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Abstract: Aging is associated with modifications of several brain structures and functions. These
modifications then manifest as modified behaviors. It has been proposed that some brain function
modifications may compensate for some other deteriorated ones, thus maintaining behavioral
performance. Through the concept of compensation versus deterioration, this article reviews the
literature on motor function in healthy and pathological aging. We first highlight mechanistic studies
that used paradigms, allowing us to identify precise compensation mechanisms in healthy aging.
Subsequently, we review studies investigating motor function in two often-associated neurological
conditions, i.e., mild cognitive impairment and Alzheimer’s disease. We point out the need to
expand the knowledge gained from descriptive studies with studies targeting specific motor control
processes. Teasing apart deteriorated versus compensating processes represents precious knowledge
that could significantly improve the prevention and rehabilitation of age-related loss of mobility.
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1. Introduction

The proportion of old adults in the world population is growing rapidly [1]. This
phenomenon results in an increased prevalence of age-onset neurological conditions,
thereby implying a heavy socio-economic burden [2-5]. An important part of this burden
is due to mobility impairments [6-8], which have significant repercussions on functional
autonomy and predict deleterious health outcomes [9-14]. Effectively improving the
prevention and rehabilitation of mobility loss requires a good understanding of motor
function in healthy and pathological older populations. This article presents a concise
review of the literature on motor function in healthy aging and two often-associated
neurological conditions, i.e., mild cognitive impairment (MCI) and Alzheimer’s disease
(AD). More specifically, this review aims at promoting studies that offer a mechanistic
understanding of motor function as an expansion of purely descriptive studies.

2. Deterioration and Compensation during Healthy Aging

Studies investigating age-related modifications of motor function have first focused
on peripheral neuromuscular factors—see [15] for a review. It is now well known that
alteration of the central nervous system (CNS) also significantly contributes to motor
dysfunction in older adults [16-19]. Modifications of the CNS can be structural and/or
functional [17,20]. Structural modifications refer to the degradation of brain structures
with aging (e.g., cortical atrophy), while functional modifications denote changes in how
these structures operate in the act of motor control. Some functional changes occurring
with aging may not systematically be detrimental to motor performance. Some changes
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may correspond to a function degradation, while others may benefit motor performance
and represent compensations for function degradations [17,20].

Cabeza et al., (HAROLD model; [21,22]) first raised the concept of functional com-
pensation in older adults. Using positron emission tomography and functional magnetic
resonance imagery, these authors investigated brain activations in young and older adults
during various cognitive tasks. According to their performances, Cabeza et al. (2002)
separated older participants into high- and low-performing groups. Their results showed
that whereas pre-frontal cortex recruitment was right-lateralized in young participants and
low-performing older adults, it was bilateral in high-performing older adults. The authors
proposed that this additional recruitment in high-performing older adults compensates for
age-related brain degeneration. Other studies, however, have proposed that such increased
brain activity may reflect an inability to select appropriate brain regions [23,24].

Increased brain activation in older individuals is also observed during motor tasks.
Increased activation of contralateral motor areas (premotor cortex, primary motor cortex,
and supplementary motor area) has been consistently reported [25-32]. Older individuals
may also recruit additional cortical and subcortical areas, including the ipsilateral motor
cortex, during motor preparation and execution [26-29,31-38]. Some studies suggest that
such increased brain activations are nonselective and do not impact behavioral perfor-
mance (dedifferentiation hypothesis; [17,22,23,33,38-41]). Others, observing significant
correlations between brain activations and behavioral performance, support the view that
increased activations compensate for age-related deterioration [26-28,37,42—44]. Figure 1
displays a graphical model (adapted from Papegaaij et al. (2014)) of deterioration and
compensation mechanisms in aging.
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Figure 1. A model of deterioration and compensation of the motor function with aging. Adapted from Papegaaij et al.

(2014). Aging alters the structure of the sensorimotor system, causing functional deteriorations (i.e., deterioration in

how these structures act during motor tasks) and decreased behavioral motor performances. Decreased performance

triggers the need for functional compensations (modifications in how brain structures act to attain motor goals) to maintain

behavioral performance. Dashed boxes provide examples of deteriorated and compensating modifications. Examples of

age-related structure alterations: degradation of sensory receptors [48-50], cortical atrophy [51-53], and loss of muscular

mass [54]. Examples of functional deterioration: noisier sensory integration [48,50] and nonselective brain activation [17,23].

