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Introduction: Understanding determinants of community mobility disability is critical for

developing interventions aimed at preventing or delaying disability in older adults. In an

effort to understand these determinants, capturing and measuring community mobility

has become a key factor. The objectives of this paper are to present and illustrate the

signal processing workflow and outcomes that can be extracted from an activity and

community mobility measurement approach based on GPS and accelerometer sensor

data and 2) to explore the construct validity of the proposed measurement approach

using data collected from healthy older adults in free-living conditions.

Methods: Personal, functional impairment and environmental variables were obtained

by self-report questionnaires in 75 healthy community-living older adults (mean age= 66

± 7 years old) living on the island of Montreal, QC, Canada. Participants wore, for 14

days during waking hours on the hip, a data logger incorporating a GPS receiver with a

3-axis accelerometer. Time at home ratio (THR), Trips out (TO), Destinations (D), Maximal

distance of destinations (MDD), Active time ratio (ATR), Steps (S), Distance in a vehicle

(DV), Time in a vehicle (TV), Distance on foot (DF), Time on foot (TF), Ellipse area (EA),

and Ellipse maximum distance (EMD) were extracted from the recordings.

Results: After applying quality control criteria, the original data set was reduced from

75 to 54 participants (28% attrition). Results from the remaining sample show that

under free-living conditions in healthy older adults, location, activity and community

mobility outcomes vary across individuals and certain personal variables (age, income,

living situation, professional status, vehicle access) have potential mitigating effects on

these outcomes. There was a significant (yet small) relationship (rho < 0.40) between

self-reported life space and MDD, DV, EA, and EMD.

Conclusion: Wearability and usability of the devices used to capture free-living

community mobility impact participant compliance and the quality of the data. The

construct validity of the proposed approach appears promising but requires further

studies directed at populations with mobility impairments.

Keywords: GPS, accelerometers, signal processing, wearability, usability, activity space measures, lifespace

measures
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INTRODUCTION

Mobility is a fundamental part of both basic activities of daily
living and instrumental activities of daily living occurring in
the home. It can be defined in space and time as the ability
to move oneself (e.g., by walking, using assistive devices, or
transportation) within community environments that extend
from one’s home to the neighborhood and regions beyond

(1). Community mobility is indispensable for accessing services
and products as well as participating in social, cultural, and
physical activities (2). Cross-sectional and longitudinal studies
have shown the positive and negative impacts of community
mobility on quality of life and mortality (3–6). The importance
of community mobility for older adults is now more than
ever recognized (4), as data from the most recent National
Health Interview Survey in the USA report that almost 20%
of those over the age of 65 years have reported difficulty with

mobility-related activities such as walking a quarter mile (7).
Understanding determinants of community mobility disability
is critical to developing interventions aimed at preventing or
delaying disability in older adults (8) To better our understanding
of these determinants, capturing and measuring community
mobility is a key factor.

Mobility at large has traditionally been studied using self-
report questionnaires on the perceived ability and capacity of
individuals (i.e., what an individual could do or has done) or

through performance-based tests in clinical settings (9). While
some of these instruments provide an acceptable illustration
of the relationship between perceived ability, capacity, and
performance measures of function (10), these measures do
not necessarily translate into actual real-life performance (11).
Several studies have shown that they in fact remain a poor proxy
of real life mobility of an individual, as they fail to capture
the dynamics between the environment, the intrapersonal
factors of mobility restriction and the real life expression
of this mobility (12). This is due to their nature of being
indirect assessments (i.e., an evaluation of functional capability
under controlled experimental conditions) of a realistic enacted
function that is modulated by complex interactions between
internal physiologic capacity, motivation, and external challenges
older adults experience in daily life.

Activity space, a concept originating from medical geography
and defined as “the local areas within which people move or
travel in the course of their daily activities” (13) has been
used to examine how people’s habitual movements affect their
interactions with their environment in healthcare accessibility
studies (14), exposure studies (15, 16), and evaluations of
the built environment (17). In recent years, the measure of
an individual’s lifespace (an adaptation of the activity space
concept) has been proposed as a better way to capture both the
functional and psychological aspects of mobility while offering
a better reflection of actual mobility performance. Lifespace
can be defined as the size of the spatial area in which a
person purposely moves through in daily life, as well as the
frequency of travel within a specific time frame (18). Lifespace
is also a measure of where a person goes, the frequency of
going to these locations, and their dependency in getting there

(19). Thus, this measure not only captures the actual spatial
extent of movement, but also the desire for movement and
being involved in the larger social environment. As such, a
constricted life space may be a consequence of poor health, as
a result of impaired sensory, motor, or cognitive functioning,
that consequently makes it difficult to move throughout the
community at the same level as an individual who is healthy (20).
Greater lifespace has additionally been found to be correlated
with better global cognition (21). Lifespace has been found to be
negatively correlated with age and positively correlated with years
of education (20) while men tend to have a larger life space than
women (18, 20, 22).

