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ABSTRACT

Chromatin three-dimensional (3D) structure plays
critical roles in gene expression regulation by influ-
encing locus interactions and accessibility of chro-
matin regions. Here we propose a Markov process
model to derive a chromosomal equilibrium distri-
bution of randomly-moving molecules as a func-
tional consequence of spatially organized genome
3D structures. The model calculates steady-state dis-
tributions (SSD) from Hi-C data as quantitative mea-
sures of each chromatin region’s dynamic accessi-
bility for transcription factors and histone modifi-
cation enzymes. Different from other Hi-C derived
features such as compartment A/B and interaction
hubs, or traditional methods measuring chromatin
accessibility such as DNase-seq and FAIRE-seq, SSD
considers both chromatin–chromatin and protein–
chromatin interactions. Through our model, we find
that SSD could capture the chromosomal equilibrium
distributions of activation histone modifications and
transcription factors. Compared with compartment
A/B, SSD has higher correlations with the binding
of these histone modifications and transcription fac-
tors. In addition, we find that genes located in high
SSD regions tend to be expressed at higher level.
Furthermore, we track the change of genome organi-
zation during stem cell differentiation, and propose
a two-stage model to explain the dynamic change
of SSD and gene expression during differentiation,
where chromatin organization genes first gain chro-
matin accessibility and are expressed before lineage-
specific genes do. We conclude that SSD is a novel
and better measure of dynamic chromatin activity
and accessibility.

INTRODUCTION

Gene expression levels are dynamically regulated by tran-
scription factors, epigenetic modifications and spatial
genome architecture (1,2). The spatial regulation of gene
expression has been evidenced by that genes belonging to
a chromosomal domain are often co-regulated (3), and that
long range interactions between enhancers and promoters
through chromosome loops activate gene expression (4).
To study the genome architecture and its functional roles,
genome-wide chromosome conformation capture methods,
such as ChIA-PET, 5C and Hi-C, have been developed to
systematically capture inter- and intra-interactions among
chromatin regions (5–7). Among these methods, Hi-C is
the most widely used one which combines crosslinking and
high-throughput sequencing to measure whole genome in-
teractions at a high resolution (7,8). Initial analyses of Hi-
C data find that chromosomes are divided into two com-
partments, A and B, associated with open and closed chro-
matins, respectively (7,9). Further analyses with higher res-
olution Hi-C data reveal topologically associated domains
(TAD) which are conserved across cell types and species
(10). Chromosome regions within a TAD interact at higher
frequencies and genes in the same TAD tend to be co-
regulated (10). Furthermore, chromatin loops within topo-
logical domains promote long-range interactions between
transcriptional regulatory elements and gene promoters (8).

Hi-C derived A/B compartments, TADs and chromatin
loops form a hierarchy of genome structures. All the three
levels of structures are found to be associated with gene ex-
pression regulation. Genes located in compartment A are
expressed at higher levels than those in compartment B (7).
The expression levels of many genes change after CCCTC-
binding factor (CTCF) knock-down, due to that CTCF is
critical for maintaining TAD boundaries (11). In addition,
pre-existing promoter–enhancer loops facilitate response to
external signals (4). These findings support a strong rela-
tionship between genome structure and gene expression.
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A key mediator between genome structure and tran-
scription is chromatin accessibility. Three-dimensional (3D)
chromatin structures not only determine the interactions
among DNA elements, but also affect the accessibility of
chromatin regions (12,13), which in turn influences the
binding of epigenetic modification enzymes, transcription
factors and RNA polymerases to DNA (14,15). In sup-
porting this, genome structures are associated with epige-
netic modifications that mark different chromatin accessi-
bility (7). Recent studies find that chromatin’s epigenetic
states are associated with their compactness (16), chro-
matin hubs have characteristic histone modification pat-
terns (17) and A/B compartments can be reconstructed
by epigenetic information (18). However, traditional meth-
ods measuring chromatin accessibility such as DNase-seq
(19) and FAIRE-seq (20) do not provide information about
genome 3D structure, and to our knowledge, there is no
method to extract chromatin accessibility information from
3D genome data. Therefore, a method to quantify chro-
matin’s accessibility using 3D genome information will help
better understand the relationship between 3D genome or-
ganization and gene regulation.