Examples of behavioral modifications: slower and more variable movements [46,47] and loss of muscular strength and

power [45,54]. Examples of functional compensations: increased reliance on sensory predictions [55-57], increased internal model

recalibration [58], increased minimization of muscle effort [59], and overactivation of cortical areas during motor tasks [26].
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Overall, in the past two decades, the concept of functional motor compensation in
older adults has been a controversial subject of several brain imagery and stimulation
studies that have investigated brain correlates of motor performance. These performances
decline with age due to peripheral neuromuscular as well as central factors [15,17] and
include, amongst others, decreased muscle force [45], decreased movement speed [46], and
increased variability [47].

3. Mechanistic Studies of Motor Function in Healthy Aging

Insofar as modified behavioral performances result from the combination of deterio-
rated and compensating motor processes in older adults, coarse performance metrics—e.g.,
force, speed, or precision—are limited in their ability to study compensation mechanisms.
They can only measure the net result of compensation and deterioration. It is only recently
that behavioral studies have started to consistently and specifically address the concept
of functional compensation in older adults. Using paradigms that allowed one to target
and isolate specific motor control processes, several studies have highlighted possible
compensation mechanisms. Below, we list a few examples.

Wolpe et al. (2016) [55] investigated sensory attenuation—the reduction in the per-
ceived intensity of self-generated actions—via a force-matching task in a population-based
cohort (n = 325; 18-88 years). Results showed increased sensory attenuation in older adults.
Furthermore, inter-participant analyses revealed that the size of this effect was propor-
tional to the participants’ sensitivity. This result was also associated with measures of the
structural and functional connectivity of the pre-supplementary motor area. As increased
sensory attenuation suggests a stronger weighting of predictive signals, these results
support increased reliance on predictive signals to compensate for noisier sensory signals.

Helsen et al. (2016) [56] investigated the accuracy of wrist-aiming movements with
and without visual feedback, along with proprioceptive acuity in young and older adults.
Results showed similar accuracy across age groups for visual and non-visual conditions, but
older adults exhibited longer movement times and made more corrective sub-movements.
Although proprioceptive acuity decreased in older adults, it did not predict aiming behav-
ior. These results also argue for a strategy where older adults increase their reliance on
predictive control to compensate for decreased proprioceptive acuity.

Hoellinger et al. (2017) [57] asked young and older adults to make ecological reach-
grasp-lift movements with an object whose weight randomly varied across trials. The
authors then performed detailed kinematic analysis. Among other results, older adults
exhibited shorter movement times and spent more time accelerating than young adults.
Theoretical simulations explained these results as a strategy where older adults overesti-
mate the object’s weight and preferentially rely on predictive processes to compensate for
diminished sensory acuity.

Poirier et al. (2020) [59] investigated vertical arm movements in young and older
adults. The authors used a paradigm allowing them to test how motor planning adapts
motor patterns to the gravitational environment. Young adults are known to use an optimal
strategy that minimizes muscle effort. Directional asymmetries can quantify this strategy;,
i.e., differences between upward and downward movements [60-63]. Poirier et al. (2020)
observed that young and older participants exhibited qualitatively similar directional asym-
metries, thereby indicating that older adults can unfold the same effort-related optimization
strategy as young adults. Still, the size of the directional asymmetry was more extensive in
older participants than in young ones, further suggesting that subtle modifications of effort
minimization processes may exist with age. Grounded on previous modeling work about
gravity-related optimal motor planning [60-63], increased directional asymmetries in older
adults support increased optimization of gravity effects—i.e., increased minimization of
muscle effort—to compensate for muscle force decrease. During postural tasks, however,
results from other studies may instead support a strategy where older adults emphasize
equilibrium maintenance rather than effort minimization [64].
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Previous studies have shown that aging causes a reduction in motor adaptation [65-70].
It was, however, uncertain whether this decreased motor adaptation was due to explicit (i.e.,
cognitive) or implicit (i.e., internal model recalibration) components of motor adaptation.
Vandevoorde and Orban de Xivry (2019) [58] using paradigms assessing both components
and found that reduced motor adaptation is due to a decreased cognitive component in
older adults. Internal model recalibration was intact or even increased in older adults. The
authors, therefore, proposed that increased internal model recalibration could compensate
for the decreased cognitive component.

Such studies offer a deeper understanding of motor control modifications in the
aging population. Targeting precise motor control processes demonstrates that some
age-related modifications represent compensations for other deteriorated processes. For
example, contrary to the ancient view, these studies show that predictive processes are
still functional in older adults. In addition, predictive processes seem to be favored over
feedback processes to compensate for unreliable sensory signals. Teasing apart deteriorated
versus compensating processes represents invaluable knowledge that could significantly
improve the prevention and rehabilitation of age-related loss of mobility [9,71]. Such
knowledge is also crucial to effectively designing and interpreting neurophysiological
investigations [72,73].

