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Predicting and affecting response to cancer therapy
based on pathway-level biomarkers
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Identifying robust, patient-specific, and predictive biomarkers presents a major obstacle in

precision oncology. To optimize patient-specific therapeutic strategies, here we couple

pathway knowledge with large-scale drug sensitivity, RNAi, and CRISPR-Cas9 screening data

from 460 cell lines. Pathway activity levels are found to be strong predictive biomarkers for

the essentiality of 15 proteins, including the essentiality of MAD2L1 in breast cancer patients

with high BRCA-pathway activity. We also find strong predictive biomarkers for the sensi-

tivity to 31 compounds, including BCL2 and microtubule inhibitors (MTIs). Lastly, we show

that Bcl-xL inhibition can modulate the activity of a predictive biomarker pathway and re-

sensitize lung cancer cells and tumors to MTI therapy. Overall, our results support the use of

pathways in helping to achieve the goal of precision medicine by uncovering dozens of

predictive biomarkers.
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The principle of precision medicine is to optimize medical
care by tailoring the treatment of patients based on their
genetic and molecular characteristics. To achieve this

goal, it is necessary to discover and develop biomarkers that
help decide which patients to treat (prognostic biomarkers) and
which therapy is most likely to be effective (predictive bio-
markers)1,2. However, identifying high-quality biomarkers that
are accurate and robust across different experimental conditions
is challenging.

For biomarkers that predict a cancer’s susceptibility to a drug,
detection of either (i) the presence of somatic DNA alterations or
(ii) specific gene expression patterns have been used. Of these
detection methods, the most common has been detection of
somatic DNA alterations in single genes (e.g., BRAF V600E
mutations are associated with response to BRAF inhibitors in
melanoma3–5), partly because measuring somatic mutations has
less noise and batch effects compared to measuring gene
expression6–8, and somatic events represent changes specific to
cancer cells. Biomarkers based on gene expression levels, on the
other hand, are less common because they are much more prone
to batch effects, can vary greatly among different cell types, and
are affected by the expression levels of genes in both cancer and
non-cancer cells. Despite these challenges, a few expression-based
biomarkers were shown to improve predictions beyond the tra-
ditional clinical and pathological parameters in various cancer
types9–13. Most of these biomarkers were based on using
expression levels across multiple genes or gene pathways rather
than single-gene biomarkers because they more reliably and
robustly predicted response14–17. Pathway-level methods were
also more robust against batch effects, thus enabling the aggre-
gation of data from various cohorts, resulting in highly significant
biomarkers18–22. Historically, identifying pathway-based expres-
sion biomarkers was limited due to the lack of large-scale gene
expression data from many cancer cell lines coupled with their
sensitivity to a large cohort of anti-cancer drugs. However, the
recent technological advances in gene silencing and editing
enabled the generation of large-scale gene essentiality data (i.e., by
CRISPR or RNA interference [RNAi]) in hundreds of cell lines
derived from many different tumor types. This source of gene
dependency data may enable the discovery of previously
unknown altered pathways that are predictive of a tumor’s
response to a drug. This can potentially uncover important bio-
markers for several cancer types and treatments that are not
possible to find at the single-gene expression level or through
somatic DNA alterations.

In this study, we aimed to identify novel pathway-based pre-
dictive biomarkers across multiple tumor types for the response
to different compounds by taking advantage of these recently
available large datasets. To analyze this wealth of data, we chose
to use a publicly available tool called PathOlogist23 that not only
takes into consideration the specific protein–protein interactions
in every pathway but also the interaction type and directionality
of the signaling pathways (e.g., activation, inhibition). Indeed,
accounting for the directionality of signaling pathways may
increase both the accuracy and robustness of the analysis over
other publicly available pathway-level tools that evaluate only
gene sets. Here, we integrate gene expression and drug sensitivity
datasets measured for hundreds of anti-cancer drugs across 460
cancer cell lines from 10 tissue types (breast, CNS, large intestine,
lung (NSCLC and SCLC), ovary, pancreas, skin, stomach, and
upper aerodigestive tract). To ensure robust findings, we use
pathway activity levels generated from both microarray and
RNA-seq data and tested their association with sensitivity mea-
sured in two different drug screening efforts, the Cancer Target
Discovery and Development (CTD2)24 and Genomics of Drug
Sensitivity in Cancer (GDSC)25. Furthermore, we (i) use highly

conservative analytical methods and (ii) validate our predictive
biomarkers using independent datasets as well as in patient-
derived xenograft models (PDX) and fresh human tumors grown
ex-vivo. Overall, our work illustrates the utility of identifying
pathways whose activity levels can be used to predict, and
potentially control, the response to specific compounds.

Results
Pathway activity levels are highly similar across platforms. The
discovery of novel robust disease biomarkers is a major challenge.
The reproducibility of such biomarkers across independent
platforms and datasets is an essential requirement before they can
become clinically relevant15–17. Previous studies suggest that
pathway-based biomarkers may have a higher reproducibility
than individual gene-based biomarkers18,19. This makes sense
from both biological and statistical standpoints since biological
processes often affect many genes simultaneously, offering the
opportunity to aggregate readouts across many genes and thus
extract a more stable metric from the “noisy” expression pattern
of individual genes. While a common way to calculate a score for
a pathway is to average the expression level of its member genes,
here we employed the PathOlogist tool23, as it uses the structure
of gene relationships within the pathway rather than treat the
genes as simply a uniform set of entities. For each interaction
node in a pathway, the PathOlogist tool calculates its potential to
occur by determining the expression of its input proteins. An
activity score of ‘1’ for an interaction indicates that all positively
regulating proteins are being highly expressed, while inhibitory
proteins are not expressed. The activity score of each of the
pathways (ranging from 0 to 1) is then calculated by averaging the
activity scores of all interactions within a pathway. A more
detailed explanation of how pathway activity scores are being
calculated can be found in the Supplementary Methods section as
well as in Greenblum et al.23. Importantly, taking into account the
structure of the pathway may have a major effect on the final
pathway activity score as compared to averaging the genes’
expression levels. For example, the positive or negative regulation
that each protein has on every interaction in the pathway is not
reflected by averaging gene expression. Also, hub proteins that
influence multiple interactions in a pathway will affect the
PathOlogist activity scores of all of these interactions, as opposed
to giving the same weight to all genes, if we simply average the
expression of all genes in the pathway (Supplementary Fig. 1a).

