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Santé. These three funders were not involved in the design, the data collection or interpretation, or the publication of the review.

Conflicts of interest: The authors declare no conflicts of interest and no financial interests related to this study.

Abstract

Background. Secondary analysis of health administrative databases is indispensable to enriching our understanding of
health trajectories, health care utilization, and real-world risks and benefits of drugs among large populations.Objectives.

This systematic review aimed at assessing evidence about the validity of algorithms for the identification of individuals
suffering from nonarthritic chronic noncancer pain (CNCP) in administrative databases.Methods. Studies reporting meas-
ures of diagnostic accuracy of such algorithms and published in English or French were searched in the Medline,
Embase, CINAHL, AgeLine, PsycINFO, and Abstracts in Social Gerontology electronic databases without any dates of
coverage restrictions up to March 1, 2018. Reference lists of included studies were also screened for additional
publications.Results. Only six studies focused on commonly studied CNCP conditions and were included in the review.
Some algorithms showed a�60% combination of sensitivity and specificity values (back pain disorders in general, fibro-
myalgia, low back pain, migraine, neck/back problems studied together). Only algorithms designed to identify fibromyal-
gia cases reached a �80% combination (without replication of findings in other studies/databases).Conclusions. In sum-
mary, the present investigation informs us about the limited amount of literature available to guide and support the
use of administrative databases as valid sources of data for research on CNCP. Considering the added value of such
data sources, the important research gaps identified in this innovative review provide important directions for future
research. The review protocol was registered with PROSPERO (CRD42018086402).

Key Words: Chronic Pain; Algorithms; Diagnostic Codes; Validity; Accuracy; Sensitivity; Specificity; Administrative Databases; Claims;
Back Pain; Neck Pain; Neuropathic Pain; Complex Regional Pain Syndrome; Fibromyalgia; Headache; Migraine

Introduction

Health administrative databases are commonly used to

conduct epidemiologic, pharmacoepidemiologic, and

pharmacoeconomic research and are indispensable to en-

rich our understanding of health trajectories, health care

utilization, and real-world risks and benefits of drugs

among large populations [1–5]. However, the validity of
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studies conducted with these data sources relies greatly

on the accuracy of the diagnostic information used to cre-

ate or characterize cohorts of patients suffering from par-

ticular health disorders [6–11]. In fact, many

administrative databases used for research purposes are

by-products of physician billing claims in the context of

which it is diagnostic codes are entered, for example,

according to the International Classification of Diseases

(ICD codes) [12, 13]. Such codes are sometimes misclas-

sified, and it has been shown that their validity varies

according to the characteristics of patients, clinical condi-

tions, health care encounters, physicians, and their billing

practices [14, 15]. Moreover, the validity of a given algo-

rithm may vary from one data source to another due to

variability of database completeness across jurisdictions

(e.g., remuneration methods, diagnostic code types and

specificity, number of diagnostic fields) [6]. Using vali-

dated algorithms to identify and characterize specific pa-

tient populations is thus a priority in order to reduce bias

in administrative database studies [10, 11].

In the field of chronic noncancer pain (CNCP), longi-

tudinal population-based studies representative of the

real-world clinical context are clearly needed [16–18].

For example, such studies are important complements to

randomized clinical trials that study the benefits and risks

of pain pharmacotherapy (e.g., larger sample sizes, possi-

bility to study long-term effects, greater external valid-

ity). This is especially important in a context where

CNCP treatment is characterized by off-label prescribing,

polypharmacy, and multimorbidity [19–25], profiles that

are often not represented in clinical trials. Using health

administrative data for such purposes represents an at-

tractive and efficient strategy. A large number of studies

have used various ICD coding algorithms to identify indi-

viduals suffering from CNCP or to adjust for the pres-

ence of CNCP as a comorbidity [12, 26–52]. However,

the validity of these algorithms has not always been

established before their use. For instance, a previous sys-

tematic review of algorithms used to identify various

health conditions in US and Canadian administrative

databases suggested that only 17.5% of studies report on

the validation of the algorithms used [15].

Considering that CNCP is commonly under-reported,

underdiagnosed, and under-recognized in primary care

settings [18, 53–57], possibly resulting in an increased

likelihood of diagnostic code misclassification in admin-

istrative databases, we wonder if such data sources are

valid for research on CNCP. To the best of our knowl-

edge, evidence about the validity of case-finding algo-

rithms for commonly studied CNCP conditions such as

back pain or neuropathic pain has never been compiled

and synthesized. The objective of this systematic review

was to document validation studies of algorithms for the

identification of individuals suffering from nonarthritic

CNCP using health administrative databases.