4. Motor Function Studies in Pathological Aging: Alzheimer’s Disease (AD) and Mild
Cognitive Impairment (MCI)

AD is an age-related neurodegenerative disease associated with neurofibrillary tangles
and amyloid plaques, causing loss of memory, general cognitive decline, and eventually
dementia. The onset of AD may be preceded by MCI, known as a transitional stage between
healthy aging and AD and characterized by soft cognitive symptoms that do not function-
ally impact daily life [74]. These pathologies have long been considered as pathologies that
mostly affect cognitive functions. It is now notoriously known that mobility capacities also
are worse in AD and MCI populations than age-matched cognitively unimpaired older
adults. Overall, studies have reported slower gait speed, as well as a shorter and more
variable stride [75-87]. Balance and postural control are also impaired [77,78,88-95], and
kinematic studies investigating handwriting and finger-tapping movements have reported
fine motor control deterioration in MCI and AD patients [96-100].

The cognitive neuroscience concept of reserve, maintenance, and compensation [101]
and cognition—action theories [17] can propose a possible explanation for the motor decline
in AD and MCI. Reserve is the accumulation of brain resources during the life span, main-
tenance is the preservation of these resources via constant recovery, and compensation is
the deployment of new resources to execute a given constant task demand. The inability
to compensate for age-related degeneration could be framed as a lack of reserves or their
deterioration. Some studies suggest that higher cognitive reserves delay the onset of cogni-
tive symptoms in AD [102,103]. These reserves may compensate for brain degeneration at
the beginning of the pathology, but with the progression of deterioration, reserves become
insufficient to compensate for the pathology’s effects. Thus, compensation is no longer
possible, and symptoms appear. A parallel can be made for motor control deteriorations
in AD and MCI. As brain reserves decline, age-related changes can no longer be compen-
sated and become more salient (see Figure 1). Evidence showing that cognitive and motor
regions are functionally interdependent supports this view [104]. During challenging
motor tasks, older adults also recruit additional brain regions that were viewed as mainly
cognitive regions [28,105]. The strengthening of reserves therefore seems essential in the
prevention of pathological aging. The simultaneous execution of a motor and a cognitive
task is an excellent example of what can be tested during aging to probe the evolution of
cognition—-action interactions and inform geriatric rehabilitation [106].

Studies have shown that modifications of sensorimotor functions may precede the
onset of dementia [91,107,108] and that the presence of motor dysfunction could predict
adverse outcomes in AD patients, such as fall risk [9-14,84,85,108-111]. In MCI, studies
have also reported that motor function impairments are predictive of a higher risk of devel-



Geriatrics 2021, 6, 33

50f 10

References

1.

oping AD [79,98,108,112]. Aggarwal et al. (2006) investigated lower limb motor function in
an aged longitudinal cohort study. They quantified lower limb performance with an index,
including walking speed, sit-to-stand speed, and balance time on unipodal and bipodal
tests. Lower performance was associated with an increased risk of developing AD.

Because motor deficits, or at least their detection, seem to precede cognitive impair-
ment, one could use them as predictive diagnostic tools [84,91,98,113]. For example, in a
recent study, Ehsani et al. (2020) asked MCI patients, AD patients, and healthy controls to
execute repetitive elbow flexion on a dual task (counting backward by ones and threes).
Logistic ordinal models were able to predict the different groups” cognitive status from
measures of elbow angle variability and angular velocity. These models had good sensitiv-
ity and specificity and, thus, could be used to detect cognitive impairment in older adults.
Such tools could also predict cognitive capacities” evolution [98,108,114-116]. For example,
Chou et al., 2019 [117] evaluated the handgrip strength and gait speed of participants aged
60 and over. Over a 10-year period, they correlated the results with those of cognitive
tests (the Mini-Mental Score Examination and the Digit Symbol Substitution Test). Motor
measures were effective at predicting cognitive decline. All these results demonstrate
motor control impairments in AD and MCI patients. They also show that studying these
impairments is of particular interest for diagnosis purposes. These studies, however, mostly
assessed global motor function rather than specific motor control processes. Thus, they can
mostly observe the net result of degraded and compensating processes.

5. Final Remarks and Futures Perspectives

As illustrated above with regard to healthy aging, studying motor control processes
could allow a precious understanding of compensation versus deterioration mechanisms.
In addition, in pathological aging, this could (i) improve the efficacy of sensorimotor mea-
sures for diagnosis purposes, (ii) inform prevention programs about the loss of mobility,
(iii) benefit personalized medicine for frail older adults who notoriously present with
heterogeneous deficiencies [118], and (iv) generate new hypotheses about the physiopathol-
ogy/etiology of neurological diseases. There is a growing literature probing specific motor
control processes in healthy aging but a critical lack of such studies on pathological aging.
Building future studies within the deterioration versus compensation framework may
strongly benefit aging research and care. It is urgent to promote such studies [72].
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