Overall, we used PathOlogist to calculate the activity score of a
total of 1028 curated pathways comprised of (i) the original 579
pathways already in the PathOlogist dataset including PID
pathways26 (Biocarta, KEGG, and Nature/NCI) plus (ii) an
additional 449 pathways that we added from PharmKGB27,
Wikipathways28, and SignaLinks29 (see “Methods” section). In
order to confirm the robustness of pathway-level activities, we
evaluated the consistency of gene expression and pathway
activities between experiments and platforms. We first took
advantage of gene-expression microarray data that was generated
for the same 438 cell lines at two different research centers: the
GDSC project from the Wellcome Trust Sanger Institute and
Massachusetts General Hospital25,30, and the Cancer Cell Line
Encyclopedia (CCLE) project from the Broad Institute and
Novartis31,32. To compare the stability of expression values of
genes and the stability of pathway-level activities, we studied the
distributions of Euclidean distances, a formal measure of
similarity, between the corresponding values for each gene and
pathway in these two datasets (see “Methods” section). Indeed,
the distances were much lower for pathways than they were for
individual genes (Fig. 1a), reflecting a higher similarity between
the two platforms when pathway activity levels were used rather
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Fig. 1 Pathway activity levels as predictive biomarkers. a Euclidean distance (ED) distribution of genes and pathways calculated from microarray data
from two different institutions (CCLE and GDSC) across 438 cell lines. Blue line: ED distribution between the pathways in the two datasets; red line: ED
distribution between the genes. P-values were generated using Mann–Whitney U-test. b ED distribution of genes and pathways between RNA-seq and
microarray data across 294 ovarian cancer patients. Blue line: ED between the pathways; red line: ED between the genes. P-values were generated using
Mann–Whitney U-test. c tSNE plot of the gene-expression levels in three tumor types and their adjacent normal tissue. Samples are colored by tissue type
and state (tumor/normal). d tSNE plot of the pathway activity levels in three tumor types and their adjacent normal tissue. Samples are colored by tissue
type and state (tumor/normal). eWorkflow pipeline depicting the data flow from the (i) Input data to (ii) the drug-based Classification step to (iii) the final
Results output. The quantile–quantile (QQ) plots are colored by tissue type. See also Supplementary Figs. 1–3.
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than single-gene expression. We further demonstrated that
pathway-level analysis could also help reduce experimental
platform effects by comparing RNA-Seq and microarray data
from 294 human ovarian tumors from The Cancer Genome Atlas
(TCGA; Fig. 1b).

To further validate the approach of pathway activity level
scores calculated by PathOlogist, we tested whether these scores
could better discriminate between normal and tumor states as
well as among different tumor subtypes. We analyzed TCGA
RNA-seq data from three different tumor types (breast, lung, and
thyroid) that had a large number of tumor and tumor-adjacent
normal samples. We used t-SNE dimensionality reduction33 to
visualize the data and observed that, when using individual genes,
the samples correctly partitioned according to the different tumor
types but did not clearly distinguish between the normal and
tumor states. In contrast, the t-SNE of pathway activities clearly
separated the normal and cancer samples, as well as the different
subtypes in breast cancer patients (Fig. 1c, d and Supplementary
Fig. 1b, c). To evaluate the robustness of the clusters, we used
three standard metrics (Silhouette34, Calinski–Harabasz35, and
Dunn index36), for which higher values indicate more robust
clustering (i.e., higher dissimilarity between clusters and tighter
clusters). Here again, we observed that pathway activity levels
cluster the samples more robustly (Supplementary Fig. 1d–f). To
verify that the robust clustering based on pathway activities was
not due to the different number of features used for clustering
(number of pathways and genes), we performed the analysis using
three sets of genes: (i) all 10,720 genes found in both microarray
and RNA-seq datasets; (ii) 2512 genes from the 1028 pathways,
(iii) and the 500 most variable genes. Indeed, pathway activity
levels yielded more robust clusters compared to all the three sets
of genes (Supplementary Fig. 1g–j). Furthermore, to test whether
the biological meaning of the pathways (i.e., the specific genes in
each pathway) are driving the signal, we randomized the pathway
memberships by shuffling the gene identities but keeping the
structure and number of genes in the pathway the same. We then
calculated the Euclidean distance between the results in both
cohorts and, as can be seen in Supplementary Fig. 1i, the
distances are indeed random. These results show that random
grouping of genes as pathways, without biological context, will
not yield meaningful results.

Using pathway activity levels to predict treatment response.
To see the possible benefit of using pathway activity levels as
biomarkers, and to see the differences between pathway-based
biomarkers and single genes or gene sets biomarkers, we initially
selected as input 460 cell lines from 10 cancer types for which we
had available drug-response sensitivity data to 481 compounds
from the CTD2 project. We additionally selected 254 and 307 cell
lines for which the essentiality scores of more than 10,000 genes
were tested by CRISPR or RNAi screens, respectively, in the
Achilles project37–39. The association between activity levels and
response was calculated within each tissue type separately to
allow the detection of cancer type–specific biomarkers.

To prioritize predictive biomarkers that are robust across
different platforms, we associated drug-response data with the
pathway activity scores calculated using both RNA-Seq and
microarray expression data of the cell lines. Cell line sensitivity to
the compounds was classified by calculating z-score values
derived from the area under the dose–response curve
(dose–response AUC; dr-AUC; Supplementary Data 1). All cell
lines with a z-score ≤−1.5 were tagged as ‘sensitive,’ and all cell
lines with z-score ≥ 0 were tagged as ‘not sensitive’ (see
“Methods” section; Fig. 1e and Supplementary Fig. 1k–m). Next,
we aimed to identify genes, gene sets, and pathways that were

significantly associated with sensitivity of the cell lines to each of
the drugs (using the Mann–Whitney U-test). We used (i) single-
gene expression for 10,225 genes; (ii) GSEA (gene set enrichment
analysis) with 50 hallmark and 4762 curated gene sets from
the Molecular Signatures Database (MSigDB40,41); (iii) GSVA
(gene set variation analysis) using the same gene sets as for GSEA,
and (iv) PathOlogist pathway activity levels for 1028 pathways
(Supplementary Data 2). Each of the ten cancer types were
analyzed separately, and false-discovery rate (FDR) correction for
multiple hypothesis testing42 was applied for each cancer type.
We were unable to identify any MSigDB gene set score, either
using GSEA or GSVA, that met significance (Fig. 1e and
Supplementary Fig. 1k–m). However, using the PathOlogist
activity scores, we identified 9 significant (q ≤ 0.05) and 31 near-
significant (0.05 < q ≤ 0.25) pathways in both microarray and
RNA-seq datasets. Within those identified, 25 pathways over-
lapped between the two platforms (Supplementary Information).
We further validated these results using independent datasets
(examples in Supplementary Fig. 2). Finally, to test if differences
in numeracy between pathway counts and gene counts affect the
number of significant results, we performed sensitivity and power
analysis (see “Methods” section). Results of these analyses show
that in both types of cell lines (NSCLC and skin melanoma), the
number of significant pathways (q < 0.25) increased with the
number of cell lines analyzed (Supplementary Fig. 4a, b),
suggesting the importance of analyzing a large number of cell
lines per tumor type (at least 30) for discovering significant tumor
type-specific pathways.