Methods

This study is among a series of systematic reviews of vali-

dated methods for identifying various chronic diseases

using health care administrative data that have been con-

ducted by the Quebec SUPPORT Unit (Support for

People and Patient-Oriented Research and Trials) as part

of its mandate to implement strategies to facilitate access

to and use of health research data. This work was con-

ducted according to the Preferred Reporting Items for

Systematic Review and Meta-Analysis protocols

(PRISMA-P) 2015 statement [58] and recommendations

specific to reviews of test accuracy [59]. The study was

registered in the PROSPERO international database of

systematic reviews (CRD42018086402) and can be

accessed at: https://www.crd.york.ac.uk/prospero/dis

play_record.php? RecordID¼86402.

Eligibility Criteria
To be included in the review, studies had to be original

investigations reporting on the validity of algorithms for

the identification of CNCP cases in administrative/claims

data (studies about the quality of computerized medical

records studies were excluded). Peer-reviewed journal

articles and reports published in English or in French

were eligible, and validation studies could be conducted

against various types of reference standards (e.g., disease-

specific registries, medical chart review, patient self-

report) and about various types of codes (e.g., ICD-9,

ICD-10, ICD-10CM, ICD-10CA, non-ICD codes).

Commonly studied CNCP conditions such as back pain,

neck pain, neuropathic pain, complex regional pain syn-

drome, fibromyalgia, headache, and migraine [60] were

considered. In past years, several systematic reviews have

been published about the validity of algorithms for the

identification of individuals suffering from rheumatoid

arthritis, osteoarthritis, systematic lupus erythematosus

(SLE), and other rheumatic conditions such as lupus ne-

phritis, polymyalgia rheumatica, ankylosing spondylitis,

Sjögren syndrome, and vasculitis [61–64], and algorithms

with acceptable diagnostic accuracy measures were

reported. Therefore, retrieved studies focusing solely on

these conditions were excluded from the present system-

atic review. As fibromyalgia is sometimes but not always

classified as a rheumatic condition [65], it was included

in our review. Neurodegenerative disorders (e.g., amyo-

trophic lateral sclerosis and other motor neuron diseases,

multiple sclerosis, Parkinson’s disease, or Guillain-Barre

syndrome) or abdominal painful conditions (e.g., irrita-

ble bowel syndrome, ulcerative colitis, Crohn’s disease,

colonic ischemia, gastro-oesophageal reflux disease, pri-

mary sclerosing cholangitis) are not systematically con-

sidered CNCP [60, 66]. Articles about such conditions

were therefore excluded (a posteriori). If a study reported

on the validity of many health conditions, only algo-

rithms related to nonrheumatic commonly studied CNCP

conditions were reviewed.
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Information Sources and Search Strategy
Studies were identified on March 1, 2018, by searching

the following computerized databases without any dates

of coverage restrictions: Medline (EBSCO; PubMed for

the past two years), Embase (Ovid), CINAHL (EBSCO),

AgeLine (EBSCO), PsycINFO (EBSCO), and Abstracts in

Social Gerontology (EBSCO). The search strategy was

developed in collaboration with experienced medical

librarians, a pain epidemiologist, and a primary care phy-

sician and included several synonyms for 1) commonly

studied CNCP conditions, 2) validation studies, and 3)

administrative databases (Supplementary Data).

Different types of CNCP conditions, defined by the

International Association for the Study of Pain (IASP)

Task Force for the Classification of Chronic Pain, were

represented in our search strategy [60]. All citations were

entered in the citation management software Zotero, and

duplicates were removed.

Study Selection
Using the Rayyan web application, the whole screening

and selection process was achieved by two independent

trained reviewers who met and resolved disagreements

with a third party if needed. First, titles and abstracts of

all citations retrieved from electronic databases were

screened with the aim of identifying articles fitting the

prespecified eligibility criteria. All abstracts identified by

the reviewers in the abstract screening phase were then

assessed in full text for inclusion. The reference list of

studies included in the present review was also scanned

for potential nonretrieved original investigations (snow-

ball citation searching). At the end of the process, the fi-

nal list of pain conditions and articles included in the

review was validated by a pain epidemiologist and a pri-

mary care physician, who were not previously involved

in the study selection process.

