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Soluble ST2 in coronary artery
disease: Clinical biomarkers and
treatment guidance

Junyan Zhang†, Zhongxiu Chen†, Min Ma and Yong He*

Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China

The IL-33/ST2 L signaling pathway is involved in the pathophysiological

processes of several diseases and mainly exerts anti-inflammatory and

antifibrotic e�ects. Soluble suppression of tumorigenicity 2 (sST2), which

serves as a competitive inhibitory molecule of this pathway, is a member of

the interleukin (IL)-1 family, a decoy receptor for IL33, thought to play a role in

cardiac remodeling and the inflammatory process. However, the association

between sST2 and coronary artery disease (CAD), one of the most common

causes of heart failure, is still being explored. We therefore reviewed the

research on sST2 in the field of CAD, including reflecting the atherosclerosis

burden, predicting no-reflow, predicting prognosis, responding to myocardial

remodeling, and guiding management, hoping to provide cardiologists with

new perspectives.

KEYWORDS

sST2, coronary artery disease, myocardial infarction, LVR, management

Introduction

Suppression of tumorigenicity 2 (ST2) is a member of the interleukin 1 (IL-1)

receptor family and is formally known as interleukin 1 receptor-like 1 (IL1RL-1). It was

first described in 1989 but remained an orphan receptor mainly related to immune and

inflammatory diseases for years (1). In 2005, ST2 was reported to be expressed in cardiac

cells in response to myocardial stress, and interleukin 33 (IL-33) was reported to be the

ligand of ST2 (2). Since then, its role in cardiovascular diseases has been of great concern.

The ST2 gene is located on human chromosome 2q12 and encodes two main protein

isoforms: transmembrane receptor (ST2 L) and truncated soluble receptor (sST2). The

interaction between IL-33 and ST2 L mediates anti-inflammatory and antifibrotic effects

(3). For instance, the activation of mitogen-activated protein kinase (MAPK) and nuclear

factor (NF-kB) signaling originates from the binding of IL-33 to ST2 L, which produces

various downstream effects in target cells in the presence of additional interleukin-1

receptor accessory protein (IL-1RacP) receptor protein molecules. In contrast, when

IL-33 binds to sST2, it prevents and blocks these effects (4). While sST2 can be secreted

into the circulation and functions as a decoy receptor for IL-33, it is unavailable to ST2 L,

which abolishes the cardioprotective effects of IL-33/ST2. Meanwhile, ST2 is established

as a selective marker of T helper type 2 (Th2) lymphocytes, which are also expressed

on mast cells, epithelial cells, endothelial cells, smooth muscle cells, neonatal cardiac

fibroblasts, and cardiac myocytes. More specifically, sST2 can serve as a non-invasive
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FIGURE 1

Role of sST2 in diseases of various systems.

diagnostic and prognostic marker for lung, gastric, breast,

pancreatic, colon, and other cancers (5–7); can be present in

diseases associated with a predominantly Th2 response, such

as asthma, pulmonary fibrosis, and rheumatoid arthritis (8, 9);

can be useful for risk stratification and prediction of prognosis

in patients with suspected sepsis (10, 11); and can enhance the

development of fibrosis, hypertrophy, remodeling of the heart

muscle, and progression of heart failure (12, 13) (Figure 1).

Although sST2 is involved in the pathophysiology of several

diseases, an increasing number of recent studies have focused

on heart disease, especially heart failure. Since sST2 is less

influenced by age and renal insufficiency than N-terminal pro-

B-type natriuretic peptide (NT-proBNP) and high-sensitivity

troponin T (hs-TnT) (14, 15), it has been entered into guidelines

in heart failure and considered to provide additive prognostic

value and as a guide to therapy decision-making of heart

failure (16).