Pathways predict response to BRAF/MEK and EGFR inhibi-
tors. Two pathways predicted the response to BRAF and MEK
inhibitors in melanoma cell lines: the CREB and NFAT pathways
(Supplementary Figs. 2 and 3). The presence of a BRAFV600E

mutation is a known predictive biomarker for the sensitivity of
melanoma cells to BRAF and MEK inhibition43,44. As expected,
we found that the activity level of both pathways were highly
correlated with the presence of the BRAFV600E mutation in the
cell lines (note that BRAF and MEK are not part of these path-
ways, Supplementary Fig. 2a). Interestingly, it has been suggested
that a CREB-dependent mechanism may cause resistance to
BRAF–MEK inhibition in some melanoma patients43 and that
NFAT is activated by oncogenic BRAFV600E via canonical MEK/
ERK signaling in melanoma cell lines44. These results are thus
consistent with our observation that the CREB and NFAT
pathways are highly significant and robust biomarkers for pre-
dicting the response to BRAF/MEK inhibitors. In addition, we
also identified the activity of ‘MAPK inactivation of SMRT cor-
epressor pathway’ as a good predictive biomarker for the sensi-
tivity of EGFR-activated NSCLC cell lines to EGFR inhibitors. As
expected, this pathway correlated with the presence of activating
mutations in EGFR (Supplementary Fig. 4c, d).

IL2–STAT5 pathway predicts response to BCL2 inhibitors.
Cancer cells frequently adopt anti-apoptotic mechanisms that
help them survive internal and external signals that initiate pro-
apoptotic signaling. While excellent inhibitors were developed
over the years to block the anti-apoptotic defense mechanisms in
cancer cells (e.g., BCL-2 and Bcl-xL inhibitors), lack of specific
predictive biomarkers for their use has limited their utility.
Therefore, there is a clear unmet need for predictive biomarkers
for these drugs45.

Here, we identified the activity of the ‘IL2 signaling events
mediated by STAT5’ pathway (Fig. 2a) as a robust biomarker for
the response to two highly similar Bcl-2 protein–family inhibitors
(ABT-263 and ABT-737) in lung cancer cell lines. The activation
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of STAT5 proteins (STAT5a and STAT5b) is one of the earliest
signaling events downstream of the IL-2 cytokine and other IL-2
family members. This allows signals to quickly traverse from the
membrane into the nucleus46. In the nucleus, activated STAT5
dimers bind to specific DNA-response elements located in the
promoters of target genes to regulate various cellular responses,
including growth and survival47. STAT5 is constitutively

activated in several solid tumors, including prostate cancer48,
breast cancer49, nasopharyngeal carcinoma50, and head and neck
squamous cell carcinoma51. However, the precise role of STAT5
in epithelial carcinogenesis remains incompletely understood.

The ‘IL2–STAT5 signaling pathway’ contains 30 genes
(including BCL2 and BCL2L1) whose expression is directly
induced by STAT5. Low pathway levels were significantly
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associated with sensitivity to ABT-263 and ABT-737 in both
small-cell (SCLC) and non-small-cell lung cancer (NSCLC)
cell lines but not in any other cancer type, while high pathway
activity levels were associated with lack of sensitivity (Fig. 2b,
c and Supplementary Fig. 4e, f). This association was validated
in two independent datasets: the (i) GDSC drug-response
and (ii) NSCLC cell line52 datasets (Fig. 2d). While the
IL2–STAT5 signaling pathway activity level correlated well with
responses to inhibitors of the Bcl-2 family of proteins, we did not
observe a high correlation with any of the individual gene
components of the pathway (Supplementary Figs. 4g and 5a).
Moreover, the AUC calculated from receiver operating char-
acteristic (ROC) curve analysis from both microarray and RNA-
seq data was higher for IL2–STAT5 signaling activity than for
BCL2, BCL2L1, and BCL2L2 individual gene expression levels,
which are all targets of ABT-263 and ABT-737 (Fig. 2e and
Supplementary Fig. 5b) along with MCL1, a gene that when
overexpressed is known to confer resistance to these com-
pounds53. Interestingly, analysis of IL2–STAT5 signaling levels of
NSCLC patients from TCGA showed high variability in pathway
activity levels, suggesting that a sub-population of patients may
benefit from treatment with BCL2 inhibitors such as ABT-263
and ABT-737 (Supplementary Fig. 5c). Collectively, these data
suggest that IL2–STAT5 pathway activity can predict cellular
sensitivity to Bcl-2 inhibitors in lung cancer with higher
specificity and sensitivity than evaluating single genes in the
Bcl-2 family alone.

AIF pathway predicts lung cancer response to MTIs. Micro-
tubules (MTs) are important for many cellular functions invol-
ving the cytoskeleton54–57. Because of their essential role in cell
division, MT inhibitors (MTIs) are used in the treatment of many
solid and hematologic malignancies58,59. Here, we identified the
activity of the apoptosis-inducing factor (AIF) pathway as a
strong predictor for response to four different MTIs in both SCLC
and NSCLC (Fig. 3a, Supplementary Figs. 5d, e and 6a, b). The
AIF pathway is composed of three genes—PARP1, BCL2, and
BCL2L1. AIF1 is a mitochondrial intermembrane flavoprotein
that translocates to the nucleus in response to pro-apoptotic
stimuli, such as initiated by PARP1, and induces nuclear apop-
tosis. The anti-apoptotic proteins, Bcl-2 and Bcl-xL (encoded by
BCL2L1), block AIF1 translocation by directly sequestering
members of the pro-apoptotic proteins like Bax. Interestingly,
MTIs were shown to promote the release of Bax from Bcl-xL by
inducing phosphorylation of Bcl-xL60. We reason that the high
activity level of the AIF pathway reflects the pro-apoptotic pull in
the delicate balance between anti- and pro-apoptotic forces.
Treating cells that have high AIF pathway activity with MTIs may
cause a drastic shift in this delicate balance by releasing large
amounts of sequestered Bax proteins and tipping the balance into
apoptotic cell death.

Interestingly, the expression levels of each of the three genes in
the AIF pathway poorly classified the lung cancer cell lines as
responders or non-responders to MTI (Supplementary Fig. 6c).
However, the AIF pathway activity levels better predicted cellular
response to MTIs than any of the single genes in the pathway
(Fig. 3b). In fact, none of the known 14 Bcl-2 family-related genes
was significantly correlated with MTI response (Fig. 3c and
Supplementary Fig. 6e), demonstrating again that integrating the
signals at the pathway level can significantly improve the
classification of drug-response sensitivity compared to single
genes. Of note, while we screened 10 apoptosis and cell survival-
related pathways, only the AIF pathway could predict MTI
response in a statistically significant manner (Supplementary
Fig. 6d). Importantly, we found that the activity level in the AIF

pathway correlated significantly with the response to MTIs in
additional unrelated datasets (Fig. 3d). In the GDSC database,
only 4 of the 63 tested lung cancer cell lines were sensitive to
vinblastine, a clinically used MTI, and the average activity levels
for the AIF pathway in these 4 responding cell lines were
significantly higher than the average activity levels of the non-
responding cell lines. Additionally, in the TCGA dataset, we
identified 16 lung adenocarcinoma patients with a documented
response to vinorelbine, another clinically used MTI. Patients
exhibiting complete response had much higher AIF pathway
levels than patients with progressive disease. Taken together,
these data demonstrate that the AIF pathway level is a strong
predictive biomarker for the response of lung cancer cells
to MTIs.

