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Abstract
Copyright ©The authors 2021 Nontuberculous mycobacterial (NTM) pulmonary disease is a chronic respiratory infection associated with
declining lung function, radiological deterioration and significantly increased morbidity and mortality.
Patients often have underlying lung conditions, particularly bronchiectasis and COPD. NTM pulmonary
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a key objective of treatment, but there is high variability in lung penetration by antibiotics. Inhalation is the
Received: 11 Jan 2021 most direct route of delivery and has demonstrated increased efficacy of antibiotics like amikacin compared
Accepted: 1 May 2021 with systemic administration. Liposomes are small, artificial, enclosed spherical vesicles, in which drug
molecules can be encapsulated to provide controlled release, with potentially improved pharmacokinetics
and reduced toxicity. They are especially useful for drugs where penetration of cell membranes is essential.
Inhaled delivery of liposomal drug solutions can therefore facilitate direct access to macrophages in the
lung where the infecting NTM may reside. A range of liposomal drugs are currently being evaluated in
respiratory diseases.

Introduction

Nontuberculous mycobacterial (NTM) pulmonary disease is a serious, chronic, infectious disease that often
presents in patients with underlying chronic pulmonary diseases such as bronchiectasis, cystic fibrosis (CF)
or COPD [1]. NTM pulmonary disease is associated with a decline in lung function [2], radiological
deterioration, reduced quality of life and significant increases in morbidity and mortality [3-7].

NTM consist of more than 200 species and sub-species, separated into two groups according to growth rate

[8, 9]. The most common slow-growing NTM linked with human pulmonary disease are the

Mycobacterium avium complex (MAC) species, which include M. avium, Mycobacterium intracellulare

and Mycobacterium chimaera [10]. The most common fast-growing species causing NTM pulmonary

a disease is the Mycobacterium abscessus complex (MABC), which includes M. abscessus subsp. abscessus,
- M. abscessus subsp. massiliense and M. abscessus subsp. bolletii [1].
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NTM are environmental microorganisms and geographical distribution of species differs within and across
countries, climates, latitudes [11, 12] and water sources [13, 14]. Furthermore, mycobacterial species vary
in their clinical relevance and capacity to cause NTM pulmonary disease [15-18] and in their resistance
phenotypes and associated clinical treatment outcomes [19].

Pathophysiology of NTM pulmonary disease

The pathophysiology and factors involved in the occurrence of NTM pulmonary disease are largely
unknown. Airway infection probably occurs by inhalation or aerosolisation of particles or droplets
containing NTM, but the mechanisms through which NTM establish persistent infection in the lung,
bronchus and alveoli remain hypothetical (figure 1). NTM pulmonary disease is a difficult-to-treat
infection because of its ability to evade host defences and antimicrobial therapy through extracellular
persistence in biofilms [21-23] and sequestration into macrophages inside membrane vesicles where NTM
can replicate unhindered [24-26]. Once NTM enter the lung, whether disease follows is related to the
propensity for NTM within macrophages to resist the bactericidal response of alveolar macrophages and
the inflammatory response of the host, which is sometimes readily present as in the context of CF or
bronchiectasis [20, 25, 27, 28]. Recent studies have highlighted that suboptimal inflammatory responses to
NTM exposure may predispose to NTM pulmonary disease [29, 30]. Failure of NTM killing by
macrophages sets up a cycle of NTM uptake and release, leading to a cycle of chronic infection. Survival
of M. avium within eukaryotic cells such as macrophages has been extensively studied and there is also
increasing research into the potential role of environmental amoebae as a source of disease [26, 31-34].
Amoebae are prevalent in the environment; interaction of M. avium with amoebae facilitates an increase in
virulence [35] and may also select for NTM species best suited to survival within macrophages. M. avium
grown in amoebae has also demonstrated enhanced infectivity in a mouse infection model [29, 31, 35, 36].
Recently, M. abscessus has also been shown to persist within macrophages [37] and amoebae, and its
interaction with amoebae, as for M. avium, increases its virulence [38].