Lifespace can bemeasured using various different instruments
(23–29). The majority of these instruments rely on a self-
report questionnaire. Amongst those, the Life-Space Assessment
(LSA) proposed by Baker et al. (19) is the most widely used
questionnaire instrument for assessing lifespace in community
dwelling elders. The LSA permits assessment of the full range of
mobility and documents how far and often a person travels to
each of the defined levels, while also considering the use (or lack
of) assistance. It measures a person’s usual pattern of mobility
during the month preceding the assessment.

With the introduction and use in research of miniaturized
body worn sensing systems incorporating motion sensors,
physiological sensors, and location sensors it is now possible to
collect and store data on different aspects of human movement
and behaviors under free living conditions for long periods
of time (30, 31). Of particular interest is the fusion of such
sensor technology. Geotracking (Global Positioning System-
GPS) and motion sensing (inertial sensors) technologies have
been used in older adults to characterize and measure physical
activity location, travel behavior and modes of transportation,
neighborhood walkability, and overall lifespace (32–50). With
regards to these technologies and the proposed outcomes studied
in the literature, details describing how these outcomes are
extracted and compiled as well as their construct validity are
often missing. Part of the challenge in the use and fusion of these
technologies are creating meaningful aggregations of space, time,
and behaviors from raw sensor data cumulated over multiple
days. The datasets generated per individual is substantial, the data
sources are not clean and require multiple computational steps.
As stated by Jankowska et al. (51) in her proposed framework
for the use of GPS, GIS, and accelerometry, the development
of better methodologies that can fully make use of these rich
data is needed. The objectives of this paper are to (1) present
and illustrate the signal processing workflow and outcomes
that can be extracted from an activity and community mobility
measurement approach based on GPS and inertial sensing; (2)
explore the construct validity of the proposed measurement
approach from data collected in healthy older adults in free-living
conditions.

MATERIALS AND METHODS

Participants and Protocol
This study used an exploratory cross-sectional design. A non-
probabilistic sample of 75 healthy older adults, aged 55–85
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years of age, was recruited by convenience sampling using
posted advertisements and an existing bank of participants of
the Research Centre of the Institut Universitaire de Geriatrie
de Montréal, Quebec, Canada. The inclusion criteria consisted
of being in healthy condition and residing on the island of
Montreal. The exclusion criteria were a Body Mass Index (BMI)
over 30, having co-morbidities affectingmobility, using a walking
assistive device or having discomfort or difficulty walking during
any daily living activity. The study was approved by the Ethics
Review Board of the Research Center of the Montreal Geriatric
Institute and all participants provided informed written consent
to participate.

For 14 days, each participant wore a wearable data logging
system at the waist (using a belt or clip on their belt)
during waking hours (from the time they dressed to bedtime)
(Figure 1A) which incorporated either a GPS receiver unit (Q-
Starz travel XT recorder (52) or a GPS receiver unit with
an inertial sensor (WIMuGPS-Wireless Inertial Measurement
unit with GPS (53). Participants were required to charge the
device each night and were instructed not to change their
lifestyle or habits. During the study, three meetings with the
experimental team were scheduled on days 1, 7, and 14. The
first two meetings took place at the participant’s home. The
objective of the first meeting was to initiate the protocol (consent,
instruction on the use of the wearable data logging system)

and to obtain anthropometrical measures. The objective of the
second meeting was to download data from the data logger
system and ensure participant’s compliance and comfort. In the
final third meeting, a performance evaluation and self-report
questionnaire were completed at the Department of physical
activity sciences, Université du Québec à Montréal (UQAM),
Montreal, QC. Canada. Activity and mobility outcomes from
data recorded during days 1, 7, and 14 which excluded these visits
and activities related to the study, as they were removed from the
dataset as a means to eliminate any effect on the mobility and
activity profiles of the participants. The data collection took place
from May 2012 to October 2013 to prevent bias from seasonal
effects related to winter (54).

Variables and Outcome Measures
Personal, Functional Impairments, and Environmental

Variables
Personal variables were assessed by a self-report questionnaire
administered on day 1 and included: age (coded to categorical
variable: < or > 75 years old), gender (coded to categorical
variables: male or female), education level in years of schooling
(coded to categorical variables: < or > high school level), total
annual income of the household in $ (coded to categorical
variables as low income or > low income based on the Statistics
Canada low-income status cut offs for Census Metropolitan Area

FIGURE 1 | (A) Wireless inertial unit with GPS (WIMU-GPS) and quartz GPS data logger; raw signals and signal processing and analysis of (B) acceleration, and

(C) GPS signals.
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> 500 000 inhabitants or more) (55), living status (coded to
categorical variables: alone or with someone), professional status
(coded to categorical variables: retired or working), vehicle access
(coded to categorical variables: access to a car, no access to a car).