Increasing the AIF pathway sensitizes lung cancer to MTIs.
Thus far, our results have suggested that different pathway levels
can predict response to specific therapies in various tissue types.
We next sought to determine whether we could alter drug
responses in cancer cells by modulating the activity levels of a
predictive pathway. Specifically, we tested whether increasing the
activity levels of the AIF pathway (Fig. 4a) in lung cancer cells
could, as a consequence, increase their sensitivity to MTIs. As a
significant negative correlation was observed between AIF path-
way activity and the mRNA expression of Bcl-xL (Supplementary
Fig. 7a), we hypothesized that targeting Bcl-xL could increase AIF
pathway activity levels and induce cellular sensitivity to MTIs. We
first selected three lung cancer cell lines from the CTD2 database
that were resistant to vincristine (H460, Calu1, and H1650), one
partially resistant cell line (HCC2935), and one cell line that was
highly sensitive (H211). We measured the expression levels of the
pathway genes using RT-qPCR and found, as expected, that the
sensitive cell line H211 had a higher AIF pathway activity level
than the four resistant cell lines (Fig. 4b). We then treated all five
cell lines with ABT-263 and found that it increased AIF pathway
activity levels in three out of the four resistant cell lines (Fig. 4b);
only H460 did not alter the AIF pathway activity. In addition, co-
treatment of the cell lines with both ABT-263 and vinorelbine
resulted in comparable or higher activation of the AIF pathway in
the same three cell lines, as measured 24 h after treatment, but
again not in H460.

To assess whether increasing AIF pathway activity levels could
sensitize cancer cells to MTIs, we treated the cell lines with
vinorelbine together with ABT-263 or DMSO control for 7 days.
In the three cell lines where ABT-263 increased AIF pathway
levels, we observed significantly increased sensitivity to vinor-
elbine. In contrast, the ABT-263–treated H460 cell line remained
insensitive to vinorelbine, a result consistent with the inability of
ABT-263 to alter AIF-pathway activity in this particular cell line
(Fig. 4c). Bliss independence analysis confirmed that ABT-263
did synergize with vinorelbine in four out of the five cell lines
(Fig. 4d). Thus, our results suggest that the identified AIF
pathway not only correlates with and predicts drug sensitivity but
also has a causal role, wherein altering the AIF pathway can
modulate cellular response to MTIs. Interestingly, while this is the
first time that a synergistic effect between MTIs and Bcl-xL
inhibition has been demonstrated in lung cancer, a synergistic
activity between these drugs was also demonstrated in other
cancer types60.

To further demonstrate the synergistic activity of ABT-263 and
MTIs in human lung cancer, we used a NSCLC patient-derived
xenograft (PDX) model. PDX tumors were removed and
sectioned into 250 μM slices (see “Methods” section) and then
treated ex vivo with (i) DMSO, (ii) Navelbine (vinorelbine), (iii)
ABT-263, or (iv) a combination of the two drugs. Four biological
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repeats were carried out, each using four PDX tumors, and tissue
viability was assessed by H&E staining (Fig. 5a, b). In agreement
with our in-silico and in-vitro results, we found that while
Navelbine and ABT-263 only weakly affected the tumors when
administered alone, a complete or near-complete response was
observed in all PDX tumors that were treated with the drug
combination (Fig. 5b). In addition, an increase in apoptosis was
observed when treating the tumors with the combined treatment,
as determined by cleaved caspase-3 staining (Supplementary
Fig. 7b). Furthermore, a fresh tumor from a 71-year-old
treatment-naive NSCLC patient was treated ex vivo as described
above. Tissue viability was assessed and scored using the Modified
Ryan Scheme for tumor regression score. Once again, the
combined treatment of ABT-263 and Navelbine had a larger
effect on response (Fig. 5c) as compared to the administration of
either ABT-263 or Navelbine alone. RNA was extracted from the
FFPE blocks before and after treatment, and qRT-PCR was then

performed in order to calculate the pathway activity levels
(Fig. 5d, e). We found that AIF pathway activity levels were low
before treatment and then increased after being treated with the
drug combination both in PDX-mice and in the fresh human
tumor, supporting our previous results (Fig. 4).

Taken together, our results highlight (i) the sensitivity of lung
cancer cells with high activity of the AIF-apoptosis pathway to
MTIs, and (ii) the synergistic effect of Bcl-xL and MTIs in lung
tumors with initial low activity level of the AIF-apoptosis
pathway.

Signaling pathway levels predict gene essentiality in cancer.
Over the last decade, multiple genome-wide functional genomic
screens identified genes that were essential for the proliferation
and survival of cancer cells61–67. While specific inhibitors
are available for some of these targets, many others are still
lacking clinical-grade small-molecule inhibitors. The presence of
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predictive biomarkers for the essentiality of specific genes may
prioritize the development of such small molecules or RNAi
interventions that can target these genes.

To test whether pathway activity scores can serve as predictive
biomarkers for the essentiality of genes, we used genome-wide
RNAi and CRISPR screens from the Achilles project testing gene
essentiality. Overall, we were able to find pathway activity levels
that significantly predicted the essentiality of 16 genes (Supple-
mentary Information). For example, the ‘IL2 signaling events
mediated by PI3K’ pathway (ngenes= 32; Supplementary Fig. 8a)
could predict the essentiality of BRAF in melanoma cell lines
(Supplementary Fig. 8b). Interestingly, we found that low
pathway activity levels were associated with sensitivity and
overlapped with the BRAFV600E mutation (Supplementary
Fig. 8c–e), which is known to correlate with sensitivity to
inhibition of BRAF activity68. Two of the novel biomarkers of
gene essentiality that we found are highlighted below.

Stathmin pathway predicts NSCLC sensitivity to CLTC RNAi.
Clathrin heavy chain 1 (CLTC) is an important component of the
cytoplasmic face of intracellular organelles. CLTC also plays an
important role in mitotic spindle assembly and chromosome
congression in the metaphase plate through a microtubule-
mediated mechanism69. It colocalizes with β-tubulin (TUBB) at
the mitotic spindle, and the appearance and disappearance of
CLTC along with TUBB occurs during spindle activity70. Inhi-
bition of CLTC was previously shown to induce apoptosis in
colon cancer cell lines by disrupting bipolar spindle formation71.
As such, it may play an important role in determining cellular
sensitivity to chemotherapeutic agents72.

Here, we show that elevated stathmin pathway activity level is
highly associated with sensitivity to CLTC inhibition by RNAi
(Fig. 6a) in NSCLC cell lines. In agreement with this observation,
we found that the sensitivity of NSCLC cell lines to the CLTC
inhibitor PITSTOP2 also correlated with stathmin pathway
activity (Fig. 6b). We found that the stathmin pathway (ngenes
= 15, Fig. 6c) is either always on (large intestine, pancreas, and
stomach) or always off (CNS and skin), with variability only
observed in lung, ovary, and breast (partial variability) tissues
(Supplementary Fig. 8f). Nevertheless, this pathway only had
statistical power to predict CLTC essentiality in NSCLC. When
comparing the ability of the stathmin pathway to predict
sensitivity to CLTC inhibition with single genes, we found that
while a few single genes in the stathmin pathway did also
correlate with the essentiality of CLTC in NSCLC cell lines, the
stathmin pathway activity score consistently exhibited the highest
correlation and area under the ROC curve (Fig. 6d and
Supplementary Fig. 8g).