M. avium and M. abscessus also demonstrate morphological heterogeneity that contributes to the intrinsic
virulence of each species. For M. avium, three distinct morphotypes exist (smooth transparent, smooth
opaque and rough), thought in part to be dependent on the presence or absence of surface
glycopeptidolipids and degree of glycosylation [20, 31, 39]. Only the smooth transparent and rough forms
of M. avium multiply in macrophages and have demonstrated virulence in mice or can be cultured from
clinical samples [40]. It is worth noting, however, that all three morphotypes may be present inside the
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FIGURE 1 Nontuberculous mycobacterial (NTM) pulmonary disease pathogenesis from the environment to the lung. Multiple mechanisms of entry

into the macrophage: the vicious cycle of infection. Reproduced and modified from [20] with permission.

https://doi.org/10.1183/16000617.0010-2021



EUROPEAN RESPIRATORY REVIEW

NTM PULMONARY DISEASE | J.D. CHALMERS ET AL.

host simultaneously. Additional morphotypic switches exist within smooth transparent forms of MAC,
which also appear to play a part in driving increased virulence [41]. For M. abscessus, two morphotypes
exist (smooth and rough), with the potential for transition between smooth and rough [42] during lung
disease [43, 44] and in animal models. In the case of M. avium and M. abscessus, the R form (rough
form) appears more virulent in experimental models [31]. Once sequestered within macrophages, both
M. avium and M. abscessus can block phagosome maturation and phagolysosomal fusion [37, 45, 46].
For M. avium, this is through inhibition of vacuolar ATPase to prevent acidification and lysosomal
enzyme release [45, 47], and for M. abscessus this is via activation of the type VII secretion system
encoded by the esx4 locus [48].

NTM species, including M. avium, can also mediate the development of biofilms in airways, providing a
persistent extracellular environment that can evade host defences, activate macrophages to facilitate
phagocytosis [23, 49], reduce susceptibility to antibiotics and increase virulence [50-53]. It has also been
postulated that the ability of M. avium to form biofilms may be correlated with their ability to invade
bronchial epithelial cells and it is conceivable that colony morphotype may also play a role in this
correlation [54].

Together, macrophages and biofilms play an important role in propagating NTM, evading host defences
and preventing elimination by antimicrobial compounds, and their involvement explains the chronic nature
of, and the difficulty in treating, infections caused by NTM [55, 56]. As NTM pulmonary disease involves
airways, intracellular and even bronchiole-epithelial infection in some cases, it presents a highly
challenging disease for treatment [21, 57, 58].

In addition to macrophage sequestration and biofilm development, mycobacteria are characterised by thick,
lipid-rich, hydrophobic cell walls, incorporating polysaccharides, proteins and lipids, including
glycopeptidolipids, which render them impermeable to hydrophilic nutrients and resistant to antibiotics
[54, 59]. Consequently, NTM are intrinsically resistant to a wide spectrum of antibiotic agents, including
most drugs used to treat tuberculosis [60-62]. In addition, NTM utilise further mechanisms to inhibit
antibiotic efficacy, including the production of drug-converting and target-protecting enzymes, extrusion of
antibiotics via efflux pumps and acquired resistance through gene mutations [60, 62—66].

Treatment challenges of NTM pulmonary disease

Given the difficulties of biofilm penetration, macrophage sequestration and mycobacterial characteristics,
management of NTM pulmonary disease with antibiotics remains challenging [1, 24, 67]. Treatment of
NTM pulmonary disease usually consists of a combination of several oral and parenteral antibiotics
administered for an extended period of 18-24 months or for at least 12 months after culture conversion is
achieved, with the aim of achieving and sustaining culture conversion [19, 68]. Treatment success for
NTM pulmonary disease is variable, with a recent study in MAC [16] demonstrating treatment failure in
35.3% of patients due to treatment termination, recurrence, re-infection, treatment failure and relapse.
Treatment success for MAC disease was estimated in a meta-analysis as 52.3% (95% CI 44.7-59.9%) [6].
Other studies show that treatment success for MAC pulmonary disease is lower in patients with
fibrocavitary disease than in those with nodular-bronchiectatic MAC pulmonary disease [18]; treatment
success in this latter group exceeds 80% [18, 69], with macrolide-containing regimens in
macrolide-sensitive organisms more likely to succeed [70, 71]. The 5-year all-cause mortality rate also
varies between 5% and 42% across MAC studies, with death more likely in those with fibrocavitary
disease compared with nodular-bronchiectatic disease [6]. Treatment is even more challenging in those
infected with MABC, with success rates of between 45.1% and 51% [72, 73].