Data Collection Process
Using a pilot-tested standardized extraction form, data

collection was achieved by one reviewer and then vali-

dated by a second reviewer (who resolved disagreements

with a third party if needed). A tool containing detailed

definitions of each piece of information/variable to be

extracted was used by the reviewers to better standardize

data collection. In the context of our study, obtaining/

confirming data from investigators was not needed.

Data Items
For each study meeting the selection criteria, the follow-

ing information was retrieved: authors, title of the study,

state/province and country where it was conducted, ad-

ministrative database to be validated, reference standard

used, study population characteristics and size, and

CNCP conditions under study. Moreover, each algorithm

was described in detail, including its content, types of

codes used, and inclusion of pharmacy claims data in the

algorithm. For each algorithm, the following measures of

diagnostic accuracy and their respective 95% confidence

intervals (95%CI) were extracted when available: 1) sen-

sitivity (SEN): probability that a patient is identified as a

CNCP case in the administrative database given the pres-

ence of CNCP according to the reference standard, 2)

specificity (SP): probability that a patient is not identified

as a CNCP case in the administrative database given the

absence of CNCP according to the reference standard, 3)

positive predictive value (PPV): probability of suffering

from CNCP according to the reference standard given

that the patient is identified as a CNCP case in the ad-

ministrative database, 4) negative predictive value

(NPV): probability of not suffering from CNCP accord-

ing to the reference standard given that the patient is not

identified as a CNCP case in the administrative database,

and 5) kappa coefficient: degree of agreement between

the administrative database and the reference standard

corrected for chance. When available, measures of diag-

nostic accuracy were extracted according to sex and age

subgroups. All of these statistics ranged between 0 and 1

(0–100%), with higher values indicating better validity/

accuracy of an algorithm [67]. To the best of our knowl-

edge, there is no consensus regarding specific cutoffs indi-

cating what can be considered poor vs high SEN and SP

values. We chose 60% and 80% arbitrary cutoffs to ease

our interpretation.

Risk of Bias
The type of reference standards used in the validity stud-

ies was the main aspect considered in terms of quality of

reviewed studies. In fact, the assessment of an algorithm’s

validity is based on the premise that the reference stan-

dard against which it is tested represents the truth—

which is not always the case. Although retrospective

medical chart review is a widely applicable research

methodology, such routinely collected data were not

originally intended for research purposes and may be

lacking in quality (misclassification and missing informa-

tion) [68, 69]. One can hypothesize that the quality of

clinical information about pain contained in medical

charts can vary from one setting to another (primary care

vs tertiary care pain clinic). As for self-reported diagno-

ses, their validity is not always optimal and is variable

across chronic health conditions and patient populations

[70–78]. Clinician-confirmed diagnoses collected in the

context of disease-specific registries were thus considered

a high-quality reference standard in comparison with pri-

mary care medical chart review or patient self-report.

The reporting of key measures of diagnostic accuracy

(SEN, SP, PPV, NPV) and external validity of results

(e.g., algorithms validated in several databases) were also

considered when looking at the quality of reviewed

studies.
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Synthesis of Results
The results of included studies were described narratively

and combined in tables in order to describe 1) the charac-

teristics of the various studies and 2) the algorithms and

measures of diagnostic accuracy reported for each. The

quantity and quality of available evidence were also

depicted in a summary table.

Results

Study Selection
The study selection flow diagram is shown in Figure 1. A

total of 1,840 articles were identified, but most were ex-

cluded based on their title and abstract. From the remain-

ing 98 full-text articles, 75 did not meet the selection

criteria. Combining the remaining articles retrieved from

the electronic search (N¼ 23) and those identified

through their reference lists (N¼ 12), a total of 35 jour-

nal articles were considered. After the exclusion of 29

articles about neurodegenerative disorders or abdominal

painful conditions [79–107], only six studies were found

to report on the validity of algorithms for identification

of commonly studied CNCP: back disorders in general

[108], complex regional pain syndrome [108], fibromyal-

gia [108–110], headache/migraine studied together

[111], low back pain [108], migraine [111, 112], neck/

back problems studied together [108], painful diabetic

peripheral neuropathy [113], and painful neuropathic

disorders in general [108].