Interestingly, we found that stathmin pathway levels were
highly elevated in NSCLC tumors as compared to normal lung
tissues in four different NSCLC datasets73,74 (GSE31547 unpub-
lished) and in > 500 TCGA patients (Fig. 6e). Although normal
lung tissue contains a mix of different cell types and not just the
epithelial cells that give rise to NSCLC, this finding may imply the
existence of a therapeutic window for CLTC inhibition in lung
cancer. Taken together, these results suggest that the activity of
the stathmin pathway may serve as a predictive biomarker for the
essentiality of the CLTC gene in NSCLC.

BRCA pathway predicts MAD2L1 essentiality in breast cancer.
Approximately 12% of women in the general population will
develop breast cancer during their lives75. In contrast, approxi-
mately 72% of women who inherit a pathogenic BRCA1 mutation
and 69% of women who inherit a pathogenic BRCA2 mutation
will develop breast cancer by the age of 80. While breast cancer

tumors with BRCA mutations are more susceptible to treatment
with PARP1 inhibitors, there is still a great clinical need for novel
drugs that can be used to treat advanced BRCA-mutated breast
cancer.

Here, we found that high activity levels of the pathway ‘Role of
BRCA1, BRCA2, and ATR in cancer susceptibility’ (BRCA
pathway; ngenes= 17 , Fig. 6h) were highly associated with
MAD2L1 essentiality in breast cancer cell lines (Fig. 6f). This
result was validated using data from Project DRIVE76, a genome-
wide shRNA screen from Novartis (Fig. 6g). The BRCA pathway
is composed of genes upstream of BRCA1/2 that control cell cycle,
DNA repair, cell division, and cell death (Fig. 6h). In particular,
MAD2L1 is an essential cell cycle-associated protein that
functions as a spindle assembly checkpoint protein that prevents
the onset of anaphase until all chromosomes are properly aligned
at the metaphase plate77. MAD2L1 overexpression leads to
chromosomal instability in lung cancer and short survival78, and
has also been associated with early metastasis in breast cancer79.

Five breast cancer cell lines were positive for pathogenic
BRCA1/2 mutations. Interestingly, all of them were part of the
MAD2L1-essential group (Fig. 6f), implying a possible connection
between the essentially of MAD2L1 and BRCA1/2 mutational
status.

While BRCA1 and BRCA2 expression levels themselves cannot
predict the presence of pathogenic mutations in these genes
(Supplementary Fig. 8h), BRCA pathway levels highly correlate
with the presence of pathogenic mutations in these genes. Indeed,
we found a significant association between the presence of
BRCA1/2 pathogenic mutations and high BRCA pathway levels in
6 different breast cancer datasets (Fig. 6i). Accordingly, ROC
curve analysis demonstrated the high predictive power of BRCA
pathway activity levels of BRCA1/2 pathogenic mutations as
compared to any single gene in the pathway (Supplementary
Fig. 8i).

Overall, these results uncover a potential link between
MAD2L1, BRCA1/2 pathogenic mutations, and high levels of
BRCA pathway activity. Our results point to a subpopulation of
cell lines that have a high activity level of the BRCA pathway
despite the absence of a known BRCA1/2 pathogenic mutation.
This may highlight the potential of MAD2L1 to act as a possible
therapeutic target not only in BRCA1/2-mutated breast cancer but
also in a wider group of patients with a high activity level of this
pathway.

Discussion
In order to select the best drug treatment strategy for a given
individual tumor, better predictive biomarkers of tumor response
are clearly needed, but finding accurate and robust biomarkers
has proven to be a challenge due to underpowered studies and the
use of single genes or gene sets with only a few genes.

One effort to identify and benchmark methods for predicting
therapeutic response is the NCI-DREAM drug sensitivity pre-
diction challenge80. This effort identified the top-performing
approaches as those that modeled nonlinear relationships and
incorporated biological pathway information. Furthermore, gene
expression consistently provided the best predictive power com-
pared to other genetic or epigenetic datasets. A second effort for
inferring genetic predictors of gene essentialities81 also found that
gene expression was the most informative molecular data type.
However, as described in these two efforts, integration of addi-
tional genetic and epigenetic data types can improve the overall
predictive power. Here, we used knowledge about protein–protein
interactions within pathways and gene expression data, but as
suggested by these two efforts, future integration of additional
data types might enhance the performance of our predictions.
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By incorporating multiple available novel datasets and tools
that take into account the combined influence of different com-
ponents of a pathway, we were able to find a large number of
novel biomarkers as well as the following other important
advances in discovering biomarkers based on pathway-based
analyses: (1) our results demonstrate that relatively large cohorts
of cell lines from each cancer type are needed in order to be
powered enough to detect statistically significant biomarker

pathways (Supplementary Fig. 4a, b). Indeed, we made use of
relatively recent datasets measuring both the expression pattern
of hundreds of human cancer cell lines and the sensitivity of the
same cell lines to hundreds of drugs, or to genome-wide gene
targeting by both shRNA and CRISPR. (2) We chose the
PathOlogist tool that takes into account prior knowledge about
the structure of each pathway to calculate the pathway activity
scores and enhanced the functionality of this tool by extending its
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database of pathways. (3) By taking a highly conservative
approach for defining significant associations to minimize false
positives results, we were able to validate all our findings in
unrelated datasets and a few chosen ones by experimental follow
up. Thus, our findings add new validated biomarkers to the list of
previously defined pathway biomarkers for predicting drug
response in the literature, such as (i) a five-gene hedgehog sig-
nature that can identify Hedgehog-activated tumors in medullo-
blastoma82 and (ii) a p53 signature that can refine the selection of
patients that will likely respond to p53–MDM2 inhibitors83.

One can consider biomarkers that are based on pathway-level
activities as a way of combining and improving the performance of
multiple gene-level biomarkers, and thus increasing the confidence
and accuracy of therapeutic decision-making in the clinic82.
Importantly, biomarkers can provide guidance on which patients to
treat, or not treat, with a specific drug. It is also possible that
pathway-level biomarkers may turn out to be more powerful
exclusion, rather than inclusion, criteria for some therapies.

RNAi therapy is an emerging approach for achieving precision
cancer therapy83 and could potentially be used to follow-up on
biomarkers found by pathway analysis. Since our data show that the
analysis of pathways can predict biological responses, it is reason-
able to consider that this type of analysis will yield good candidate
pathways for RNAi therapy. Our analysis of RNAi and CRISPR-
Cas9 screens identified novel genes in multiple tissue types that may
not only serve as predictive biomarkers for response to different
drugs but also as potential therapeutic targets.

It is important to note that one limitation of our biomarker
discovery approach is that the activity of pathways is not always
regulated, or at least not always reflected, by mRNA abundance.
Indeed, regulation of protein translation and different post-
translational modifications (e.g., protein phosphorylation) can
commonly affect protein activity levels and the resulting pathway
activities. For pathways in which the activity level is not reflected
by changes in the expression patterns of the pathways’ members,
our analysis will be underpowered and likely miss a potential
association with response, resulting in false-negative results. We
speculate that the activity of pathways controlled by transcription
factors may be easier to detect by gene expression data. Never-
theless, even classic signaling pathways that propel the signaling
flux along the pathway via post-translational modification events
commonly affect downstream transcriptional activity, and thus
may also be detected by mRNA expression data.