Here we propose a Markov process model to derive
a chromosomal equilibrium distribution of randomly-
moving molecules as a functional consequence of spatially
organized genome structures. The model calculates steady-
state distributions (SSD) as quantitative measures of each
chromatin region’s accessibility for transcription factors
and histone modification enzymes. We show that SSD is
highly correlated with the distributions of activation his-
tone modifications and transcription factors. In addition,
most differentially expressed genes between cell types are
transcribed from regions with differential SSD, and chro-
matin organization genes acquire high SSD before cell type-
specific genes do during stem cell differentiation.

MATERIALS AND METHODS

Data sources

The Hi-C data for GM12878 and Normal Human Epi-
dermal Keratinocytes (NHEK) were obtained from Rao
et al. (8), which is available at Gene Expression Omnibus
(GEO) with accession number GSE63525. The Hi-C data
for mouse neuron differentiation was obtained from Fraser
et al. (21), which is available at GEO with accession num-
ber GSE59027. The Hi-C raw data in FASTQ format for
Drosophila melanogaster embryonic nuclei was obtained
from Sexton et al. (22), which is available at GEO with
accession number GSE34453. The DNase-seq raw data in
FASTQ format for D. melanogaster was obtained from En-
cyclopedia of DNA Elements (ENCODE). RNA-seq data
for neuron differentiation was obtained from Linares et al.
(23) and could be accessed in GEO with accession num-
ber GSE71179. GM12878 and NHEK’s RNA-seq, ChIP-
seq, FAIRE-seq and DNase-seq data were all obtained from
ENCODE (24). We used 19 GM12878’s and 15 NHEK
ChIP-seq datasets. For Hi-C and RNA-seq data, we down-
loaded raw sequencing files in Sequence Read Archive
(SRA) or FASTQ format. For ChIP-seq data, FAIRE-seq
data and DNase-seq data, we downloaded BAM files. The

R code to compute SSD from Hi-C could be accessed at
https://github.com/ChengLiLab/markov3d.

Hi-C analysis

Hi-C raw data were firstly mapped to hg19 (Human) or dm3
(Drosophila) reference genome and binned into contact ma-
trix by HiC-Pro version 2.7.2b (25). The ICE normaliza-
tion was performed by HiTC version 1.14.0 (26). To filter
out the noise from repetitive regions in the chromosome,
we removed regions from each centromere’s upstream 500
to downstream 500 kb.

Computing steady-state distribution

For ICE normalized Hi-C matrix, the Floyd–Warshall al-
gorithm was applied to the reciprocal of the matrix to com-
pute the 3D distances between chromosome bins (27). The
Floyd–Warshall algorithm computed the shortest path be-
tween each pair of points in a distance matrix. For example,
there are three points A, B, C and the distance between A
and B is 3, between A and C is 5 and between B and C is 10.
The shortest path from B to C is 8 (B to A to C) rather than
10 (Figure 1B). After shortest-path correction, we applied
the Markov Chain Model to the corrected matrix. For the
bins in a chromosome, we treated them as the states of a fi-
nite state Markov chain, indicating the possible location of
a protein molecule on the chromatin.

We denoted D = {di j} as the distance matrix between
chromosome bins. We modeled the diffusion process of the
molecules as a Brownian motion (28), which was used to
model random collisions between DNA (29). Therefore, the
relationship between two bins’ distance and transition prob-
ability was:

pi j = exp(−d2
i j/2λ)

∑
j pi j

The numerator means that transition probability decays
when the distance between two bins increases, and the de-
nominator is the sum of all entries across the row of distance
matrix, which is used for normalization. Being a classical
model for diffusion processes, the advantage of Brownian
motion is that we do not use the signal along the diagonal of
a Hi-C matrix in transition probability estimation and pre-
vent the possible bias in the Hi-C diagonal signal (4). Since
the probability contacts in a Hi-C matrix follow the power
law and the exponent α reflects the property of a chromo-
some (30), for each chromosome we chose the parameter λ
as a function of the chromosome’s exponent α:

λ = α ∗ β, β is a parameter

To find the optimal parameter β, we conducted a grid
search from 1e-8 to 10 on the NHEK cell line and picked the
β having the largest Spearman correlation with the median
ChIP-seq signals across 14 datasets (Supplementary Figure
S4). The generality of β was tested on the GM12878 cell line
(Figure 2).