Included Studies
Characteristics of the included studies are presented in

Table 1 (in alphabetical order according to the last name

of the first author). Two studies (33.3%) were published

in the five years preceding the electronic search. Studies

were all conducted using US (3/6¼ 50%) or Canadian

administrative databases (3/6¼ 50%). Back or neck pain

algorithms were only tested in a Canadian context. A

given study could focus on more than one CNCP condi-

tion and test more than one algorithm for a given CNCP

condition.

Tested Algorithms
For the purpose of this review, each algorithm was

assigned a unique identification number (ID). The de-

tailed description of algorithms and measures of diagnos-

tic accuracy reported for each are presented in the

Supplementary Data (in alphabetical order according to

the CNCP condition studied). Overall, the six included

studies reported measures of diagnostic accuracy for 99

algorithms designed to identify CNCP cases in adminis-

trative/claims data. Reported accuracy measures were ac-

companied by their respective 95% CIs in the great

majority of cases (96/99 algorithms). Only one study

reported measures of diagnostic accuracy across males

and females [111].

Tested algorithms designed to identify commonly

studied CNCP conditions focused on back disorders in

general (N¼ 2; ID: 1 and 2), complex regional pain syn-

drome (N¼ 4; ID: 3 to 6), fibromyalgia (N¼ 34; ID: 7 to

40), headache/migraine studied together (N¼ 12; ID: 41

to 52), low back pain (N¼ 3; ID: 53 to 55), migraine

(N¼ 38; ID: 56 to 93), neck/back problems studied to-

gether (N¼ 2; ID: 94 and 95), painful diabetic peripheral

neuropathy (N¼ 2; ID: 96 and 97), and painful neuro-

pathic disorders in general (N¼ 2; ID: 98 and 99). Such

algorithms were diverse in terms of the number of health

care encounters and time window considered. For all of

the CNCP conditions mentioned above, pharmacy claims

data were not considered in the algorithms, except for

headache and/or migraine. The four key measures of di-

agnostic accuracy (SEN, SP, PPV, NPV) were reported

for the great majority of algorithms.

As shown in the Supplementary Data, several algo-

rithms designed to identify patients’ suffering from

CNCP showed a �60% combination of SEN and SP val-

ues (�40% chances of false negatives and false positives):

back disorders in general (ID: 2), fibromyalgia (ID: 17 to

19, 23 to 40), low back pain (ID: 55), migraine (ID: 60),

and neck/back problems studied together (ID: 95).

Algorithms designed to identify patients suffering from

complex regional pain syndrome, headache/migraine

studied together, painful diabetic peripheral neuropathy,

and painful neuropathic disorders in general did not

reach the 60% SEN and SP cutoff. Only algorithms

designed to identify fibromyalgia cases and tested in one

study reached an �80% combination of SEN and SP val-

ues (ID: 17–19, 23–25, 30, 31, 36, 37) [110]. A summary

of the quantity and quality of the available literature is

presented in Table 2. The most frequently used reference

standard was medical chart review (4/6¼ 66.7%), fol-

lowed by disease-specific patient registries (1/6¼ 16.7%)

and patient self-report (1/6¼ 16.7%).

Discussion

To our knowledge, this study is the first attempt to syn-

thesize evidence about the validity of algorithms to iden-

tify individuals suffering from nonarthritic CNCP in

health administrative databases. Based on our results, a

very limited amount of literature is available to support

the use of administrative databases as valid sources of

data for research on CNCP. However, our results pro-

vide valuable information to yield a number of key find-

ings, identify research gaps, and make several

recommendations for future research:

Key Finding 1
Few studies (N¼ 6) examined the validity of algorithms

to identify individuals suffering from commonly studied

nonrheumatic CNCP conditions in administrative data-

bases [108–113]. This finding is surprising and could be
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explained by many factors, including 1) the presence of a

publication bias (only studies with results that are statis-

tically or clinically significant are published [114]), 2) the

lack of awareness that using validated algorithms is a pri-

ority to reduce bias in database studies [10, 11], and 3)

the lack of awareness of the value of observational re-

search using administrative data in the community of

pain researchers. Considering the added value of such

data sources in pain research, new CNCP case-finding

algorithms should be developed, and well-designed vali-

dation studies should be conducted and published.