It should also be noted that while the PathOlogist tool takes
into account prior data about protein–protein interactions, as well
as the interaction type and directionality, these connections can
change among different tissues and cancer types. Future avail-
ability of tissue-specific connections may result in even better and
more accurate predictive biomarkers. Still, our ability to find and
validate multiple novel biomarkers speaks to the fact that, at least
in some, the pathway expression data coupled with prior

knowledge of the interactions between the proteins in the path-
way and their directionality is reflective of the pathway’s activity.

In summary, personalized predictive biomarkers can help us
identify which tumors will be sensitive to a certain drug. The
work presented here provides evidence that our novel, stringent
methods can confidently identify pathways that can serve as
robust and powerful biomarkers. Based on our findings, which we
validated in several independent datasets and in human-derived
cell lines and tumors, we propose a way of identifying new and
clinically relevant therapeutic combinations that take into
acccount a patient’s specific molecular expression pattern. Finally,
based on our sensitivity analyses, we observe a rapid increase in
the number of pathway-level biomarkers with the number of cell
lines of a given tumor type (or subtype); hence, we expect addi-
tional biomarkers to be found with larger drug-sensitivity and
gene-dependency datasets.

Methods
Cell lines. All cells were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Invitrogen, #10569-010) containing 10% fetal bovine serum (FBS) and
1% penicillin–streptomycin with glutamine (Invitrogen, #15140-122). For green
fluorescent protein (GFP) expression in the cancer cell lines, lentiviral transduction
was carried out using the pLex_TRC206-GFP plasmid.

Ex-vivo organ culture. Mouse experiments were performed in accordance with the
Institutional Animal Care and Use Committee (IUCUC) guidelines. Patient-
derived xenograft (PDX) models were purchased (The Jackson Laboratories, model
number TM00204) by the Weizmann Institute and licensed for institutional use.

Mice were euthanized with CO2, and the tumor tissues were removed and
placed in ice-cold PBS. Tumors were sliced to 250-μM thick slices using a
vibratome (VF300, Precisionary Instruments, Boston USA), placed in 6-well plates
on titanium grids (Alabama R&D, Munford, USA) with 4 mL of DMEM/F12
medium (supplemented with 5% FCS, penicillin 100 IU/mL with streptomycin 100
μg/mL, amphotericin B 2.5 μg/mL, gentamicin sulfate 50 mg/mL, and L-glutamine
100 μL/mL). Tissue was cultured at 37 °C, 5% CO2, and 80% O2, on an orbital
shaker (TOU-120N, MRC) at 70 rpm. The following day, tissue was treated with
drugs as indicated for 96 h, followed by formalin-fixed paraffin embedding (FFPE)
after overnight fixation.

Fresh lung tumor tissue was obtained from an untreated 71-year-old lung
cancer patient undergoing partial lung resection for cancer treatment at Kaplan
Medical Center (Rehovot, Israel). After resection, the tissue was directly
transported to the pathology department. A small sample of approximately 1 cm3

was taken and placed in ice-cold PBS for immediate transfer to the lab for ex-vivo
organ culturing. All experiments were performed in accordance with Medical
Ethics Committee approval and after obtaining informed consent. Specimen was
coded anonymously prior to its arrival to the lab.

The human experiment was authorized by the Kaplan Medical Center (0097-
18-KMC). IACUC authorization for the mice experiments was given by the
IACUC committee of the Weizmann Institute.

Data curation and normalization. Drug sensitivity measurements were down-
loaded from the Cancer Target Discovery and Development (CTD2) data portal
(downloaded from https://ocg.cancer.gov/programs/ctd2/data-portal/). These data
represented dose–response curve AUC measures for 887 cell lines across 481
compounds. Gene expression (Affymetrix HG-U133_Plus_2 Array Plate Set) and
RNA-Seq of these cell lines was downloaded from the CCLE cell lines portal
(https://portals.broadinstitute.org/ccle/data). The expression data were normalized

Fig. 6 Pathways predict gene essentiality. a ‘Stathmin resistance to anti-microtubule’ pathway activity levels in CLTC-essential and -inert NSCLC cell lines.
Error bars represent the standard deviation. P-values were generated using Mann–Whitney U-test. b Stathmin pathway activity levels in sensitive and not-
sensitive NSCLC cell lines to PITSTOP2 (CLTC inhibitor). c Network diagram representing the ‘Stathmin resistance to anti-microtubule’ pathway. d ROC
analysis was constructed to evaluate the prognostic power of the Stathmin pathway versus the 13 pathway genes and CLTC. The AUC was used to quantify
response prediction. e Box plots of Stathmin pathway activity levels in NSCLC tumor samples and their adjacent normal tissues in four independent
datasets. Error bars represent the standard deviation. P-values were generated using Mann–Whitney U-test. f Violin plot of ‘Role of BRCA1, BRCA2, and
ATR in cancer susceptibility’ pathway activity levels in MAD2L1 essential and inert breast cancer cell lines from the Achilles project. Dots are colored by
BRCA1/2 mutation status. P-values were generated using Mann–Whitney U-test. g BRCA pathway activity levels in MAD2L1 essential and inert breast
cancer cell lines from project DRIVE. Dots are colored by BRCA1/2 mutation status. P-values were generated using Mann–Whitney U-test. h Network
diagram representing the ‘Role of BRCA1, BRCA2, and ATR in cancer susceptibility’ pathway. P-values were generated using Mann–Whitney U-test. i BRCA
pathway activity levels in breast cancer patients with pathogenic, non-pathogenic, or wild-type BRCA1/2 mutation in six independent cohorts. Error bars
represent the standard deviation. P-values were generated using Mann–Whitney U-test. See also Supplementary Fig. 8.
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by quantile normalization to produce RMA expression values from the Affymetrix
CEL files84. RNA-sequencing data were downloaded as RPKM (Reads Per Kilobase
of transcript per Million mapped reads) levels from the CCLE data portal.

The GDSC database is a resource for biomarker discovery for the
development of therapeutics for cancer cells. It contains information from 138
anticancer drugs across 696 cell lines. These data were generated from high-
throughput screening performed by the Cancer Genome Project at the Wellcome
Trust Sanger Institute (WTSI) and the Center for Molecular Therapeutics at
Massachusetts General Hospital. Gene-expression was quantified using an
Affymetrix U219 mRNA expression array and was downloaded from the same
portal. The expression data were normalized by quantile normalization to
produce RMA expression values from the Affymetrix CEL files.

Project Achilles uses genome-scale RNAi and CRISPR-Cas9 genetic
perturbation reagents to silence or knock out individual genes and identify those
genes that affect cell survival. Gene essentiality profiles for 11,408 genes over 307
cell lines as well as 18,377 genes across 227 cell lines from genome-wide RNAi and
CRISPR-Cas9 screens, respectively, were measured using the DEMETER
algorithm, which aims to isolate the effects of gene knockdown from off-target
effects. CERES is used to detect dependencies from the CRISPR data. Cell lines
were designated as ‘sensitive’ or ‘not sensitive’ based on their Z-transformed RNAi
and CRISPR essentiality levels.