After getting the transition matrix P, the SSD was com-
puted, which was the eigenvector corresponding to the
largest eigenvalue of an eigenvalue decomposition of PT.

https://github.com/ChengLiLab/markov3d
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Figure 1. Overview of Markov process model and steady-state distribution (SSD). (A) We use a public Hi-C dataset, the GM12878 cell line from Rao et al.
(8) to illustrate the procedure. The input of model is Hi-C raw contact matrix. In the pre-processing step, the raw matrix is normalized and transformed
to a distance matrix. Low coverage bins are removed after normalization. The distance matrix estimates relative spatial distances between two chromatin
bins in the nucleus, accounting for physical distances captured by Hi-C cross-linking. Then the transition matrix is estimated and SSD is computed. (B)
Advantage of shortest-path algorithm. Hi-C crosslinking could anchor region A and C, region B and C but not region A and B. As a result, although
region A and B’s spatial distance is close, the number of detected Hi-C interactions between A and B is underestimated and needs to be corrected by a
shortest-path algorithm. (C) Density and histogram plot of GM12878 whole genome’s SSD. (D) A 3D visualization of GM12878’s chromosome 1 and
SSD, both inferred from Hi-C data.

When considering the situation that biological molecules
could leave a chromosome, an additional parameter θ can
be added to model the probability that a molecule leaves the
chromosome independent of its chromatin location. How-
ever, θ simply reduces SSD to (1–θ ) * SSD, which does not
affect the correlations between SSD and histone modifica-
tions, DNA-binding proteins and gene expression as dis-
cussed in the ‘Results’ section.

RNA-seq analysis

Reads were mapped to hg19 reference genome and gene ex-
pression was quantified by RSEM version 1.2.25 (31). Dif-
ferential expression analysis was conducted by EBSeq ver-
sion 1.10.0 (32). Differentially expressed genes were defined
as having posterior probability of differential expression



e85 Nucleic Acids Research, 2017, Vol. 45, No. 10 PAGE 4 OF 12

Figure 2. The distributions of histone modifications and DNA-binding proteins follow SSD. (A) ChIP-seq reads’ distribution along GM12878’s chromo-
some 1. The chromosome is cut into 50 kb non-overlapping bins and RPM (reads per million) of H3K4me1 is computed for each bin to represent the mark’s
concentration. Black points represent SSD and are scaled for comparison. Only 150–200 Mb regions of chromosome 1 is shown. (B) Spearman correlation
between ChIP-seq signals and SSD in 50 kb resolution for GM12878 using whole genome data. Bar plot shows Spearman correlation between SSD and
ChIP-seq signals. (C) Hexbin plot showing the correlation between SSD and H3K4me1 signal on GM12878’s chromosome 1. The color represents the
density of points within each region. Rank ratio is defined as: (rank–min (rank))/(max (rank)–min (rank)). (D) Similar figure as Figure 2C using GM12878
chromosome 16, SSD and CTCF data.

equal to 1. Gene ontology (GO) analysis was conducted by
BiNGO version 3.0.3 (33).

ChIP-seq analysis

For each chromosome, the upstream 500 to downstream
500 kb of centromere was removed to filter out noise com-
ing from repetitive regions. Then each chromosome was cut

into bins of the same size as Hi-C. RPM (reads mapped) was
computed for each bin. For each histone mark, the ratio be-
tween the mark’s RPM and control’s RPM was calculated
as ChIP-seq signals to remove bias.
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FAIRE-seq and DNase-seq analysis

For each chromosome, the upstream 500 to downstream
500 kb of centromere was removed to filter out noise com-
ing from repetitive regions. Then each chromosome was cut
into bins of the same size as Hi-C. RPM (reads mapped)
was computed for each bin.

Comparison with compartment score, hub, directionality in-
dex and insulation score

Because compartment A/B was a qualitative description
of genome, we also used compartment score (first or sec-
ond principal component of Hi-C matrix (7)) to represent
compartment A/B. Genome was divided into 50 kb non-
overlapping bins and then compartment score and direc-
tionality index (10) were computed by HiTC version 1.14.0
(26). Hubs and median bins were defined as in Huang et al.
(17). Whole genome’s SSD were ranked and the top 10
and 45% quantiles were taken as the thresholds for SSD
hubs and SSD median, respectively. Histone mark signa-
tures were computed around the center of each hub or me-
dian and the computation of normalized signals is the same
as Huang et al. (17). Insulation score was defined as in
Crane et al. (34). We computed using custom scripts which
are available at https://github.com/ChengLiLab/markov3d.