Coronary artery disease (CAD), especially acute coronary

syndrome (ACS), is one of the most common causes of mortality

throughout the world, despite technological improvements, new

drugs, and an increasing level of awareness (17, 18). In fact,

timely diagnosis allows physicians to stratify their patients

by risk and consequently provide them with the opportunity

to select appropriate treatments. Biomarkers that help refine

diagnosis, risk stratification, and prognostic assessment are

needed. In recent years, the role of ST2 in the pathophysiology

of CAD and the clinical value of this biomarker in acute ST-

segment elevation myocardial infarction (STEMI) have broadly

expanded. In this study, we aimed to reappraise the current

knowledge on sST2 in CAD (Figure 2).

Association with coronary
atherosclerotic burden

The “inflammatory hypothesis” of atherosclerosis postulates

that inflammatory cell signaling drives the formation, growth,

and ultimately the instability of atherosclerotic plaques, setting

up the substrate for the thrombotic response that causes

myocardial damage or infarction (19). In the arterial wall,

the interaction between IL-33 and ST2 L directs the immune

response toward a T helper 2, macrophage 2 phenotype, limiting

plaque inflammation and evolution. In contrast, sST2 blocks

the protective effects of IL-33 on atherosclerotic plaques by

sequestering IL-33 (20).

Pfetsh et al. observed a strong correlation between elevated

sST2 levels and inflammatory markers (hs-CRP and IL-6)

that may reflect the presence of chronic inflammation in the

pathophysiology of atherosclerosis (21). In addition to being

closely related to the progression of atherosclerotic lesions,

sST2 has been reported as a biomarker for the stability and

complexity of coronary atherosclerosis. Previous studies have

shown that an increased sST2 level is a strong marker of

increased risk for mortality and adverse cardiac events, such

as recurrent MI and stroke, in patients with AMI (22). Zhang

et al. revealed that plasma sST2 levels were significantly higher

in ACS patients with complex lesions than in those with simple

lesions, which indicated that sST2 may be a new marker for

assessing the stability and complexity of atherosclerotic plaques

(23). However, the above study also showed that there were no

correlations between plasma sST2 level and stenosis severity,

measured by the number of culprit vessels and Gensini score.

Dieplinger et al. came to the same conclusion as above, which

elucidated that sST2 was not related to the angiographic severity

of CAD (24). The reason for higher sST2 levels in patients with

complex lesions than in patients with simple lesions in ACS was

explained in the study of Demyanet et al., which showed that

sST2 may play a role in the development of vulnerability and

plaque rupture, which occurs most predominantly in the ACS

population (25).

Based on the above studies, Luo et al. prospectively enrolled

120 patients to assess plaque vulnerability by coronary computed

tomography angiography (CCTA) (26). Their study showed

that higher serum sST2 levels were associated with higher

plaque vulnerability. However, the two prevailing intracoronary

imaging techniques in clinical practice, IVUS, which allows

macroscopic visualization of the structure of the entire vessel

wall, and OCT, which allows microscopic visualization of the

subtle structure of the wall, complement each other and can be
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FIGURE 2

Research progress on sST2 in the field of coronary heart disease.

used as an important tool for identifying vulnerable plaques (27–

29). Therefore, studies using IVUS andOCT as outcomes should

be conducted to further validate the correlation between sST2

and plaque vulnerability.

Meanwhile, the coronary artery calcium score (CACS) is a

marker of atherosclerotic plaque burden and an independent

predictor of coronary events. In the study by Oh et al. (30),

researchers enrolled 456 subjects to illustrate that, compared

with hsCRP, sST2 does not improve net reclassification for

predicting a high-risk CACS, defined as CACS ≥300 Agatston

units. Overall, sST2 may reflect the atherosclerotic burden in

unstable, complex atherosclerotic lesions, but further studies are

needed to focus on this issue.

Predict no-reflow phenomenon after
percutaneous coronary intervention

The no-reflow phenomenon is defined as insufficiency

of myocardial perfusion despite the mechanically responsible

lesion being opened. The no-reflow phenomenon rate can reach

as high as 50% in ACS patients (31) and restrain the positive

effects of percutaneous coronary intervention (PCI). As there

is limited treatment of no-reflow, it is more important to

prevent it from occurring (32). Clinicians are committed to

finding markers or clinical conditions that can predict no-

reflow. It was demonstrated that sST2, a biomarker related

to inflammatory activity, is one of the independent predictors

of the no-reflow phenomenon in STEMI patients undergoing

primary PCI. Somuncu et al. (33) included 379 patients

who underwent PCI treatment for STEMI to determine the

relationship between sST2 and the no-reflow phenomenon.