Euclidean distance (ED) metric was applied to define the distance between the
coordinates of any two genes or pathways in linear space. Hence, the smaller the
distance between two genes or pathways, the more similar they are. Here, we
calculated the similarity between the same platforms in different centers and
between two different platforms by measuring the ED between the normalized gene
expression or pathway-level activities across the cell lines in the corresponding
datasets.

Pathway network interactions dataset and analysis. Network information was
obtained from the National Cancer Institute’s Pathway Interaction Database26,
PharmGKB27, Wikipathways28, and SignaLinks29.

To calculate pathway activity metrics, we used the PathOlogist tool, which
translates gene expression levels (in the manner detailed below) to a metric that
provides information about the interactions within a pathway. This pathway
activity is provided per sample, for each of the included pathways.

To use gene expression, PathOlogist first calculates, for each gene in each
sample, the probability for that specific gene to be expressed in that specific sample.
An expressed gene is called an “up” gene, and an unexpressed gene is called
“down”. A probability for a specific gene to be in the “up” state is calculated using
the distribution of the expression level of the gene across all samples.

To be able to accommodate a multitude of probability distributions, the
algorithm uses gamma distributions as the family of functions that describes the
gene expression. In the set of samples, the gene could be either expressed (“up”) or
unexpressed (“down”) in each sample. Across samples, we assume that the
collection of unexpressed instances follows an exponential distribution, which is
one particular case of a gamma distribution. The collection of expressed instances
is assumed to be distributed in a normal manner, which is well approximated by a
larger mean gamma distribution. For each gene, we use an expectation-
maximization (EM) algorithm to iterate over the data such that the likelihood of
fitting these data by the distribution’s increases. The EM algorithm finally provides
us with the most likely parameters of the modeled distributions and with the
mixture weights of the two distributions. Once these two distributions are in place,
we can calculate the probability of each gene in a sample to belong to one of the
two distributions. That is, we obtain the probability of the gene to be in the up
state. This probability is the (Up Down Probability) UDP measure that is used in
the pathway score. Since a gene, in principle, could be in an “up” state or in a
“down” state across all samples, we need to determine if the best fit is a single
gamma distribution or a mixture of two gamma distributions. To compare these
two models, we use the Bayesian information criterion (BIC).

Once we have the set of gene probabilities for each gene in each sample, we
continue to calculate the pathway activity metric, which is calculated for 1028
pathways. PathOlogist treats the pathway as a network of interactions and assigns
the network a score based on the expression levels of the interacting genes and on
the quality of the interaction. The analysis also takes into consideration the specific
type of interaction (inhibition or promotion). The activity of each interaction is
calculated by multiplying the probability of the genes to be “active” (based on the
UDP matrix). Then, the final pathway activity score is calculated by averaging all
the interaction activity scores in the pathway. Once the pathway activity scores are
calculated, a Mann–Whitney U-test is performed based on the sensitive/non-
sensitive groups of cell lines in order to determine the dependency and significance
of the association of the pathway activity scores with response to treatment.

Gene set enrichment analysis (GSEA). GSEA40,41 was applied to the microarray
and RNA-seq data using the hallmark gene sets (n= 50) and the curated gene set
(n= 4762) to discover statistically significant gene sets that can predict drug
sensitivity.

Gene set variation analysis (GSVA). Similar to PathOlogist, GSVA85 calculates
gene set enrichment scores per sample in an unsupervised manner (i.e., indepen-
dent of any class label). GSVA was applied to both the microarray and RNA-seq
data using the hallmark gene sets (n= 50) and the curated gene set (n= 4762).
Mann–Whitney U-test was then applied on the GSVA results with the response
groups, and FDR correction for multiple hypotheses was performed (as we did with
the PathOlogist pathway activity scores). While MSigDB curated gene set (C2) did
not yield any significant results, MSigDB Hallmark set yielded 654 significant
results for the microarray dataset and 213 significant results for the RNA-seq
dataset—none of which overlapped between the two sets.

Sensitivity and power analysis. To test if the larger number of hypotheses gen-
erated by genes as compared to pathways was the reason that we did not detect any
single gene as a predictive biomarker (Fig. 1), we re-ran the analysis with: (i) the
2512 genes that are part of the 1028 pathways and (ii) the 500 most variable genes.
Consistent with our results using the full set of genes, no significant or near-
significant individual genes were found in the set of 2512 genes in the pathways.
Only one near-significant hit was found in the top 500 most variable genes (SPP1,
high expression levels were associated with sensitivity to GDC-0879, a BRAF
inhibitor, in skin cancer cell lines; q= 0.228), and this gene did not belong to any of
the significant pathways.

To test whether and how the number of cell lines affected the number of
significant results, we performed ‘down-sampling’ analysis on the NSCLC (n= 106)
and skin (n= 50) subsets of cell lines. Specifically, we explored how the number of
significant results decreased with sample size by repeating the analysis on smaller
random subsets of the cell lines, reducing the subset to as few as 10 cell lines per
tumor type. As expected, for both sets of cell lines, the number of significant pathways
(q < 0.25) increased with the number of cell lines analyzed (Supplementary Fig. 4a, b),
suggesting the importance of analyzing a large number of cell lines per tumor type (at
least 30) in order to discover significant tumor-specific pathways.

RNA extraction and quantitative real-time polymerase chain reaction (qRT-
PCR). Total RNA was purified using a Qiagen RNeasy mini-prep kit (product
#74104) according to the manufacturer’s protocol. A 0.5-μg aliquot of total RNA
from each sample was reverse transcribed using PCRBIO cDNA Synthesis kit
(product #PB30.11-10). qRT-PCR was performed on the Applied Biosystems qPCR
system using KAPA SYBR Green Fast ABI Prism qPCR kit (Kapa Biosystem,
product #KK4605) at 94 °C for 3 min to denature RNA, with 40 cycles of ampli-
fication at 94 °C for 15 s, 50 °C for 30 s, and 72 °C for 30 s; Data analysis was
performed according to the ΔΔCt Method by normalizing the expression level of
each gene to that of a glyceraldehyde 3-phosphate de-hydrogenase (GAPDH)
reference gene in the same sample.

The following primers were used for qRT-PCR: AIFM: 5′-AAGGGCAAT
GCAGACTACAGA (F) and 5′-GGAACCATCATGTGCCCAAAG (R); BCL2L1:
5′-ATTGGTGAGTCGGATCGCAG (F) and 5′-CCACAAAAGTATCCCAGCCG
(R); PARP1: 5′-CGAGTCGAGTACGCCAAGAG (F) and 5′-CATCAAACAT
GGGCGACTGC (R); and GAPDH: 5′-ACCCACTCCTCCACCTTTG (F) and
5′-CTCTTGTGCTCTTGCTGGG (R).