The poor treatment outcomes in NTM pulmonary disease are probably attributable to the intrinsic
resistance of the infecting organisms and the limited penetration of antibiotics into intracellular spaces and
biofilms [1, 67]. Ensuring efficient lung penetration to the site of infection, including intracellularly and
into biofilms, is therefore a key objective of treatment. Efficient lung penetration by antibiotics is
determined by the characteristics of the antibiotics themselves as well as the delivery mechanisms. Lung
penetration at the site of infection by systemically administered antibiotics is typically evaluated in humans
through the analysis of the epithelial lining fluid (ELF), and antibiotic penetration is measured as a ratio of
concentration of drug in serum versus concentration in ELF. Among antibiotics there is a high variability
in penetration [74-76]. As demonstrated in pneumonia studies, macrolides and tigecycline have relatively
good penetration into ELF; oxazolidinones, fluoroquinolones and ethambutol have moderate penetration;
and beta-lactam antibiotics, rifampicin and vancomycin demonstrate lower concentrations within ELF
(table 1) [75, 76].
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TABLE 1 Lung penetration of antibiotics

Antibiotic Ratio of Cg ¢/Crs or AUCE /AUCks

Beta-lactams

Meropenem 0.28-0.44
Macrolides

Azithromycin 5.6-115.56

Clarithromycin 20.65-303.75
Fluoroquinolones

Ciprofloxacin 0-3.04

Levofloxacin 1.23-4.62

Moxifloxacin 6.54-13.56
Others

Linezolid 3.45-12.10

Ethambutol 1.22-1.51

Rifampicin 0.83-1.70

Tigecycline 77.46

Vancomycin 0.42-0.91

Data are not derived from nontuberculous mycobacterial pulmonary disease studies. Cg r: concentration of
antibiotic in epithelial lining fluid; Crs: concentration of antibiotic in free serum; AUCg ¢ area under the curve
of antibiotic in epithelial lining fluid; AUCgs: area under the curve of antibiotic in free serum. Data from [75, 76].

As well as good penetration into ELF, macrolide antibiotics have also demonstrated effective penetration
with retained concentration in macrophages, and as such form the backbone of current NTM pulmonary
disease recommendations [68]. In other in vitro and ex vivo studies, tetracyclines such as minocycline have
demonstrated effective penetration of lung tissue and macrophages, and subsequent reductions in MAC
bacterial load [77]. Drugs such as aminoglycosides, however, are considered to have low penetration into
the lung. Indeed, a recent study in pneumonia demonstrated that standard clinical doses of amikacin
provide insufficient antibacterial levels in ELF [78].

Overview of liposomes

Lung antibiotic concentrations are the result of a complex interplay between drug delivery, drug
absorption, and mucociliary and macrophage clearance. For organisms evading host detection and
elimination in biofilms and macrophages, the use of liposomes may be of particular benefit. Liposomes are
small, artificial, enclosed spherical vesicles separating one aqueous medium from another by a
phospholipid bilayer [79, 80], which can effectively encapsulate hydrophilic molecules in the internal
aqueous core or sequester hydrophobic drugs in the lipid bilayer and provide a controlled release system
[81]. Liposomes are widely used as drug delivery nanocarriers, with the ability to transport agents to target
sites while minimising systemic exposure [79, 82-85]. They are classified by type (conventional,
theranostic, PEGylated and ligand-targeted [83]), size, lamellarity and surface charge [79, 82-85] (figure 2).

Being constructed from mammalian cell membrane-like constituents, liposome formulations are
biocompatible and biodegradable [79] and can penetrate biofilms [86] and intracellular spaces including
macrophages [67, 87]. Liposomes are attractive for drug delivery for a range of reasons, including their
pharmacological inactivity, ability to self-assemble, large aqueous centre to carry large drug “payloads”,
controlled drug release and potential for improved pharmacokinetics and reduced toxicity [88]; they are
especially useful for drugs where penetration of cell membranes is essential [67, 87].

Liposomal technology: rationale for use in infection

A range of liposomal drugs are currently used in clinical practice, such as amphotericin B and
doxorubicin, or are being explored in studies in a number of diseases, including cytotoxic drugs in lung
cancer, vasodilators for pulmonary arterial hypertension, antibacterial drugs for chronic lung infections,
and corticosteroids and budesonide for asthma, acute lung injury and acute respiratory distress syndrome
[82, 89-93]. A Cochrane analysis has also determined that systemic administration of liposomal
amphotericin B has efficacy across a wide range of patients with fungal infections, with reduced
nephrotoxicity compared with non-liposomal formulations [94].