Key Finding 2
All studies were conducted in US or Canadian adminis-

trative databases. This was not a surprising result consid-

ering that they are internationally recognized health

databases and have long been used by epidemiologists,

pharmacoepidemiologists, and health economists [1, 3,

115, 116]. It is also consistent with other systematic

reviews about the validity of algorithms for the identifi-

cation of individuals suffering from osteoarthritis (100%

conducted in the United States or Canada) [63] or rheu-

matic diseases in general (83% of included studies were

conducted in the United States or Canada) [64]. This

finding could imply that little is known about the quality

of claims databases for pain research in many other coun-

tries. We, however, have to keep in mind that studies

about the quality of computerized medical records were

not included in the present review and that such data-

bases are extensively used for research purposes outside

of North America (e.g., UK’s General Practice Research

Database [GPRD]) [117]. The fact that back or neck pain
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algorithms were not tested in US databases was surpris-

ing considering the significant burden of these conditions

[118].

Key Finding 3
For many CNCP conditions, very few different algo-

rithms were tested for accuracy (�4 algorithms for each

of the following conditions: back disorders in general,

complex regional pain syndrome, low back pain, neck/

back problems studied together, painful diabetic periph-

eral neuropathy, or painful neuropathic disorders in

general).

Key Finding 4
Pharmacy claims data were not included in the com-

monly studied CNCP algorithms, except for headache

and/or migraine. This was expected as, contrary to condi-

tions such as arthritis where prescription claims are often

used in case-finding algorithms [61], many pharmacolog-

ical treatments used for CNCP are not specific to a par-

ticular type of syndrome (e.g., opioids, nonsteroidal anti-

inflammatory drugs) or not specific to pain management

(e.g., antidepressants, anticonvulsants, cannabinoids).

However, it would be important to test and publish

about the contribution of adding pharmacy claims to the

equation, no matter if the results are positive or not. Key

findings 3 and 4 could be explained by selective reporting

and publication of results. Our findings emphasize the

need for more studies aiming to develop, test, refine, and

publish case-finding algorithms.

Key Finding 5
The diversity of administrative databases in which case-

finding algorithms were tested is limited. In fact, none of

the specific combinations of codes, time windows, and

number of health care encounters was tested in more

than one database. As the validity of a given algorithm

could vary from one data source to another because of

the variability of database completeness across jurisdic-

tions [6], this constitutes an important limitation of avail-

able evidence.

Key Finding 6
Some algorithms designed to identify patients suffering

from CNCP showed a �60% combination of SEN and

SP values and could be useful (back disorders in general,

fibromyalgia, low back pain, migraine, neck/back prob-

lems studied together). When selecting the optimal

CNCP algorithm for an administrative database study,

researchers should, however, assess the relative impor-

tance of SEN, SP, PPV, and NPV and prioritize the accu-

racy measure that is most relevant to their research

question [119]. Misclassification of CNCP cases can sig-

nificantly impact a study’s internal validity. For example,

it could affect researchers’ capacity to correctly control

for confounding, a constant challenge in observational

designs [3]. Also, it is necessary to select algorithms with

very high SEN for prevalence studies, as this approach

minimizes the number of false negatives [119, 120]. On

the other hand, if the goal is to select a CNCP cohort for

upcoming studies, one might risk missing some cases and

assume the loss of external validity.

Key Finding 7
Only some algorithms designed to identify fibromyalgia

cases reached �80% combination of SEN and SP values

(ID: 17–19, 23–25, 30, 31, 36, 37). They were, however,

tested in only one study/database and validated against

medical records [110]. Possible explanations for the ab-

sence of comparable positive results in the two other

studies that tested fibromyalgia algorithms are 1) the

shorter case identification time windows (one year or less

in the Lacasse et al. and Katz et al. studies [108, 109] vs

two to five years for algorithms showing a �80% combi-

nation of SEN and SP values in the Marrie et al. study

[110]) and 2) the reference standards used (of lower qual-

ity in the Marrie et al. study vs the Lacasse et al. study).

In the future, time and resources should be invested to

achieve replication of findings before concluding on the

validity of an algorithm.