Functional impairment variables included body composition,
pain, cognition and depression which were also assessed on
day 1. Body composition was assessed using the Body Mass
Index (BMI), calculated by dividing the weight by height
in meters squared (kg/m2). Height in centimeters (cm) was
measured in standing position without shoes using a measuring
rode (Seca R© model 213) and the participants were weighed
without shoes in kilograms (kg) on a weighing scale (Adam R©

GFK660a). BMI values were coded into categorical variables:
overweight or normal based on the National Heart, Lung, and
Blood Institute 25 kg/m2 threshold value (56). Pain in the last
30 days was assessed by questioning their degree of activity
limitations due to pain on a four-point Likert scale. The question
was taken from the Health Utilities Index (57) and Likert
scores were coded to categorical variables: having pain or not
having pain in the last 30 days. Cognitive impairments were
assessed using the Montreal Cognitive Assessment (MoCA).
The MoCA (58) uses a series of tasks and questions to assess
the following cognitive domains: attention and concentration,
executive functions, memory, language, visuoconstructional
skills, conceptual thinking, calculations, and orientation. The sub
scores for each section were summed for a possible maximum of
30 points. The total score was coded into categorical variables:
cognitive impairments or no cognitive impairments, using the
established 26-point cut-off proposed (58). Lastly, depression was
assessed using the Geriatric Depression Scale (59). The total score
was coded to categorical variables as having depressive symptoms
or not having depressive symptoms based on the established
10-point cut-off (59).

Thirdly, the environmental variables consisted of the perceived
proximity to neighborhood services and amenities (resources) and
was assessed using a series of 12 questions from Levasseur et al.
(60). For each question, participants were asked to estimate
the waking distance (in minutes) from their home to each
specified nearest resource. The 12 resources cited included: a
grocery/food store, convenience/corner store, bank, pharmacy,
community/leisure center, sports center, restaurants/bistro/café,
library/cultural center, store/shopping centers, church/place of
worship, CLSC/medical clinics, and parks. The average walking
time across these 12 resources was used as the outcome for this
environmental variable. The average walking time in minutes
was coded to categorical variables: < or > than 15min using
the 2009 National Household Travel Survey (NHTS) data as a
reference. Finally, the lifespace of the participants was evaluated
using the lifespace questionnaire (27). The total score out of 120
was computed as the outcome.

Free Living Activity and Mobility Measures

Activity and mobility variables were measured non-
simultaneously with two wearable systems with data logging
capabilities: the Q-Starz travel XT recorder (52) and the
WIMuGPS-Wireless Inertial Measurement unit with GPS)
(53). An overview of these two wearable systems used, raw

signals, signals processing steps and extracted outcomes from
continuous daily recordings for activity and mobility are
presented in Figure 1.

Raw accelerometer signals are processed to determine active
time periods and compute the number of steps taken during
active time periods. Recordings from the GPS receiver are
processed to create individual daily GPS coordinate (longitude,
latitude, altitude) time series. The time series are filtered,
interpolated and processed to extract location, establish if they
occur in clusters or in transit between clusters and classify the
type of transit: in a vehicle or on foot. The specifics of the
signal processing steps applied to accelerometers and GPS data
collected are described in more details in Tables 1, 2 respectively.
Briefly, raw signals from accelerometers during multiple days
are preprocessed and processed (black boxes) using active
time detection according to thresholds and a specific temporal
window while steps are counted using a two-phase step detection
algorithm. GPS data are filtered based on device-reported
data precision and physically impossible instantaneous velocity
between continuous data points. Interpolation on missing GPS
data is performed to build a complete timeseries without any
temporal hole, using the last acceptable position to fill missing
data points. Location analysis is performed over the filtered GPS
dataset to identify the participant’s home, time spent at that
location and occurrences of trips outside their home. Further
processing is completed to identify outside-of-home locations
based on GPS data clusters. The number of destinations and
distance from home of these clusters are computed and transit
between those locations are classified into two categories based

TABLE 1 | Signal processing steps applied to accelerometer data collected.

ACCELEROMETER DATA

Preprocessing The timestamps from accelerometer data are extracted and

used to split the raw data file into days to build an initial time

vector.

Active time

detection

The observed subject is considered to be active if the filtered

(f) 3D acceleration vector values exceed a specified threshold

(min_g) for a minimum time ratio (ratio) computed with a rolling

window (w). Filter parameters (f) = low-pass filter at 5Hz and

high-pass filter at 1Hz, minimal acceleration vector value

(min_g) = 0.015 g, minimum time ratio to consider the subject

active= 50% of the window length, rolling window parameters

(w) = length: 10 s, 50% overlap.