For compartment score, the difference between
GM12878 and NHEK cell lines were computed. Here
we used difference instead of fold change because com-
partment score contained negative values. The thresholds
of high and low differential features were defined as 5
and 95% quantiles of the fold change or difference. We
also labeled each bin as compartment A or B and tracked
the change of compartment when correlating it with
differential expression data.

RESULTS

Markov process model for chromatin–molecule interactions

We hypothesized that DNA-interacting molecules such as
transcription factors and histone modifying enzymes asso-
ciate and disassociate with chromatin regions and transfer
among them constantly, and the concentration of molecules
at a chromatin location is partially determined by this dy-
namic process (35). We first used Hi-C data to model the
probabilities of randomly-moving molecules transferring
among chromatin regions. Specifically, the raw Hi-C data
matrix of a chromosome were firstly normalized by ICE to
remove systematic bias (36). In the ICE normalization, the
read counts of low coverage regions were normalized to zero
and we removed these regions in subsequent analysis. The
normalized matrix was then converted to a spatial distance
matrix between chromatin bins using a shortest-path algo-
rithm (Figure 1A), which accounts for physical distances be-
yond the capture limit of Hi-C experiment (27) (Figure 1B).
Next, we estimate the transition probability matrix of a fi-
nite state Markov chain from the distance matrix by a dif-
fusion model based on Brownian motion (28) (Figure 1A,
‘Materials and Methods’ section). The transition matrix has
the following property: the smaller the spatial distance be-
tween two chromatin bins is, the higher the likelihood that

a molecule transfers from one bin to the other after a given
time interval.

Based on this transition matrix, we computed the SSD
of the Markov chain, estimating the probability that a
randomly-moving biological molecule locates or interacts
with individual chromatin bins in a dynamic equilibrium
(Figure 1A). SSD follows a long tailed distribution (Figure
1C). A visualization of SSD on the Hi-C based 3D model
of GM12878 cell line’s chromosome 1 shows that chromatin
regions with high SSD locate at both spatially more acces-
sible and less accessible regions, a result that SSD considers
both spatial genome structure and dynamic equilibrium of
molecule movements (Figure 1D).

SSD correlates with the distribution of histone modification
marks and DNA-binding proteins

To evaluate whether SSD can explain observed biological
molecules’ chromosomal distribution, we obtained distri-
bution information from DNA binding and histone modifi-
cation ChIP-seq datasets of GM12878 cell line (24), and cal-
culated ChIP-seq signals for the same chromatin bins used
in the Hi-C analysis. SSD and ChIP-seq signals show a high
correlation (Figure 2A, Supplementary Figures S1 and 2).
Correlation analysis of GM12878’s whole genome ChIP-
seq signal and SSD shows that the distribution of most
histone modification marks is significantly correlated with
SSD (Figure 2B). Marks associated with gene activation
show the highest correlation with SSD, including H3K27ac,
H3K4me1/2/3 and H3K79me2 (Figure 2B and C; Spear-
man correlation ranges from 0.30 to 0.50, all correlation test
P-values < 2.2e-16).

Next we asked whether SSD can explain observed
protein–DNA interaction patterns. We used ChIP-seq data
of GM12878 for six DNA-binding proteins (CTCF, EZH2,
H2AFZ, MYC, STAT1 and STAT3) and two RNA poly-
merase subunits (POLR2A and POLR2AphosphoS2) (24).
We found that the Spearman correlations between these
protein factors and SSD range from 0.10 to 0.48 (Figure 2B
and D; 50 kb bin, all correlation test P-values < 0.000022).
We obtained similar correlation results using a different
bin size (Supplementary Figure S3) and another cell line
NHEK (Supplementary Figure S4). In total, among 18
GM12878 ChIP-seq datasets of histone modification marks
and DNA binding proteins, 16 have significant positive cor-
relation with SSD. These results suggest that ChIP-seq sig-
nals of histone modification marks and DNA-binding pro-
teins contain common patterns that can be explained by
SSD, in addition to mark-specific or protein-specific pat-
terns.