Drug screen. On day 0, GFP-labeled cancer cells (6000 cells/well in 120 μL) were
plated in 96-well clear-bottom plates (Greiner, product #60-655090). On day 1, the
cells were treated with 15 μL 10× of drug A and 15 μL 10× of drug B or DMSO
(Sigma-Aldrich Cat #D2650-100ML; See Supplementary Table 1) using the CyBi-Well
Vario 96/250 Simultaneous Pipette (CyBio). On day 4, the medium in all wells was
replaced with a fresh medium containing the same drugs that were applied on day 1.
GFP fluorescence was read on days 1, 4, and 7 using the Cytation 3 cell-imaging
Multi-Mode reader (BioTek). Screens were carried out in duplicate. ABT-263 (Cat
#A10022) and Vinorelbine (Cat #A10976) were purchased from AdooQ Bioscience.

Tissue immunohistochemistry. Immunohistochemistry was performed on 4-μm
sections from FFPE tissue samples from ex-vivo organ culture. Hematoxylin and
Eosin (H&E) staining was performed using an automated stainer. Cleaved Caspase-
3 staining (Cell Signaling Antibody (Asp175); 1:1000 dilution) was performed
using an automated stainer (BOND RX, Leica Biosystems, Rhenium, Modiin,
Israel).

Tissue viability and scoring. Human tissue was scored using pathological criteria
of response to treatment commonly used after neoadjuvant therapy as recom-
mended by the College of American Pathologists (Modified Ryan Scheme for
Tumor Regression Score). A score of 0 represents no viable cancer cells, and a score
of 3 represents extensive residual cancer with no evident regression (poor or no
response).

Statistical analysis. Dose–response AUCs (dr-AUC) for 481 compounds from the
CTD2 dataset were calculated by fitting a curve through viability readouts across
16 different concentrations of a compound in a given cell line. A dr-AUC value of
0 represents complete cell death at all drug concentrations, while a dr-AUC value
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of 15 represents a “flat” curve (with 100% viability [i.e., no killing] across all
concentrations). dr-AUC values greater than 15 indicate an increasing curve
(viability >100% at high concentrations, indicating potential increased cell pro-
liferation due to the drug). The dr-AUC values were further centered and nor-
malized to yield Z-scores for every compound across all cell lines. The Z-scores
were then used to define relatively sensitive and non-sensitive cell lines: cell lines
with a Z-score <−1.5 were designated as sensitive to the particular compound, and
cell lines with a Z-score > 0 were tagged as non-sensitive. Cell lines with a Z-score
between −1.5 and 0 were excluded from further analysis in order to avoid con-
taminating the sensitive and non-sensitive groups with intermediate cases and thus
obscure the signal. Eighteen cell lines that were sensitive to more than 20% of the
compounds were excluded from the analysis. In addition, pathways that were not
variable across the cell lines were excluded from further analysis (219 pathways
calculated from the microarray data and 217 from the RNA-Seq data; 181 over-
lapped). We removed pathways with a range of activity scores ≤ 0.1 across samples
(note that the activity scores can range between 0 and 1).

The data were partitioned according to cancer type (overall 10 cancer types),
and a two-sided Mann–Whitney U-test was used to identify pathways whose
activity level was significantly associated with the sensitivity of a specific cancer
type to a specific compound or essentiality of a specific gene (obtained by RNAi/
CRISPR-Cas9). In every tissue type, compounds with minimal AUC level greater
than 8 were omitted from further analysis. This was done in order to only include
compounds with actual response.

For each tissue type, we calculated the significance (i.e., P value) for every pair
of pathway and compound (overall ~2 × 106 pathway, compound, and tissue-type
combinations), and for every pair of pathway and RNAi/CRISPR-Cas9 gene
(overall ~46 × 106 possible combinations). We then corrected for multiple
hypothesis testing all P values per tissue type using the Benjamini–Hochberg FDR
procedure42 . Results with FDR q < 0.05 were considered as significant, and those
with 0.05 < q < 0.25 were tagged as near-significant.

We produced a quantile–quantile (QQ) plot (Fig. 1e and Supplementary
Fig. 1k–m) of P value quantiles to compare the observed distribution of all P values
per tissue type and platform with the expected P values under the null hypothesis.
Dots (results) that lie on the y= x line follows the null hypothesis, while dots that
lie above the diagonal represent significant results.

Down-sampling analyses. To analyze the dependency between the number of
significant results and the number of cell lines in the dataset, we performed down-
sampling analysis on NSCLC, and skin cell lines, separately. We repeated our analysis
pipeline by randomly subsampling the data using different numbers of cell lines,
beginning at a minimum of 10 cell lines. Subset sizes were chosen on the basis of
sampling at ascending order from 10 cell lines to the final number of cell lines in the
given tissue type. For each of the random subsets, we repeated the full analysis
10 times.

Dimensionality reduction. The t-Distributed Stochastic Neighbor Embedding
(t-SNE) method33 was used for dimensionality reduction with the default per-
plexity parameter of 30. Of note, t-SNE was used only for visualization and not for
clustering.

Cluster robustness analysis. To assess the robustness of the clusters, we used the
following three internal clustering validity indices. (i) The Calinski–Harabasz35

index, which calculates the proportion between the dissimilarity (or the distance)
between clusters and tightness or the dissimilarity within the cluster. (ii) The Dunn
index36 aims to identify sets of clusters that are compact with a small variance
between the members and are well separated. (iii) Silhouette scores34 calculate, on
average, how members within a cluster are closely grouped and, at the same time,
how loosely these members belong to neighboring clusters.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The CTD2 dataset is available in the CTD2 data portal under the following link (https://ocg.
cancer.gov/programs/ctd2/data-portal). The AUC levels and cell lines that were analyzed in
this paper are listed in Supplementary Data 1. Cell line RNA-seq and microarray expression
was downloaded from the CCLE portal (the same cell lines from Supplementary Data 1).
RNAi and CRISPR-Cas9 screens were downloaded from the Achilles project data portal
https://depmap.org/portal/achilles/. The different datasets that were used for validation
experiments are publicly available as follows: (a) The Yang et al. drug screen and expression
data was downloaded from the GDSC data portal https://www.cancerrxgene.org/; (b) human
lung, thyroid, and breast tumors from TCGA were downloaded from the GDC data portal
https://portal.gdc.cancer.gov/; (c) Project DRIVE validation sets were downloaded from the
DRIVE data portal https://oncologynibr.shinyapps.io/drive/; (d) Rizos et al. dataset is available
in GEO under the accession number: GSE50509; (e) Tse et al. dataset is available in GEO
under the accession number: GSE10841; (f) Girard et al. dataset is available in GEO under the
accession number: GSE31547; (g) Kadara et al. dataset is available in GEO under the accession
number: GSE44077; (h) Spira et al. dataset is available in GEO under the accession number:

GSE4115; (i) Pilar et al. dataset is available in GEO under the accession number: GSE70541;
(j) Piccolo et al. dataset is available in GEO under the accession number: GSE47862;
(k) Jönsson et al. dataset is available in GEO under the accession number: GSE25307; and
(l) Lisowska et al. dataset is available in GEO under the accession number: GSE50567.

Code availability
The code and datasets are available in GitHub at the following link: https://github.com/
getzlab/pathway_based_biomarker.
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