Step

detection

A step detection algorithm is applied to active time epochs

identified and uses a hybrid design consisting of frequency

analysis and impact detection. Consider that normal walking

speed of healthy individuals generates acceleration peaks of

approx. 2 times/s (2Hz), an aggressive filter (fcut 3Hz) is

applied to the norm of the triaxial accelerometer signal. Using

a Fast Fourier Transform (FFT) any remaining power in the

0–3Hz bandwidth in the data epoch is consider as containing

potential steps. Selected data epoch is sent to an Impact

Detector (ID) to count accelerometer spikes. The ID uses

interpeak minimum distance (150ms) and minimum height

(0.05) to identify peaks and the threshold detection is applied

on the envelope of the signal rather than raw norm vector to

remove noise artifacts associated with individual impacts (i.e.,

several peaks generated for a single impact).
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TABLE 2 | Signal processing steps applied to GPS data collected.

GPS DATA

Preprocessing The timestamps from GPS data are extracted and used to split

the raw data file into days to build an initial time vector.

Filtering and

data

interpolation

Each GPS position with a reported precision less than the

specified GPS precision (gp) value is filtered and removed from

the dataset. The minimum gp = 5m. For each point in the

continuous timeseries without a GPS position (because of

filtering or no position), a zero-order hold interpolation is used

to complete the series so that each missing value is reported

as the last valid position.

Clusters and

transit

identification

A temporal cluster is created when time-consecutive positions

are within close proximity to each other, over a specific

window frame. Adjacent clusters are then merged to form a

larger cluster. A rolling window (length, overlap) is used to

identify temporal clusters. A window is considered to form a

cluster if the (1-γ) th quantile distance from the median spatial

center of the window is less than a specified radius (r).

Window length = 300 s. Window overlap = 50% γ value = 0.3

Maximum distance radius (r) = 30m.

Transit

classification

For each transit between two clusters, the type of activity is

identified. Positions comprised in a transit period are

considered to be in a vehicle if the RMS speed over a 90s

period ≥ 10 km/h. Positions in a transit period not considered

to be in a vehicle are classified as on foot.

GPS time

series ellipse

modeling

The minimum span ellipse that can fit all of the positions of the

dataset is computed using a minimum covariance estimator.

The ellipse does not have to be centered on home, as it

encompasses the whole dataset.

on filtered velocity for each transit: being in a vehicle or on
foot. Finally, a minimal area ellipse is created to include all the
GPS positions of the participant’s dataset. From these processing
steps, 12 outcomes are extracted and can be separated into two
categories: location and activity outcomes (Table 3) or transit and
community mobility outcomes (Table 4). Location and activity
outcomes include: Time at home ratio (THR), Trips out (TO),
Destinations (D), Maximal distance of destinations (MDD),
Active time ratio (ATR), and Steps (S). Transit and community
mobility include: distance in a vehicle (DV), time in a vehicle
(TV), distance on foot (DF), time on foot (TF), ellipse area (EA),
and ellipse maximum distance (EMD).

Figure 2 presents the analysis workflow. An in-house
developed open-source software, WIMU Studio (https://github.
com/introlab/openwimu) was used as a first step in the data
analysis process to format data coming from the different sensors
(WIMUGPS, QStarz) in a standard file format and to split
each day in its own file. Afterwards, data processing required
to compute the output variables was done in Matlab R2015b
using the mapping toolbox for geospatial computations. Each
data processing step refers to a.m Matlab script file. Details of
the signal processing and the algorithms used to compute each
output variable can be found in specific.m Matlab script source
code made available as Supplemental Files to this manuscript.

Data Analysis and Statistics
Accuracy, compliance, and their impact on data loss are
inherently known issues when collecting data with wearable

TABLE 3 | Definition of location and activity outcomes.

LOCATION AND ACTIVITY OUTCOMES

Active time

ratio

Sum of data points classified as active over the total recording

period expressed in minutes.

Steps per

recording

The number of steps detected divided by the number of

recording days expressed in number of steps per day.

Time at home

ratio

Sum of data points identified within the home cluster over the

total recording period expressed in minutes.

Trips out The number of trips outside home per day is classified when

the observed subject leaves the home cluster and returns at a

later time in the same day.

Destination

trips

The number of clusters reached in each trip over the total

recording period per day.

Max dist.

destination

Max distance traveled to reach destination cluster outside of

the home cluster over the total recording period expressed in

kilometers.

TABLE 4 | Definition of transit and community mobility outcomes.

COMMUNITY AND MOBILITY OUTCOMES

Distance in

vehicle

Distance computed from all the data points over the total

recording period which are not part of a cluster and identified

as being in a vehicle.

Time in

vehicle

Time computed from all the data points over the total

recording period which are not part of a cluster and identified

as being in a vehicle.

Time on foot Time computed from all the data points over the total

recording period which are not part of a cluster and identified

as being on foot.