Systemic administration of liposomes results in reticuloendothelial system accumulation, predominantly in
the liver, spleen, lungs, kidney, bone marrow and lymph nodes [83, 95]. Accumulation of liposomes in the
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FIGURE 2 Structure of liposomes for drug delivery. a) Conventional liposome. b) Theranostic liposome.
c) PEGylated liposome. d) Ligand-targeted liposome. PEG: polyethylene glycol. Reproduced and modified from
[83] with permission.

reticuloendothelial system triggers clearance by macrophage phagocytosis through direct liposome—
macrophage interaction. The accumulation of liposomes in the reticuloendothelial system, coupled with
high levels of this system in the lungs, suggests that direct delivery of liposome-encapsulated antibiotics to
the lung might be advantageous for respiratory disease, particularly to combat organisms residing in the
intracellular space.

Intravenously administered liposome-encapsulated amikacin has been shown in preclinical models to
effectively penetrate the lung [96] and macrophages after a single dose [97, 98]. However, in clinical
management, effective treatment of lung infections faces the challenge of achieving delivery of sufficient
antibiotic concentrations to the site of infection. Targeting the lung directly with inhaled formulations of
antibiotics achieves high pulmonary concentrations with potentially limited systemic exposure and so
potentially less likelihood of systemic toxicity [99]. Liposomal encapsulation of inhaled antibiotics
provides the additional benefit of potential for macrophage and biofilm penetration [67]. Studies in the
early 2000s explored liposomal encapsulation of antibiotics, including amikacin, for systemic delivery and
demonstrated rapid intracellular accumulation with a prolonged half-life and accumulation in the
reticuloendothelial system [83, 95, 100]. However, the ability of systemically delivered liposomes to reach
the point of NTM infection remains low despite this, and accumulation in the kidney following systemic
delivery of liposomal amikacin suggests the potential for nephrotoxicity. Furthermore, it is likely that
liposome-encapsulated antibiotics such as amikacin, if delivered systemically, would need to be given at
sufficiently high doses in order to reach the lungs. Liposomal encapsulated formulations of amikacin and
ciprofloxacin have demonstrated a greater ability to penetrate biofilms of Pseudomonas aeruginosa and
MAC than non-liposomal drugs [67, 86, 101]. In an in vitro study, liposome-encapsulated amikacin has
demonstrated effective penetration of both macrophages and biofilms infected with M. avium [67], and
nebulisation in mice demonstrated that effective lung deposition was greater than for nebulised free
amikacin, with liposomal amikacin being retained in the lungs for longer after dosing than free amikacin
[67]. Inhalation of antibiotics, including liposomal amikacin, provides high lung concentrations of
antibiotics that exceed the required minimum inhibitory concentration (MIC) and with demonstrated low
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systemic exposure [67, 102]. In a preclinical animal study in mice, administration of nebulised liposomal
amikacin was associated with a 10-fold higher deposition in the lung than intravenous amikacin, and the
mean peak plasma concentration was lower than with systemic delivery [67].

Inhalation is the most effective and direct route of delivery to the lung [79]. Advantages of inhaled
antibiotic administration include the potential to deliver high drug concentrations to the site of infection
that exceed the MIC, the bypassing of systemic circulation and reduction of systemic exposure compared
with parenteral or oral antibiotics, as well as prolonged drug residence time in the lung [92, 103-107].
Inhaled delivery of medications, including antibiotics such as non-liposomal nebulised amikacin, has been
shown to be more effective than systemic delivery in ventilator-associated pneumonia where it has been
explored for use against highly resistant pathogens such as Acinetobacter baumannii and P. aeruginosa,
but pivotal phase 3 studies have not been successful [99, 106-108]. Several other inhaled formulations
have also been used, including tobramycin in CF [109] and bronchiectasis [110].

