS1943, an EZH2 degrader, has been 
identified with promising preclinical activity.48

Given the excellent tolerability of tazemetostat, 
combinatorial strategies are being pursued, both 
in newly-diagnosed and in relapsed FL and dif-
fuse large B-cell lymphoma (DLBCL) (Table 2). 
The results of the dose escalation phase of the 
phase Ib tazemetostat plus rituximab, cyclophos-
phamide, doxorubicin, and vincristine (R-CHOP) 
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combination in patients 60–80 years of age with 
newly diagnosed DLBCL have been published 
and a recommended phase II dose of tazemeto-
stat 800 mg twice daily has been established.49

Conclusion and future directions
The approval of tazemetostat is a noteworthy 
example of ‘bench-to-bedside’ project built on 
the collaboration between academic centers 

Table 1.  Selection of ongoing and completed clinical trials with different EZH2-inhibitors being evaluated in 
patients with lymphoma.

EZH2-inhibitor ClinicalTrials.gov 
identifier

Clinical phase Histology Comments

Tazemetostat NCT01897571 Phase I/II Advanced Solid and B-cell 
NHL (phase I)
FL and DLBCL (phase II)

FDA approved for 
RR EZH2m FL 
and epithelioid 
sarcoma

GSK2816126 NCT02082977 Phase I FL, DLBCL, and other 
advanced malignancies

Terminated due to 
lack of efficacy47

Valemetostat NCT02732275
NCT04102150

Phase I
Phase II

Different NHL in phase 
I; adult T-cell leukemia/
lymphoma in phase II

EZH1/2 inhibitor; 
active in B- and 
T-cell lymphoma

CPI-1205 NCT02395601 Phase I RR B-cell Lymphoma Pending results

CPI-0209 NCT04104776 Phase I/II Advanced malignancies 
including lymphoma

Monotherapy and 
with irinotecan; 
results pending

SHR2554 NCT03603951 Phase I RR B-cell lymphoma Results pending

PF-06821497 NCT03460977 Phase I/II FL, DLBCL, and solid 
tumors

Results pending

DLBCL, diffuse large B-cell lymphoma; EZH1/2, enhancer of zester homolog 1/2; FDA, US Food and Drug Administration; 
FL, follicular lymphoma; NHL, non-Hodgkin’s lymphoma; RR, relapsed/refractory.

Table 2.  Combinatorial approaches with tazemetostat in patients with lymphoma.

EZH2-inhibitor
combinations

ClinicalTrials.gov 
identifier

Clinical phase Enrolled 
patients

Histology Comments

T-RCHOP NCT02889523 Phase I/II 172 Newly diagnosed 
FL and DLBCL

The only current 
upfront study49

Tazemetostat + rituximab +  
lenalidomide/placebo

NCT04224493 Phase I–III 518 RR FL Ongoing, randomized, 
double-blind, 
placebo controlled 
multicenter, 
international

Tazemetostat + rituximab NCT04590820 Phase II 44 RR FL Ongoing, multicenter

Atezolizumab + obinutuzumab  
or tazemetostat

NCT02220842 Phase Ib 96 RR DLBCL Terminated due to 
lack of efficacy

DLBCL, diffuse large B-cell lymphoma; EZH2, enhancer of zester homolog 2; FL, follicular lymphoma; RR, relapsed/refractory; T-RCHOP, 
tazemetostat + rituximab, cyclophosphamide, doxorubicin and vincristine.
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around the world and a pharmaceutical com-
pany. While the results are remarkable, particu-
larly in the double-refractory FL patients (defined 
as not responding or having relapsed after rituxi-
mab and alkylating agent containing therapy), no 
plateau is observed in the PFS curves. This 
underscores the fact that FL is characterized by a 
complex interplay composed of the tumor micro-
environment as well as genetic and epigenetic 
heterogeneity.50

The observed tolerability of single-agent tazeme-
tostat lends itself to combinatorial approaches 
with other immune-modulatory compounds. 
This is currently pursued in the double-blind, 
placebo-controlled phase III study of lenalido-
mide, rituximab plus or minus tazemetostat for 
patients with relapsed FL. Given its tolerability, 
other combinatorial approaches can be envi-
sioned in lymphomas of GC origin, both in the 
relapsed and in the upfront setting. Because of its 
effect on the tumor microenvironment, combina-
torial approaches with checkpoint inhibitors, bi-
specific T-cell engagers or even CAR T-cell 
therapy could be considered.

While chemo-immunotherapy remains the 
standard for patients with newly-diagnosed 
advanced-stage FL, newer approaches with dis-
tinct toxicity profiles offer promise and may ulti-
mately replace current approaches. We envision 
that this will occur in a biomarker-driven fash-
ion; likely composed of combinatorial strategies 
to accomplish deeper and more durable 
responses.

To summarize, tazemetostat is another important 
addition to the armamentarium for the treatment 
of patients with relapsed FL; it is likely to contrib-
ute to the already-improving trajectory of the 
disease.
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