Distance on

foot

Distance computed from all the data points over the total

recording period which are not part of a cluster and identified

as being on foot.

Ellipse max

distance

Length of the major axis of the minimum span ellipse of the

dataset over the recording period. This variable is transformed

into log value.

Ellipse area Geometric 2D area of the minimum span ellipse of the dataset

over the recording period. This variable is transformed into log

value.

systems under free living conditions. To ensure that each
participant’s data from which the activity and mobility outcomes
were extracted and synthesized adequately represented daily
behaviors of that participant and that a sufficient number of
days were captured to establish a meaningful profile of behaviors
across multiple days, quality control criteria were applied to
the collected dataset (n = 75). Each day of recordings was
required to have a minimum of 480min of recorded data
and a compliance of 55% (6 out of the 11 days) to be kept
for processing. Additionally, each day of data was reviewed
individually to determine if the devices were worn. Repeated
(n = 2) days with no GPS signal recordings were considered
an anomaly and were removed from the individual dataset.
Days with < 30min of active time were noted, and upon
examination of the accelerometer signals activity and expected
orientation of the device, periods of non-wear during the day
were identified. Additionally, days in which non-wear periods
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FIGURE 2 | Analysis workflow.

totaled > 120min were excluded from the individual dataset.
Descriptive statistics (mean, SD, range) and normality of the
data for each variable were computed. Anormal distribution
(p < 0.05, Shapiro-Wilk) were inspected visually to confirm
the result. Depending on the normality of the distribution,
independent t-tests or non-parametric Mann-Whitney U tests
were performed to assess group differences in activity and
mobility outcomes according to the proposed classifiers for
individuals’ functional impairment and environmental variables.
Non-parametrics correlations (Spearman rho) between activity
and mobility outcomes and lifespace assessment total scores were
also computed. The significant level was set at p < 0.05. All
analyses were performed on SPSS 23.

RESULTS

Personal, Functional and Environmental
Outcomes
After applying the above quality control criteria, the original
data set was reduced from 75 to 54 participants (28% attrition).
The location and dispersion of the participants on the island of
Montreal (agglomeration of 1,886,481 people) are illustrated in
Figure 3. A majority (80%) of participants reported living >4
years in a condominium or apartment with an average of 2.2
bedrooms.

The mean and standard deviation (SD) of the daily recording
duration for the final sample was 723min (about 12 h)± 99min.
Activity and mobility outcomes were extracted and a mean
number of valid recording days of 9.52 ± 3.23 found. The
characteristics of the final sample of participants (n = 54) are
presented in Table 5. The sample consisted of 26 men and
29 women aged between 55 and 85 (mean of 66 years ±7
years). Most were highly educated, with less than 20.4% not
finishing high school. Additionally, the sample had a mean

FIGURE 3 | Location and dispersion of the participants on the island of

Montreal.

annual reported income of 37$k (23% of the sample with an
annual income categorized as low income by Statistics Canada)
and an average BMI over the 25 kg/m2 threshold (typically used
as an indicator of an overweight body mass composition). More
than 75% of the sample had no sign of impairments related to
pain, cognition or depression. With regards to living situation,
60% of participants lived with someone while in the workplace,
20% were still active professionally. Furthermore, over a third
(35%) of the participants had no vehicle access, however, the
average walking time to shops and services for the 12 resources
cited was approximately 11min, which implies a relatively dense
urban area with easy access to services and shops.

Community Activity and Mobility Outcomes
Dispersion (mean and standard deviation) of group data
(n = 54) for location and activity outcomes based on GPS and
accelerometer data are presented in Figure 4. An average time
at home ratio (THR) throughout the recording period was 65.7
± 13.6%, with those classified as having a low income having a
significantly greater percent of time spent at home compared to
those whose income was above the poverty line for the Island of
Montreal. Participants made an average of 2.1 ± 1.1 trips out
(TO) per day with 5.6 ± 1.9 destinations (D) reached during
these trips. Individuals who lived alone or did not have vehicle
access completed significantly less number of trips. The maximal
distance of destinations (MDD) varied among participants, with
an average of 60.6 ± 73.4 km among the sample. Within the
sample, individuals who had a low income traveled a shorter
distance to their destinations compared to those with greater
incomes. Participants’ active time ratio (ATR) per day was less
than their THR ratio, with an average of 24 ± 6.7% of each
recording day consisting of active time. The average number of
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TABLE 5 | Descriptive statistics for personal, functional and environmental variables for sample of participants (n = 54).