Inhaled liposomal drug delivery in research and clinical practice

Treating lung diseases with liposomes requires effective and deep lung penetration and, for NTM
pulmonary disease, the targeting of biofilms and uptake into macrophages. Inhaled liposomal drugs can be
effectively delivered to the lung and intracellular space through a range of inhalation devices, including
pressurised metered dose inhalers, dry powder inhalers, soft mist inhalers and nebulisers [80]. Effective
lung deposition of inhaled liposomes requires droplets to be <5 um in diameter [92, 111]. Nebulisers are
the most used device to deliver liposomes in aerosolised droplets at the correct size [80, 92]. Increasing
target localisation provides options to maximise efficacy at lower drug doses, prevent the systemic
degradation of antibiotics and protect them from pulmonary clearance [79, 83, 112-114].

Examples of inhaled liposomal antibiotics evaluated in respiratory diseases include ARD-3150 and
amikacin liposomal inhalation suspension (ALIS; in Europe this is known as amikacin liposomal inhalation
dispersion). ARD-3150 is an inhaled combination of liposomal ciprofloxacin and free ciprofloxacin, which
has been explored in a range of studies in non-CF bronchiectasis [115-117]. Most recently, ARD-3150
demonstrated mixed results in two replicate phase 3 studies, meeting the primary outcome of prolonged
time to first exacerbation in ORBIT-4 but demonstrating no statistically significant benefit in ORBIT-3.
Anti-pseudomonal activity of the liposomal formulation was demonstrated in both studies, suggesting that
the inconsistent results may be related to patient population and design factors rather than formulation.

ARD-3150 has not been evaluated in clinical studies in NTM disease, but potential has been demonstrated
in animal models [118]. Most NTM species, particularly MAC, are susceptible to aminoglycoside
antibiotics (i.e. amikacin and streptomycin [60]) and these are recommended as part of current
guideline-based therapy (GBT) [17, 68]. However, amikacin accumulates poorly in cells such as
macrophages, which can limit its use against intracellular infections such as NTM [98]; furthermore,
improving access to the lung by dose and duration changes results in an increase in systemic exposure,
with the associated adverse events of ototoxicity and nephrotoxicity [119, 120]. Systemic exposure to
aminoglycosides, cumulative and daily area under the curve (AUC), and frequent dosing (at least twice
daily) are associated with an increased risk of nephrotoxicity, while cumulative amikacin exposure and
duration of treatment have been associated with ototoxicity risk [121-123].

ALIS is a nebulised liposomal formulation of amikacin, which was developed in recognition of the benefit
that inhaled amikacin would have on reducing systemic exposure, and because encapsulation into
liposomes has the potential to access the intracellular space where MAC resides. The liposomes in ALIS
are mostly unilamellar [124] and neutrally charged and have a diameter of 250-300 nm; they are stable and
can withstand the high sheer forces through the vibrating mesh Pari e-flow nebuliser (Pari GmbH,
Germany) [86, 124, 125]. Their composition closely resembles that of lung surfactant, with a 2:1 ratio of
dipalmitoylphosphatidylcholine (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) and cholesterol [86, 124].
Uptake of liposomal amikacin into the intracellular space of macrophages has been evaluated using
fluorescently tagged amikacin [67]. In these macrophages, mean fluorescence intensity was four-fold
greater with liposome-encapsulated amikacin compared with non-encapsulated, free amikacin, an effect
that was maintained at all concentrations of amikacin exposure (32, 64 or 128 ug-mL™").

ALIS increases lung exposure to amikacin compared with intravenous administration of non-liposomal
amikacin by 42-fold in lung tissues, 69-fold in airways and 274-fold in macrophages [67] and has been
shown to penetrate MAC biofilms in vitro [67, 86]. Lung deposition has been demonstrated in an
experimental human study with ALIS [126], with 43% of the dose loaded into the nebuliser reaching the
lungs; of this, 79% was retained at 1 h and more than half retained at 24 h [126, 127]. Furthermore, lung
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distribution in patients with NTM pulmonary disease and healthy volunteers has been shown to be
comparable, although penetration into cavities was not apparent in patients with treatment-refractory NTM
pulmonary disease [126, 128].

ALIS is authorised for use in the USA as “Arikayce” and in Europe as “Arikayce liposomal”. Efficacy
demonstrated in phase 2 [129] and phase 3 studies in patients with refractory MAC pulmonary disease
[130, 131] formed the basis for new drug applications in both locations. In the phase 2 study, patients
received ALIS (590 mg once daily; n=44) or placebo (n=45) for 84 days in a double-blind phase with an
option for a further 84 days of open-label treatment. The primary end-point was change from baseline in
mycobacterial growth, with secondary end-points of sputum culture conversion at day 84 and changes
from baseline in 6-min walk test and health-related quality of life. In this study, the primary end-point was
not reached (p=0.072), although 32% of patients demonstrated at least one negative sputum culture
compared with 9% of placebo-treated patients. Patients with sputum culture conversion were most
commonly infected with MAC (19 out of 23; 82.6%). Sputum culture conversion was sustained for 1 year
after treatment cessation in 64% of patients infected with MAC [129].