SSD correlates with gene expression levels and changes

Since SSD is correlated with the levels of activation histone
marks and transcriptional machinery, we asked whether
SSD is also associated with transcriptional activity. We
found that the expression levels of genes locating in high
SSD regions are significantly higher than those in low SSD
regions (Figure 3A, all t-test P-values < 2.2e-16). High
SSD regions also contain more genes than low SSD regions
do (Figure 3B, paired t-test P-value < 2.2e-16). Therefore,

https://github.com/ChengLiLab/markov3d
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Figure 3. SSD influences chromatin regions’ accessibility and transcriptional activity. (A) The comparison of expression levels of genes located in high
and low SSD regions for each chromosome. For each chromosome, high SSD regions are defined as bins with SSD higher than the median SSD. Low
SSD regions are the ones with SSD lower than the median SSD. (B) The number of genes located in high and low SSD regions. (C) Comparing SSD
and gene expression levels between two cell lines, GM12878 and NHEK. Points colors represent the log2 fold change of GM12878 and NHEK’s gene
expression (FPKM). Points above the diagonal are the regions with higher SSD in GM12878 and under the diagonal are those with higher SSD in NHEK.
(D) Relationship between SSD fold change and gene expression fold change comparing two cell lines. (E) Relationship between SSD fold change and
H3K4me3 ChIP-seq signal fold change comparing two cell lines. (F) Model for how dynamic chromatin accessibility affects gene expression. Regions with
high SSD are more accessible for histone modification enzymes and transcriptional factors, leading to higher transcriptional activity in these regions.

high SSD regions not only contain more genes but also
express these genes at higher levels compared to low SSD
regions. We also compared the change of gene expression
and the change of SSD genome-wide between two cell lines,
GM12878 and NHEK. We found that the change of gene
expression levels is positively correlated with the change
of corresponding regions’ SSD (Figure 3C and D, Cuz-
ick trend test P-value < 2.2e-16). Next, we compared the
change of histone modification marks between GM12878
and NHEK. Similar to transcriptional activity, we found

that the change of ChIP-seq signals are positively correlated
with the change of corresponding regions’ SSD (Figure 3E,
Supplementary Figure S5, all Cuzick trend test P-values <
2.2e-16).

Based on these findings, we propose a model of dynamic
chromatin accessibility, where the equilibrium distribution
of randomly-moving protein molecules on chromatin fol-
lows a Markov process. The resultant dynamic chromatin
accessibility arises from physical chromatin structures and
influences transcriptional activities (Figure 3F).
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Comparison between SSD and other Hi-C derived chromatin
features

We next compared SSD with other four Hi-C derived fea-
tures of chromatin structure: A/B compartment (7), chro-
matin hub (17), directionality index (10) and insulation
score (34), as all the five features are associated with marks
of chromatin modifications and gene transcription.

We first compared SSD and A/B compartment score in
terms of their genome-wide correlations with 10 ChIP-seq
experiments of histone modification marks in GM12878.
SSD shows higher correlations with most ChIP-seq sig-
nals than A/B compartment score does (Figure 4A). We
also compared SSD with the data of FAIRE-seq (20) and
DNase-seq (19), two sequencing-based method to measure
chromatin accessibility. SSD is significantly and more pos-
itively correlated with both FAIRE-seq (Spearman corre-
lation 0.51, P-value < 2.2e-16) and DNase-seq (Spearman
correlation 0.37, P-value < 2.2e-16) than A/B compart-
ment score is. We also compared SSD and A/B compart-
ment score in terms of their genome-wide correlations with
transcriptional activity. Chromatin regions with differential
SSD between two cell lines show more significantly differen-
tial expression than those located in changed A/B compart-
ments do (Supplementary Figure S6). These results suggest
that SSD better measures chromatin accessibility and cor-
relates with transcriptional changes than Hi-C derived A/B
compartments.