Variables Mean SD Classifier Percent (%)

Age (M) 65.7 6.6 Age (>75 years) 11.1

Age (F) 65.2 6.2 Gender (M) 54

Education (years) 15.7 3.1 Educ. (<highschool) 20.4

Income ($ 1000’s) 37.0 23.7 Income (<$20,000) 22.6

BMI (kg/m2) 24.2 3.3 BMI (overweight >25) 27.9

Pain Past 30 Days (score /4) 1.4 0.7 Pain (impacting ADL in past 30 days) 22.2

Cognition score on MOCA (/30) 27.1 2.4 MOCA (impaired cognition) 24.1

Depression score on GDS (/10) 3.0 2.7 GDS (depressive symptoms) 24.5

Living Situation (alone, with someone) N/A N/A Liv. Sit. (live alone) 40.7

Professional Status (retired, working) N/A N/A Prof. Stat. (retired) 79.6

Vehicle Access (access to a car or not) N/A N/A Veh. Acc. (no access to a vehicle) 35.2

Average walking time to services (mins) 11.2 4.8 Walk Acc. (>15min walk from services) 24.1

FIGURE 4 | Dispersion (mean and standard deviation) of group data (n = 54) for location and activity outcomes based on GPS and accelerometer data. Group data

for each outcome were segmented according to known classifiers: Age (>/<75 years), Gender (M/F), Education (>/< high school level), Income (>/< 20,000 per

year) body mass index (BMI) (>25 = overweight, <25 = healthy), Pain (pain in the past 30 days affecting ADL, pain free), MOCA (MOCA score indicating cognitive

impairment, normal cognition), GDS (GDS score indicating presence of depressive symptoms, normal); Living Sit. (Living Situation: alone, with someone), Prof. Stat.

(Professional Status: working, retired), Veh. Acc. (Vehicle Access: have vehicle access, do not have vehicle access), Walk Acc. (Walking Access: within 15min of

shops and services, >15 mins) Significant group differences (p < 0.05, p < 0.01, p < 0.001) for each classifier after independent t-tests are highlighted below each

dispersion graph in gray scale density code.
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FIGURE 5 | Dispersion (mean and standard deviation) of group data (n = 54) for transit and community mobility outcomes based on GPS and accelerometer data.

Group data for each outcome were segmented according to known classifiers: Age (>/<75 years), Gender (M/F), Education (>/< high school level), Income

(>/<20,000 per year), body mass index (BMI) (>25 = overweight, <25 = healthy), Pain (pain in the past 30 days affecting ADL, pain free), MOCA (MOCA score

indicating cognitive impairment, normal cognition), GDS (GDS score indicating presence of depressive symptoms, normal); Living Sit. (Living Situation: alone, with

someone), Prof. Stat. (Professional Status: working, retired), Veh. Acc. (Vehicle Access: have vehicle access, do not have vehicle access), Walk Acc. (Walking Access:

within 15 mins of shops and services, >15min) Significant group differences (p < 0.05, p < 0.01, p < 0.001)) for each classifier after independent t-tests are

highlighted below each dispersion graph in gray scale density code.

steps (S) taken by participants each day 3421 ± 1251 with older
participants (>75 years of age) taking fewer steps on an average
day.

Dispersion (mean and standard deviation) of group data
(n = 54) for transit and community mobility outcomes based
on GPS and accelerometer data are presented in Figure 5. On
average, participants’ distance in vehicle (DV) was 29.9± 36.4 km
and 43.9 ± 38min on average per day. The distance traveled by
and time spent in a vehicle was significantly lower in the lower-
income population and also significantly different for those who
lived alone, were retired or without vehicle access. Additionally,
distance on foot (DF) and time on foot (TF) were 2.3 ± 1.8 km
and 38.4 ± 36.2min per day respectively. TF for those with
impaired cognition (according to MoCA score) was significantly
shorter per day. Lastly, ellipse area (EA) and ellipse maximum

distance (EMD) were 6.3 ± 2.3 km (log) and 2.9 ± 1.4 km (log).
Both EA and EMD were significantly different in those who had
a low income and in those who were retired.

Relationship Between Activity and Mobility
Outcomes and LSA Scores
Significant but weak correlations were found between the
participants LSA scores and only four activities and mobility
outcomes seen in Figure 6. Of the location and activity outcomes,
maximum distance of destination was the only variable with
a significant relationship (p = 0.019). Transit and community
mobility outcomes had significant relationships for distance in
vehicle (DV; p = 0.029), ellipse area (EA; p = 0.007) and ellipse
maximum distance (EMD; p= 0.004) with LSA scores /120.
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FIGURE 6 | Dispersion of data points, Spearman Rho correlation coefficients and p-values between LSA (Life Space Assessment) total score and Location and

Activity and Transit and Community mobility outcomes. Significant correlations are highlighted by boxes.