Key Finding 8
Algorithms designed to identify patients suffering from

complex regional pain syndrome, headache/migraine

studied together, painful diabetic peripheral neuropathy,

and painful neuropathic disorders in general did not

reach acceptable SEN and SP cutoffs. This finding can

perhaps be explained by the fact that CNCP is commonly

under-reported, underdiagnosed, and under-recognized

in primary care settings [18, 53–57]. The challenges sur-

rounding the diagnosis of neuropathic pain [121] and the

fact that only one diagnostic code per medical visit is

recorded in some administrative databases could thus ex-

plain the lack of diagnostic accuracy [108].

Key Finding 9
The quality of the reference standard used in the studies

aimed at the validation of algorithms to identify individu-

als suffering from commonly studied CNCP conditions

was variable, but many used medical chart review. When

choosing a validated CNCP algorithm, researchers

should be aware of the potential impact of the reference

standard’s quality on the estimation of accuracy

measures.

Key Finding 10
Measures of diagnostic accuracy of few algorithms were

presented across males and females (only in one study of

headache and/or migraine). Growing attention is given to

the importance of considering sex and gender in health

research [122–125]. Considering the relevance of these

health determinants to the pain experience [126, 127],

1832 Lacasse et al.



such subgroup stratification of validity results should be

achieved when possible.

Key Finding 11
According to the available literature, the diagnostic accu-

racy of case-finding algorithms for CNCP (all types con-

sidered) or specific conditions such as chronic

postsurgical pain, chronic post-traumatic pain, or phan-

tom limb pain has never been investigated. An earlier

study showed that as few as 0–0.36% of patients who

were enrolled in a chronic pain registry had an ICD-9

pain code (307.8, 338, 338.2, or 338.4) recorded in ad-

ministrative databases [108]. In another study, an algo-

rithm combining pain-related ICD-9 codes, opioid

medication, and pain scores was shown to be valid for

the identification of individuals suffering from chronic

pain in primary care electronic records [128]. Although

this algorithm was applied to Canadian health insurance

databases [129], its validity in such administrative claims

was never evaluated. One more time, this emphasizes the

need for studies aimed at the development/validation of

new case-finding algorithms, including ways to identify

patients no matter what type of CNCP they are suffering

from.

Study Limitations

Despite the development of a thorough search strategy,

about one-third of studies were retrieved through refer-

ence lists of articles included in the present review. This

demonstrates the difficulty of identifying studies about

chronic pain case-finding algorithms from electronic

searches and a possible lack of consistent terminology in

the scientific literature. Further studies should look at the

state of the situation and the development of recommen-

dations to that effect. Resource constraints brought us to

exclude a review of gray literature and an assessment of

the quality of reporting of included studies, for example,

using an appraisal tool such as the Quality Assessment of

Diagnostic Accuracy Studies (QUADAS) tool [130].

However, important quality components of validation

studies of case-finding algorithms were considered in the

interpretation of our results, such as the quality of the

reference standard used for validation, the reporting of

all key measures of diagnostic accuracy, and the external

validity of studies. As stated, our search strategy was

designed to capture studies about commonly studied

CNCP conditions. Another limit of our paper is the ex-

clusion of studies about rheumatic conditions (because

systematic reviews reporting acceptable diagnostic accu-

racy measures were already available [61–64]). In fact,

many recent studies have been published about the valid-

ity of arthritis case-finding algorithms [131–138].

Conclusions

A small quantity of algorithms with fair diagnostic accu-

racy is available to identify patients suffering from com-

monly studied CNCP conditions such as back and neck

pain, fibromyalgia, and migraine. However, their diag-

nostic accuracy should always be interpreted depending

on the intended purpose and considering the absence of

evidence regarding the replicability of findings across

studies and databases. According to the available litera-

ture, several CNCP conditions have never been the sub-

ject of validated algorithms (algorithms with poor

diagnostic accuracy or not developed/tested at all). The

present investigation informs us about the limited

amount of literature available to support the use of ad-

ministrative databases as valid sources of data for re-

search on CNCP. Considering the added value of such

data sources, the above-mentioned research gaps provide

important directions for future research. It should be

noted that linking administrative databases with other

data sources containing valid pain-related data (e.g., sur-

vey data, patient registries) is a valuable option until

more evidence is gained in the field.
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Guillain-Barrè syndrome. Neurol Sci 2002;23(3):

113–7.

85. Chastek BJ, Oleen-Burkey M, Lopez-Bresnahan

MV. Medical chart validation of an algorithm for

identifying multiple sclerosis relapse in healthcare

claims. J Med Econ 2010;13(4):618–25.
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