Next we compared SSD with two other measures that
represent chromatin organization and transcriptional activ-
ities, directionality index (10) and insulation score (34). We
found that the correlation between SSD and directionality
index was not significant (Spearman correlation = 0.002,
P-value = 0.61). However, SSD correlated well with insu-
lation score (Spearman correlation = 0.32, P-value < 2.2e-
16), suggesting that insulation score and directionality in-
dex were orthogonal data representing chromatin domains.
Then we correlated the three measures with 18 epigenetic
marks and proteins occupancy on chromatin. We found
that SSD and insulation score correlated with these marks
and factors significantly better than directionality index did
(Figure 4B). When compared with insulation score, SSD
correlated better in 15/18 comparisons and SSD’s mean
correlation was 4.1-fold higher (0.316 versus 0.077, t-test
P-value = 9.788e-6). These results suggest that SSD better
measures chromatin accessibility than Hi-C derived insula-
tion score and directionality index.

A recently identified feature of genome organization
from Hi-C data are chromatin hubs (17), defined as chro-
matin regions with the highest interaction frequencies with
other regions. Like chromatin regions with high SSD, chro-
matin hubs have specifically associated signatures of histone
marks. Following chromatin hubs’ definition, we defined
SSD hubs and SSD median using the top 10 and 45% quan-
tiles of SSD as thresholds, and calculated these regions’ hi-
stone mark signatures (‘Material and Methods’ section).
There are generally larger differences of histone mark sig-
nals between chromatin hubs and median defined by SSD
than those defined by Hi-C interaction frequencies (Figure
4C), suggesting that a chromatin accessibility measure de-
rived from both 3D chromatin structure data and dynamic

equilibration process may better predict epigenetic features
than using physical chromatin structures alone.

Besides comparing SSD with compartment score in hu-
man cell lines, we also compared them in Drosophila em-
bryos. The Drosophila’s Hi-C data were obtained from Sex-
ton et al. (22). Similar to GM12878’s SSD, Drosophila’s
SSD also followed a long tailed distribution (Supplemen-
tary Figure S7A). We correlated SSD and compartment
score with a public Drosophila’s DNase-Seq dataset from
ENCODE (24). The Spearman correlation between SSD
and DNase-Seq was 0.111 (P-value = 0.01), while the cor-
relation between compartment score and DNase-Seq was
0.006 (P-value = 0.82) (Supplementary Figure S7B). These
results suggest that SSD better captures chromatin acces-
sibility information in Drosophila than compartment score
does. However, although SSD’s correlation is significant,
the absolute value is relative low compared with human data
(Figure 4A). This indicates that either there is difference
between Drosophila’s genome structural organization and
human’s, or the SSD model’s parameters need to be recali-
brated for Drosophila Hi-C data. Further study is needed to
resolve the issue.

SSD reveals two stages of spatial genome organization during
stem cell differentiation

Next we asked how SSD may help study genome reorga-
nization during biological processes. The development and
differentiation processes are accompanied with changes of
both 3D genome structures and gene expression (37), but
how genome structure and transcription affects each other
remains unresolved (38,39). To investigate genome structure
reorganization during differentiation, we analyzed a neuron
differentiation dataset containing Hi-C data for three differ-
entiation stages: mouse embryonic stem cells (ESC), neu-
ronal progenitor cells (NPC) and neurons (21). We defined
each stage’s marker genes as those located in its high SSD
regions and other two stages’ low SSD regions, so that the
marker genes are only highly accessible in one differentia-
tion stage. GO enrichment analysis for each stage’s marker
genes reveals that in ESC, the genes are enriched in gen-
eral and house-keeping GO terms such as biological reg-
ulation and cell cycle. After cells differentiate into NPC,
marker genes are not only enriched in terms associated with
neuron differentiation as expected, such as cell prolifera-
tion in forebrain, but also enriched in chromatin modifi-
cation and chromatin organization terms. These genes in-
clude DNMT1 and SMARCC1, which are known critical
regulators of chromatin structure’s remodeling (40,41). In
contrast, marker genes in neurons are mainly enriched in
terms related to neuronal functions, such as nervous system
development (Figure 5A).