DISCUSSION

Free living activity and community mobility were assessed using
wearable sensors in healthy older adults without any mobility
impairments. It should be noted that we applied strict quality
control to the data collected which reduced the initial sample
from 75 to 54 participants (28% attrition). Our data loss is
thus reported as participants’ dataset not meeting our quality
criteria. The rationale behind this decision was to ensure that
the computed outcomes were derived from a representative time
portion of a typical day (minimum of 8 h of recordings during
each day) and that we captured a sufficient number of days to
provide a good representation of activity and mobility behaviors
over a long period (close to 1 week which includes potentially
a weekend). Data loss reported in the literature for similar

measurement approaches are less, however most of those studies
don’t use such strict quality criteria as those applied here. It is
noticeable that the data loss in this study affected our power
to analyze the proposed outcomes and warrant an explanation
of the difficulties associated with the use of wearable sensors in
free-living conditions in older adults.

Wearability, defined as “the physical ability to mount a
device on the body or the physical and mental comfort of the
wearer” (61) and usability, defined as “the extent to which a
product can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a specified
context of use’ (62) are key factors to minimize data loss
when using platforms to capture behavior and activity data
over long periods. Wearability is often a function of form,
which is primarily determined by the battery of the wearable
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system and its autonomy to power the sensors according to
the scenario envisioned (sampling frequency of sensors and
duration of recordings without charging it). While there are
multiple ultra-low power sensors (mostly motion sensors such
as accelerometers) available, sensors that require communication
via radio-frequency like a GPS receiver consume over 6,000
times more energy. As a result, when using a GPS receiver
continuously at a rate of 1Hz, it is near impossible to reduce
the size of the battery (and the device) in order to increase
its wearability without compromising the recording duration.
Consequently, this also affects the location of where the device
can be worn. In our study, we recorded continuously and used
systems with clips that were worn on the hip (with or without
a belt). Wearability was thus not optimal due to the fact that
the devices needed to be recharged every night. This affected
wear compliance and reliability of the recordings (i.e., device
worn but dead battery or battery dying during the day. The
solution to these wearability and usability limitations requires
compromising the use of continuous sampling of GPS data
(thus affecting the measures of transportation modes) or will
require implementation of intelligent power management of the
GPS sensor. This method would ensure that the device is only
powered when certain conditions are met (e.g., the person is
outside) and when its duty cycle is pushed to the minimum
(i.e., power up and down cycles are optimized to keep data
acquisition computing cycles to compute satisfactory GPS data).
However, although this can be done with research devices, it
is highly unlikely to be applied to commercial devices that are
designed for specific consumer use (e.g., tracking runs of 3–
5 h).

Results on the remaining sample (n = 54) showed that on
average in a typical day, participants spent about 34% of the
recording time outside of the home, with about two trips outside
of the home and approximately six destinations reached in total.
Typical transit distance per day was 30 km on average with
44min spent in a vehicle. Approximately 2.3 km of travel was
on foot, which was a time of 38min on average per day. The
values for the ellipse area and ellipsemaximal distance ofmobility
over the recording period were highly variable. The values for
the time spent at home may be overestimated with respect to
other observations reported in previous literature (37–39), as
our cluster-based processing approach (buffer zone around the
cluster) and method of computing time at home (time spent
in the cluster where there was the most data points occurred
in a day) could have been affected by certain participants who
spent most of their day outside of their home in a cluster that
was not in fact their home (i.e., those still working or visiting
outside of their home). This could be addressed by fixing a known
coordinate as the home location for later use during data analysis.
Furthermore, while the sensing devices and signal processing
approaches are different, the travel behavior results (trip out and
destination) presented are similar to those reported by others
(40–42), suggesting that these outcomes are relatively robust and
reproducible for a sample of healthy older adults. The mean
maximal distance achieved over the recording period was highly
variable (mean of 60 km with SD of 134 km) which potentially
highlights certain motivations and opportunities to travel such

distance. For example, one outlier used a personal car to travel to
their workplace close to 150 km from his home.

Another limitation of the extraction method was that the
active time ratio and steps were computed only for the
participants who wore the WIMU-GPS. The mean active time
ratio was transformed in minutes per time of recording which
corresponds to about 3 h of activity per day. The approach used to
compute active time in our participants from accelerometer data
is based on a threshold and temporal density of the acceleration
signals that was developed based on observations of older adults
during in-patient rehabilitation sessions (63). Therefore, active
time is a relatively sensitive measure that captures sustained low
level physical activity with a small-time window which does not
classify the context or the intensity of the activity. The number
of steps per day (average of 3,421 steps per day, with a range
between 950 steps and 7,500 steps) computed during these active
time periods was relatively low in comparison to studies reported
in the literature on the number of steps taken by healthy older
adults. Counting steps using accelerometer data is not trivial as
the devices used, their location (wrist, hip, trunk), the underlying
algorithms and their specificity to detect certain activities in
certain populations, affect the accuracy and validity of the steps
counted, thus making comparisons difficult. This is clearly still
an unresolved issue, as shown by the recent systematic review
published on activity trackers (32). With the low number of steps
taken on an average day, it can be deduced that our sample of
healthy older adults was mostly sedentary (fewer than 5,000 steps
per day). While the accuracy of our measurement approach and
algorithm (an ongoing validation study) cannot be attested to,
the combination of computing steps for time epochs that were
considered active, the location of the sensor (at the hip) and
the proposed hybrid algorithm were choices made to maximize
counting real steps and minimize artifacts.

