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Developmental gene regulatory networks robustly control the timely activation of

regulatory and differentiation genes. The structure of these networks underlies their

capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I

illustrate how the use of specific architectures by the sea urchin developmental regulatory

networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling

pathway patterns the primary embryonic axis while the BMP signaling pathway patterns

the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly,

in the sea urchin in both cases, the signaling pathway that defines the axis controls

directly the expression of a set of downstream regulatory genes. I propose that this direct

activation of a set of regulatory genes enables a uniform regulatory response and a clear

cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of

the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple

positive feedback loop that locks down the pigment specification state. I propose that

the use of compound positive feedback circuitry provides the endodermal cells enough

time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate

decision. Thus, I argue that understanding the control properties of repeatedly used

regulatory architectures illuminates their role in embryogenesis and provides possible

explanations to their resistance to evolutionary change.

Keywords: developmental gene regulatory network, development and evolution, compound network motifs, sea

urchins, Wnt signaling pathway, BMP signaling, Delta-Notch signaling

INTRODUCTION

Robustness, the perseverance of phenotype through genetic and environmental changes (de Visser
et al., 2003), is a prominent property of embryo development. Thus, embryos can maintain their
morphologies through a wide range of temperatures and pH (Runcie et al., 2012; Pespeni et al.,
2013; Kuntz and Eisen, 2014) and within substantial genetic variation (Garfield et al., 2013).
This robustness of the developmental program relays on various levels of molecular control,
among them, transcription factor binding to the DNA, enhancer structure and the architecture
of developmental gene regulatory networks (reviewed in de Visser et al., 2003; Kitano, 2007; Payne
and Wagner, 2015). Here I describe the repeated use of specific network architectures in the sea
urchin developmental gene regulatory networks, and illustrate how they contribute to robust cell
fate decision.

The current model of the sea urchin developmental regulatory networks encompasses all
the embryonic territories up to gastrulation and is one of the most elaborate of its kind
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(Saudemont et al., 2010; Peter and Davidson, 2011; Materna
and Davidson, 2012; Ben-Tabou de-Leon et al., 2013). A major
strength of this network model is the extensive cis-regulatory
analyses conducted for many nodes (e.g., Nam et al., 2007; Ben-
Tabou de Leon and Davidson, 2010; Ransick and Davidson,
2012). Thus, the direct connectivity of this network is highly
reliable and can provide a systems level view of how network
architecture contributes to the precise control of embryonic axes
formation and germ layer specification.

Within the sea urchin regulatory network, specific network
architectures are repeatedly used to control various patterning
events at different embryonic territories (Ben-Tabou de-
Leon and Davidson, 2006; Peter and Davidson, 2009). These
network architectures are composed of multiple interconnected
common network motifs: switches, feedforward and feedback
loops (Ben-Tabou de-Leon and Davidson, 2006; Peter and
Davidson, 2009). The concept of “common network motifs”
originated more than a decade ago by Alon and colleagues that
identified typical three-node network circuitries overrepresented
in bacterial transcriptional regulatory networks (Shen-Orr et al.,
2002). Since then, similar and other network motifs were
identified in other biological systems and their intensive study
illuminates the relationship between motif structure and its
control function (Hornung and Barkai, 2008; Shoval and
Alon, 2010). Here I illustrate how compound interconnected
network motifs are used by the sea urchin developmental gene
regulatory networks and propose that their control properties
are utilized to ensure robustness and accuracy of cell fate
decisions.

WNT-βCATENIN REGULATION OF
PRIMARY AXIS FORMATION AND
ENDODERM SPECIFICATION

Extensive research had shown the extreme conservation of
the role of the Wnt-βcatenin signaling pathway in primary
axis formation and endoderm specification across metazoan
(Petersen and Reddien, 2009). The model of the sea urchin
developmental regulatory networks reveal how Wnt-βcatenin
spatial information is transformed into specific cell fate decisions.
The primary axis in the sea urchin embryo, the animal-vegetal
axis, is initiated by nuclear localization of βcatenin in all the cells
of the vegetal half of the embryo [Figure 1A, endomesodermal
lineages, B, βcatenin nuclearization pattern (Logan et al., 1999)].
When βcatenin enters the nucleus it forms an activating complex
with the transcription factor Tcf that otherwise forms a repressor
complex with Groucho. The βcatenin-Tcf switch initiates the
specification of both mesoderm and endoderm in the vegetal half
of the sea urchin embryo (Figures 1A–E).