For comparison, we also analyzed changes of gene ex-
pression during mouse neuron differentiation using another
dataset (23). We compared gene expression levels between
stem cells, neuron progenitor cells and neurons, and defined
each stage’s marker genes as those only highly expressed in
one stage (top 10% expression level). Through GO enrich-
ment analysis of marker genes, we found that NPC’s marker
genes are also enriched in chromosome organization terms,
and neuron’s marker genes are enriched in terms related to
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Figure 4. Comparing SSD with compartment profile and hub. (A) GM12878 SSD’s and compartment score’s Spearman correlations with ChIP-seq signals
of histone modifications, FAIRE-seq and DNase-seq at the whole genome scale. (B) GM12878 SSD’s, insulation score’s and directionality index’s Spearman
correlations with ChIP-seq signals of histone modifications and DNA-binding proteins at the whole genome scale. (C) Comparing histone mark signatures
between hubs and SSD hubs. X-axis represents the relative distance from hubs/median center (−5 to 5 Mb) and Y-axis represents averaged ChIP-seq
signals.

both nervous system development and chromosome orga-
nization (Figure 5B). Combining the changes of genome
organization and gene expression, we propose a two-stage
genome organization model during stem cell differentiation
(Figure 5C). Genome structures first change from stem cells
to neuron progenitor cells to make chromatin organization
genes’ loci more accessible to be transcribed. Then the chro-
matin organization genes are highly expressed in both pro-

genitor cells and neurons to further remodel genome struc-
tures to make accessible and transcribe gene loci associated
with neuronal functions.

DISCUSSION

The 3D genome structure influences chromatin accessibility
and transcription via nuclear structures such as heterochro-
matin, lamina associated domains and nucleolus (42). Pro-
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Figure 5. Dynamic change of genome organization and gene expression during stem cell differentiation. (A) GO biological process enrichment for NPC’s
and Neuron’s marker genes defined by SSD. (B) GO biological process enrichment for NPC’s and Neuron’s marker genes defined by expression level. In
A and B, only selected terms are shown, and see Supplementary Table S1 for the full list. The red line indicates the position of –log10(0.05). (C) Model
for the functional roles that genome 3D structure plays during stem cell differentiation. As stem cells differentiate, chromatin organization genes are first
made accessible and transcribed at the progenitor stage, which help to open up the chromatin of lineage-specific genes when progenitor cells differentiate
into downstream cell types.

tein molecules move within the nucleus randomly in search
of their interacting partners and DNA-binding sites (43),
for example, telomerase uses three-dimensional diffusion to
search for telomeres and forms either dynamic or static in-
teractions with them (44). We propose that genome struc-
ture influences protein distributions on the whole genome
through dynamic chromatin accessibility. Here we have de-
veloped a Markov process model of stochastic collisions be-
tween molecules and chromatin and computed the equilib-
rium distribution of molecules locating on a chromosome.
The model extracts dynamic chromatin accessibility infor-

mation from 3D genome structure, allowing us to compare
and integrate it with other genomic datasets such as his-
tone modification or gene expression data and to better un-
derstand the roles genome structure plays in epigenetic and
transcriptional processes.

Our results suggest a model where chromatin regions
with different SSD have different accessibilities to tran-
scription factors and histone modification enzymes, leading
to different transcriptional activities between regions (Fig-
ure 3F). Our results are consistent with a previous study
on glucocorticoid receptor binding patterns (14), which
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concludes that the distribution of exposed chromatin dic-
tates the genomic distribution of DNA-binding proteins. A
unique feature of our model is that the chromatin interac-
tions in the 3D genome serve as the traffic network of ran-
domly moving protein molecules, and chromatin accessibil-
ity is the dynamic equilibrium resulting from this network
through a Markov process. This dynamic feature may ex-
plain the better agreement between SSD and transcription
and epigenetic marks than Hi-C derived static chromatin
features such as A/B compartments and chromatin hubs.
We also observe that the correlations between histone re-
pression marks and SSD are weak and variable between
cell types (Figure 2B and Supplementary Figure S4). We
propose the possible reason may be that gene repression
marks are regulated more actively by means other than ran-
dom movements than gene activation marks, and therefore
a random collision model cannot capture their distributions
well. Our results highlight the importance of genome struc-
ture in DNA–protein interaction. It suggests that all the
molecules in a nucleus share a basal interacting distribution
on the chromatin, and could explain the reason why some
molecules with opposite functions distribute similarly. For
example, histone acetyltransferase and histone deacetylase
are both positively correlated with histone acetylation levels
(45).