The construct validity of our outcomes was explored using
personal, functional, and environmental variables to see if the
activity and mobility outcomes derived from accelerometer and
GPS data recordings differed among variables. The idea of life
space constriction with aging is mostly based on the rationale
that increasing vulnerability to negative environmental aspects is
linked to deteriorating functional ability among the elderly as well
as the idea that disease states (heart disease, neurological disease,
arthritis/neuralgia) contribute to this phenomenon. While there
were important inter-individual variations in the lifespace
measured using the area of the ellipse and the maximal distance
of the ellipse outcomes computed from the GPS data—outside of
a few personal variables such as income and professional status—
no other variables were associated with a decreased lifespace. This
can be explained in part by the population selected in our study
(healthy older adults without any mobility impairments) and the
density of the urban area they lived in. Although certain personal
variables (income, living situation, vehicle access, professional
status) appeared to affect some of the measured outcomes,
functional status and environmental variables did not. Age and
walking access to shop and services did not impact the majority
of the measured outcomes (with the exception of the number
of steps). Although this was surprising, it could possibly be
explained if one considers the population recruited as well as the
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fact that this group lived in a dense urban area. Thus, the effect of
these variables appears to be negligible. Vehicle access impacted
the transit distance and time in a vehicle but not the overall
lifespace, which suggests that in an urban area such as the Island
of Montreal, other means of active transportation can mitigate
or facilitate the overall lifespace of an individual. Furthermore,
amongst personal variables, participants categorized as having a
low income spent more time at home and had lower maximal
distances of destination. They also had a more constrained
lifespace as measured by the ellipse area and maximal ellipse
distance outcomes. This could potentially be explained by
socio-economic status, which has been demonstrated to impact
lifespace and can be directly related to access to transportation
and social participation and opportunities.

With regards to the Lifespace assessment scores and the
12 location, activity and community mobility outcomes, only
four of twelve correlations were significant (spearman rho
<0.40, p < 0.05). Therefore, although the maximum distance of
destination, distance in vehicle, ellipse area and ellipse maximum
distance were related to the LSA scores and appear measure the
same construct, these correlations are weak, if at all significant.
Consequently, it could be hypothesized that measures of lifespace
provide a different overall representation of daily activity and
lifespace compared to the presented method using wearable
technology. An explanation for the lack of a likeness between
the two measures could be the fact that the LSA provides
data for the preceding 4 weeks and the GPS and accelerometer
only 2 weeks (worn starting at day 14). Then, this could have
resulted in discordance between actual performance (location,
activity and community mobility outcomes) and self-reported
lifespace, which has also been reported in various studies (64–66).
Indeed, while the LSA is the most commonly used instrument
to measure lifespace, it also has considerable limitations, the
most important being that the LSA relies heavily on recall
and honest reporting (27). This recall is for a lengthy 4-week
period and thus is especially problematic for many, as trying
to identify occurrences and frequencies of specific events in
the different lifespace levels is difficult. Therefore, this measure
is only an approximation of averages. To what extent these
averages sufficiently represent actual mobility of the individual
remains to be established. Another drawback of the LSA is
that its score fails to account for the duration of mobility
bouts or time spent in each lifespace level. In addition, the
lifespace levels used with the instrument are categorized on a 5-
level scale representing a coarse representation of existing real
lifespaces. A concern is that these lifespaces are delimited by
virtual boundaries which are subject to individual judgement
(e.g., interpretation of the boundaries of one’s neighborhood
may differ between individuals). Furthermore, lifespacemeasures

may not apply to rural areas due to substantially differing
mentalities concerning what neighborhoods and other lifespace
levels encompass. Therefore, these limitations may contribute
to the discordance and lack of correlation with the extracted
outcomes using the proposed method.

CONCLUSION

The prevalence of mobility limitations with aging is high
and their impact on activity and community mobility require
new so-called “ecological measures—i.e., measures that consider
the environment of the person” to understand mitigating
personal, functional and environmental factors that affect
physical, psychological and social aspect of an older adult’s
life. Aactivity and community mobility measurements based on
GPS and accelerometer sensor data can offer unique insights
on this dynamic. Activity and mobility profiles from the
proposed approach are highly variable and distinct in healthy
young older adults and some of these variations are linked to
personal characteristics. The construct validity of the proposed
approach appears promising but requires further studies directed
at populations with mobility impairments. Wearability and
usability of the devices used to record the data affect compliance
and data quality.
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