In the phase 3 CONVERT study, patients with refractory MAC pulmonary disease received nebulised
ALIS (590 mg once daily) plus GBT (n=224) or GBT alone (n=112) [130]. In this study, ALIS-treated
patients were more likely to achieve sputum culture conversion within 6 months than those receiving GBT
alone (n=112; 29% versus 8.9%, respectively; odds ratio 4.22, 95% CI 2.08-8.57; p<0.001). Patients who
converted were treated with ALIS for a further 12 months. Of patients who converted by month 6, 63.1%
(41 out of 65) remained converted when receiving ALIS for a further 12 months during the follow-up
period, compared with 30% (three out of 10) of patients treated with GBT alone [131]. When all treatment
was removed at the end of the follow-up period, patients were evaluated at 3 months to explore the
durability of clinical response. At 3 months post treatment, 41 of the 65 patients who converted at
6 months remained converted in the absence of all antibiotic treatment (63.1% of the original converted
cohort), compared with 0% in patients who received GBT alone [131].

ALIS plus GBT and GBT alone were generally well tolerated, with a comparable number of
treatment-emergent adverse events reported (98.2% versus 91.1%). Most treatment-related adverse events
were respiratory related, as could be expected, and most were mild to moderate in severity with few
(17.4%) leading to discontinuation of ALIS. The most common adverse events in >10% of the patient
population (regardless of treatment arm) were dysphonia, cough, dyspnoea and haemoptysis [130]. No new
safety signals were apparent with long-term treatment [131], which was comparable with the original study
[130]. In patients treated with ALIS in both phase 2 and phase 3 studies, there was low systemic exposure
to amikacin, with plasma concentrations below desired trough levels [127, 129]. The incidence of typical
amikacin adverse events of ototoxicity was higher in patients treated with ALIS plus oral GBT than in
those treated with GBT alone, which might be expected as the GBT alone regimens were not permitted to
contain amikacin. It is known that amikacin ototoxicity is associated with cumulative exposure and
duration of treatment with AUC values that exceed 50 mg-L~'-h [122, 123, 130]. Population
pharmacokinetic analysis of ALIS in the phase 3 CONVERT and phase 2 study demonstrated a relatively
low exposure to amikacin, with once-daily dosing of ALIS of <2 mg-L ™" and a median AUC from 0-24 h
of <20 mg-L™"+h [132]. The median AUC from day 1 to day 168 (6 months) is within <10%, suggesting
that systemic exposure remains stable and similar regardless of treatment duration and is notably lower
than that seen with parenteral amikacin [132]. Given the inhaled nature of ALIS, the risks of systemic
exposure are perhaps not surprising, and confirm early data where deposition of ALIS was confined
primarily to the lung with limited transfer into the bloodstream outside of the lung [67]. The most common
ototoxicity-related adverse event reported with ALIS in CONVERT was tinnitus [130]. One-half of all
reported audiological adverse events resolved with continued treatment with ALIS plus oral GBT by
month 6 [130].

Challenges

Challenges to the development of effective treatments for NTM pulmonary disease still exist and include a
need for new antimicrobials or targeted delivery of currently available antibiotics, as well as development
of preclinical models that improve drug candidate evaluation.

Many drugs that have performed well in preclinical studies have underperformed or failed in clinical trials.
This suggests the need for a complementary series of models that can replicate aspects of respiratory
disease and be effectively validated for use. In NTM pulmonary disease specifically, there is a need to
develop models that can accurately replicate aspects of disease such as cavitation or granuloma formation.
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There is also growing interest in animal-free models, such as the hollow-fibre model used by Rurh et al.
[77] to evaluate the pharmacodynamics of minocycline in NTM-infected macrophages.