SSD transforms Hi-C matrices to one-dimensional vec-
tors, making it easier to compare multiple Hi-C profiles and
integrate with other genomic datasets. We have analyzed
stem cell differentiation by jointly analyzing the change of
genome structure and gene expression in three differentia-
tion states, stem cell, progenitor cell and neuron. The in-
creasing of chromatin organization genes’ SSD and expres-
sion levels during differentiation leads to a two-stage model
of genome structure’s functional role (Figure 5C). Our re-
sults confirm that cells in different differentiation states have
characteristic chromatin structure features (37), suggesting
a potential application of our method to identify chromatin
structure features associated with cell states. It may provide
more sensitive markers to measure cell reprogramming or
differentiation states and classify cancer subtypes (46).

To interpret Hi-C data, several models such as TAD (10),
hub (17) and hotspot (47) have been proposed and improved
our understanding of genome structure and its functional
roles. The main difference between SSD and these models is
its dynamic property. TAD and hotspot focus on functional
interactions among static chromosome regions such as pro-
moters and enhancers or transcription factors and targets.
In addition to these physical interactions among chromo-
some regions, SSD suggests a complementary mechanism
of genome structure’s functional role, leading to the hypoth-
esis that 3D structure could influence gene expression by af-
fecting the dynamic distribution of epigenetic modifications
and transcription factors. We observe high correlations be-
tween SSD and histone modifications and validate their ro-
bustness in different cell types and Hi-C resolutions. Similar
with the hubs (17), we find that chromatin regions with high
SSD have enriched histone modification patterns. Our re-
sults provide a possible explanation of hubs’ histone modi-
fication patterns, which could result from random collisions
between histone modification enzymes and hubs.

We could only infer correlative rather than causal rela-
tionship between chromatin structure and protein binding.
The inference of causal relationship from observed corre-
lation data is still a challenging and active research field
in statistics (48), and the causal relationship between chro-
matin accessibility and protein binding is also an unsolved
question (42). Chromatin structure is a complex network
influenced by DNA sequence features, transcription fac-
tors, nucleosome remodelers and histone modifiers (42).
The pioneer transcription factor model proposes that the
initial binding of transcription factors on chromatin could
remodel chromatin structure and influence the binding of
more proteins (49). Therefore, there may be a complex and
feedback relationship rather than a directional relation-
ship between protein binding and chromatin structure. Our
model captures the dynamic equilibrium of this complex
process and could predict the equilibrium distribution of
proteins for given chromatin structures. Moreover, in Figure
5C we propose a model to explain the change of chromatin
structure during stem cell differentiation. Several studies
also found that genes like PARP1 could affect gene expres-
sion by influencing the condensation of chromosome dur-
ing cellular development (50). Although we find that SSD is
highly correlated with gene expression, it is possible that the
change of gene transcription leads to the reorganization of
chromosome structure during cell differentiation. Further
experiments and analysis are needed to unravel the complex
and dynamic relationship between chromatin structure and
gene expression during biological processes.

Markov models have been widely applied in biological
science, such as chromatin-state characterization (51), TAD
identification (10) and detection of long-range chromoso-
mal interactions from Hi-C data (52). These existing meth-
ods mainly use hidden Markov models, which infer hidden
states from observed states, such as the inference of TAD
boundaries from Hi-C data or enhancers from ChIP-seq
data. Similar to these methods, we take Markov property as
an assumption of our model. But instead of using a hidden
Markov model, we directly apply Markov process to model
molecule–chromatin interactions and compute SSD.

Our method has several aspects that can be improved
in the future. First, we compute SSD for each intra-
chromosome Hi-C contact matrix instead of the whole
genome contact matrix, and the probability that a molecule
moves from one chromosome to another cannot be com-
puted. The present version of our model allows the whole
genome contact matrix as input but the computation time
will increase significantly, especially for high resolution Hi-
C data. We will develop more efficient algorithms in the fu-
ture version. Second, we use a single parameter � to con-
trol the probability that a molecule detaches and leaves a
chromosome (‘Material and Methods’ section). However,
for different chromatin regions the detaching probability
may differ. A possible solution is to learn parameters from
biological experiments which can measure or monitor the
movement of biological molecules, such as single-molecule
imaging (53). Finally, here we only show that SSD could be
derived from Hi-C, but other methods which detect genome
structure and generate distance matrix such as ChIA-PET
or high-resolution imaging of chromatins could also be
served as the input of our model.
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