βcatenin-Tcf switch directly activates the expression of a set
of endodermal regulatory genes, hox11/13, blimp1, foxa, and bra,
in a staggered manner [Figure 1C (Cui et al., 2014)]. That is, the
expression of each of these gene is turned on at a different time,
but their spatial expression overlap, at least at the earlier stages
of their expression (Minokawa et al., 2005; Livi and Davidson,
2006; Peter and Davidson, 2010, 2011). Each of these genes has

functional Tcf sites in its enhancers, indicating direct control of
Wnt signaling through βcatenin /Groucho-Tcf switch (Figure 1F,
Minokawa et al., 2005; Smith et al., 2007, 2008; Ben-Tabou de
Leon and Davidson, 2010).

At Mesenchyme blastula stage, βcatenin clears from the
mesodermal nuclei, first from the skeletogenic lineage and then
from the non-skeletogenic mesoderm [Figure 1B (Logan et al.,
1999)].When βcatenin is cleared from themesodermal nuclei the
Tcf sites on the enhancers of the endodermal genes control their
clearance from the mesoderm territories through Tcf-Groucho
mediated repression (Ben-Tabou de Leon and Davidson, 2010)
and thus regulate the endoderm—mesoderm cell fate decision
(Figure 1F, Peter and Davidson, 2011). Apparently, βcatenin-
Tcf acts as a permissive switch and restricts the expression of
these genes spatially, while their differential activation time is
defined by their specific activators (Figure 1F). I suggest that
this mode of regulatory circuitry decouples the spatial from the
temporal regulation and promotes a uniform spatial response
of all the endodermal genes. Thus, βcatenin-Tcf/Groucho-Tcf
switch ensures that the endodermal genes will be cleared from
the mesodermal domain at the right developmental stage and
guarantees a clear-cut cell fate decision.

DELTA-NOTCH ACTIVATION OF A TRIPLE
POSITIVE FEEDBACK CIRCUIT AND
MESODERM CELL FATE SPECIFICATION

The Delta-Notch signaling pathway is highly conserved in
metazoan and controls glial vs. neural differentiation (Gaiano
and Fishell, 2002). Early in sea urchin embryogenesis, the
gene that encodes the ligand Delta is activated indirectly
by the βcatenin-Tcf input in the skeletogenic mesoderm
(Figure 1D, Oliveri et al., 2008). The reception of Delta in the
neighboring tier of cells, Veg2, activates the gene that encodes
the transcription factor glial cells missing [GCM, Figures 1E,G
(Ransick and Davidson, 2006; Croce and McClay, 2010)]. GCM
then establishes a triple positive feedback loop by directly
activating the expression of the transcription factor GataE, that
activates the expression of the transcription factor Six1/2, that
feeds back to activate GCM expression (Figures 1E,G, Ransick
andDavidson, 2012). GCM-GataE-Six1/2 triple positive feedback
loop maintains the expression of these three genes in the pigment
cell lineage after Delta signal stops being received in these cells
(20 hpf in S. purpuratus, Figures 1D,E,G).

The tier of cells where GCM is first activated, Veg2, give
rise to both endoderm and non-skeletogenic mesoderm lineages
(Figure 1A, 12 hpf). When Veg2 cells divide, only the future
pigment cells remain in direct contact with the Delta secreting
SM cells, while the future endodermal cells lose this contact and
therefore lose the Delta signal (Figure 1A, 15 hpf). Hence, in the
endodermal cells the Delta signal is not received long enough
to establish the triple positive feedback loop so GCM expression
turns off there (Figure 1E, 15 and 20 hpf, Ransick and Davidson,
2006, 2012; Croce and McClay, 2010). The transient Delta signal
is practically filtered in the endodermal cells by the mesodermal
positive feedback loop to allow correct endodermal fate decision.
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FIGURE 1 | Sea urchin embryonic development and endoderm specification. Developmental time is described in hours post fertilization according the

developmental rate of the purple sea urchin, S. purpuratus. (A) Sea urchin endomesoderm cell lineage diagram. Color key is described in the figure. (B) βcatenin

nuclearization pattern, dark green indicates high concentration, light green low. (C) Spatio-temporal expression profiles of endodermal control genes. (D) Partial

(Continued)
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FIGURE 1 | Continued

endodermal GRN model depicting Tcf/βcatenin-Tcf/Groucho switch and regulatory interactions within the endodermal genes. (E) Spatio-temporal expression of the

Delta ligand. (F) spatio-temporal expression of non-skeletogenic mesodermal genes. (G) GRN model of the triple positive feedback loop that Delta reception activates

in the non-skeletogenic cells.