Drug delivery is clearly one aspect open to scrutiny in treatments for NTM pulmonary disease. Inhaled
formulations of antibiotics may have demonstrated disappointing results in ventilator-associated
pneumonia, with several recent reviews noting the difficulties in clinical trial design, patient selection and
optimising administration in ventilated patients, which may have contributed to the limited benefit shown
in these studies [133, 134]. In NTM pulmonary disease, however, inhaled formulations are being explored
with some published success. For example, inhalation of clofazimine suspension in an in vitro model of
NTM demonstrated MIC values for MAC and M. abscessus of 0.125pg-mL™" and 2pg-mL~},
respectively, with good tolerability over repeated dosing and escalating doses shown in mice [135].
Similarly, a small case series of paediatric patients with CF and M. abscessus demonstrated potential
clinical utility of inhaled imipenem/cilastatin [136]. In a recent study in a mouse model of M. abscessus,
inhaled tigecycline was highly efficacious and demonstrated intracellular activity within macrophages, an
important finding given the limitations posed by intravenous tigecycline toxicity [137]. These studies,
along with established data of lung penetration of inhaled non-liposomal amikacin, support the rationale
that inhaled drug delivery can provide targeted delivery with the potential to limit systemic exposure.

Although inhalation of nebulised antibiotics provides effective access to the lung, solution formulations
may not provide adequate uptake into the intracellular space (i.e. macrophages). In these cases, liposomal
technology may be advantageous [83]. Targeted lung delivery of new or existing antibiotics through
inhalation of liposomal formulations could help to improve pharmacodynamic properties to treat lung
diseases [80]. Pharmacokinetic analysis of drugs involved in the treatment of MAC has an important role
in informing drug selection and duration of therapy. Targeted delivery with liposomes might be attractive
for drugs that require prolonged time above the MIC in order to be effective, such as beta-lactams and
oxazolidinones, or where time-kill analyses against MAC or M. abscessus highlight a rationale for poor
treatment outcomes [121, 138, 139]. Furthermore, the use of liposomes with ampicillin to limit antibiotic
resistance in Staphylococcus aureus has recently been explored and suggests that antibiotic activity can be
successfully increased through liposomal encapsulation and coating with a cationic polymer [140].

The horizon for NTM pulmonary disease is looking promising, updated guidelines have been launched in
2020 [68] and new antimicrobial approaches are being explored. In tandem with these advances are
approaches to monitor the course of disease and involve patients in their treatment through the use of
patient-reported outcomes (PROs) [141]. To these ends, methods such as blood-based monitoring,
serodiagnosis for early signs of disease, or assessments of humoral and cell-mediated NTM-driven immune
responses, may become routine [142, 143], as might PROs to understand the impact of treatment from the
patient’s perspective with the recently published NTM Module, which attempts to provide a validated PRO
for treatment response [144].

Conclusions

NTM pulmonary disease and MAC pulmonary disease present a significant clinical challenge due to the
ability of mycobacteria to evade host mechanisms and antibiotic therapy through biofilm formation and
sequestration into macrophages. While systemic administration of macrolides demonstrates effective uptake
into the lung and penetration into extracellular space, some other antibiotics used for NTM pulmonary
disease treatment demonstrate low rates of lung penetration and poor uptake into macrophages. As a result,
treatment outcomes for NTM pulmonary disease remain suboptimal and there is an urgent need for new
medications, new approaches to delivery, and new treatment regimens to tackle NTM pulmonary disease.

Inhaled delivery of antibiotics can increase drug concentrations in the lung but does not guarantee efficient
penetration of biofilms or macrophages. Liposomal technology provides an opportunity to deliver drugs
more effectively to the point of infection, with the additional benefit of improvement in pharmacokinetics
and tolerability. Uptake of liposomes in the reticuloendothelial system provides an opportunity for effective
uptake into macrophages and, when nebulised, a further chance to secure direct access to macrophages in
the lung, where the infecting NTM may reside. Given the ability of NTM to sequester within biofilms and
intracellular spaces including macrophages, it is imperative that antibiotics demonstrate effective targeting
of bacterial species regardless of their location. Inhalation of ALIS demonstrated uptake into macrophages
and biofilms in preclinical models, and these data are supported by clinical findings showing robust,
sustained culture conversion in patients with refractory MAC pulmonary disease. Specific and effective
targeting of the intracellular space in NTM pulmonary disease with ALIS suggests the potential to break
the vicious cycle of chronic NTM infection, whereby evasion of host defences in the macrophage can
continue to propagate disease.
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