FIGURE 2 | Sea urchin dorsal-ventral patterning. (A) Sea urchin lineage diagram showing ventral (yellow) and dorsal (light green) ectoderm. (B) Partial model on

Dosrsal-Ventral patterning in the sea urchin depicting key regulatory processes in the ectoderm.

Previous theoretical studies of three component circuits show
that feedback circuitry is more efficient than other architectures
in buffering noise in the inducing signal while keeping high
responsivity to the level of the signal (Hornung and Barkai, 2008).
According to these studies, noise reduction in positive feedback
circuits results from effectively slowing the response dynamics
and allowing for better averaging of the induction signal over
time. Additionally, mathematical modeling of the kinetics of
positive feedback loops shows that compound positive feedback
circuitry is less responsive than single positive feedback loop
to low levels of activating signals (Ben-Tabou de-Leon, 2010).
These studies suggests that compound positive feedback circuitry
filters better low and transient signals compared to single
positive feedback loops and thus are a more reliable mechanism
for regulatory state lock down. This could be the reason for
the common use of compound positive feedback circuits by
developmental networks instead of single gene positive feedback
loop.

TGFB PATHWAYS CONTROL OF
SECONDARY AXIS AND ECTODERM
SPECIFICATION

The gene regulatory networks that pattern the secondary
embryonic axis, the dorsal-ventral axis of the sea urchin embryo,
use similar circuit architectures to those discussed above. Nodal
signaling directly activates the ventral ectoderm regulatory genes
that then interact with each other to form subdomains within
the ventral ectoderm [Figure 2 (Saudemont et al., 2010; Li et al.,
2014)]. Two of Nodal targets at the ventral ectoderm are the
ligand BMP2/4 and its inhibitor Chordin. Chordin inhibits
BMP reception at the ventral side so the mediator of BMP
signaling, the transcription factor SMAD1/5/8, is phosphorylated
and activates transcription only in the dorsal side of the
embryo (Figure 2B, Saudemont et al., 2010; Ben-Tabou de-Leon
et al., 2013). BMP operates in a feed-forward structure, directly
activating the expression of dorsal transcription factors that

then regulate one another forming compound positive feedback
loop (Figure 2B, Ben-Tabou de-Leon et al., 2013). Thus, BMP
provides a temporal cue that uniformly boosts the expression of
the aboral transcription factors at the exact time when the first
genes that specify the neighboring territory, the ciliated band, are
turning on (Ben-Tabou de-Leon et al., 2013).

CONCLUSIONS: PRECISE AND HIGHLY
CONSERVED CONTROL OF EXPRESSION
DYNAMICS

As we gain more information on the structure and function of
gene regulatory networks we can start asking why are specific
architectures used more than others and why are they so deeply
conserved? A recent paper revealed remarkable conservation of
regulatory gene expression dynamics between two sea urchin
species after 40 million years of independent evolution (Gildor
and Ben-Tabou de-Leon, 2015). The use of direct activation by
signaling pathways and compound positive feedback circuitry
described above could underlie this strong conservation of
expression dynamics and the observed robustness within
genotypic variance and different environmental conditions.

Direct activation by a signaling pathway might be a general
strategy used by developmental gene regulatory networks to
guarantees a uniform timely response of a set of key regulatory
genes. This strategy could also explain the deep conservation of
the role of Wnt and BMP pathways in primary embryonic axes
specification. If the activation of the downstream gene regulatory
network was in a cascade of regulatory interactions, there were
only a few regulatory changes required to replace Wnt or BMP
with alternative signaling input. It is much less likely to replace
Wnt or BMP signaling when they activate the entire set of
genes that define the endoderm or dorsal ectoderm specification,
respectively. Thus, the direct activation of large sets of regulatory
genes by signaling pathways might be important for clear cut
cell fate decision on one hand, and on the other hand imposes
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a strong constraint on the use of these signaling pathways in
developing embryos.

Similar argument could explain the extreme conservation of
well-studied compound positive feedback circuits. Specifically,
the compound positive feedback circuit that controls the lock
down of endoderm cell fate specification was conserved across
500 years of echinoderm evolution (Hinman et al., 2003);
the compound positive feedback circuit that controls heart
development is conserved between human and fly (Olson, 2006).
It seems that any regulatory change within these critical control
circuits must have reduced the circuit precision and therefore
had been selected against. Thus, understanding the control
properties of repeatedly used regulatory architectures illuminates

their function in developing embryos and provides possible
explanation to their resistance to evolutionary change.
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