Higher levels of sST2 patients had a significantly higher level

of no-reflow compared with lower levels of sST2 (OR: 2.741 CI

95% 1.433–5.244, p= 0.002). Furthermore, after adjustment for

potential confounders, it was found that being in a high-sST2

group was one of the independent predictors of no-reflow [area

under the curve (AUC), 0.699; 95% confidence interval (CI),

0.65–0.75; P < 0.001].

Since the above study showed that sST2 can predict the

no-reflow phenomenon in STEMI patients, experts then turned

their attention to non-ST-segment elevation acute coronary

syndrome (NSTE-ACS). Zhang et al. (34) revealed similar

results, which pointed out that although the predictive ability

was low, sST2 had a predictive value for no-reflow [area under

the curve (AUC), 0.662; 95% confidence interval (CI), 0.53–

0.79; P = 0.015]. It also had independent predictive value

after adjusting for confounding factors [odds ratio (OR), 3.802;

95% CI, 1.03–14.11; P = 0.046]. However, both studies were

single-center studies, and the number of patients included

was relatively small. More importantly, they only detected the

sST2 level of patients at the time of admission but did not

observe subsequent changes. Thus, more high-quality trials

should be carried out to determine the relationship between

sST2 and no-reflow.

As a prognostic biomarker of CAD

Shimpo et al. demonstrated that sST2 levels can predict

mortality and heart failure in MI patients by extracting sST2
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from the serum of 810 AMI patients (35). Then, Sabatine et al.

measured ST2 at baseline in 1,239 patients with STEMI from

the CLARITY-TIMI 28 trial, which showed that a high baseline

ST2 level, irrespective of baseline features and NT-proBNP, is

a strong predictor of cardiovascular mortality and heart failure

in STEMI, and the combination of ST2 and NT-proBNP greatly

enhances risk stratification (36). At the same time, studies have

shown that sST2 is also an independent predictor of future

death or heart failure in patients with acute chest pain in the

emergency department (37). In contrast, sST levels did not

predict the occurrence of MACEs in STEMI patients in the study

by Kim et al. (38). The reason for this phenomenon may be that

sST2 levels begin to rise at 3 h after STEMI and peak at 12 h. The

length of time after AMI onset to reperfusion affects myocardial

injury, which is associated with an increase in biomechanical

strain, leading to higher sST2 levels. Themedian time from onset

to PCI for patients in this study was 2.7–2.8 h, which is shorter

than in other studies (38). These patients, on the one hand, had

a short period of myocardial ischemia and may not have been

severely injured; on the other hand, they may have had an earlier

measurement of sST2, resulting in sST2 not yet being elevated

to the desired level. As in STEMI patients, the prognostic

predictive role of sST2 in patients with chronic coronary artery

disease (SCAD) remains controversial. The 13-year follow-up

results of the KAROLA study suggest that sST2 levels can be

an independent predictor of mortality in SCAD patients but

do not predict non-fatal cardiovascular events (21). Similarly,

the results from the Ludwigshafen Risk and Cardiovascular

Health Study also elucidated that increased sST2 levels were

an independent predictor of long-term all-cause mortality in

patients with SCAD (24). However, Demyanets et al. came to the

opposite conclusion, stating that sST2 was not associated with

mortality in SCAD patients, despite a strong relationship with

mortality in STEMI patients (25). Hughes et al. also showed that

sST2 does not function as a predictor of cardiovascular events

in the general population (39). The reason for this discrepancy

may be because the latter study included not only patients with

unstable coronary plaque but also patients with stable coronary

artery disease, which interfered with the results.

Although many studies have confirmed that sST2 has a

strong predictive effect on the prognosis of heart failure, the

number of studies on sST2 and the prognosis of CAD, both in

ACS and chronic coronary syndrome (CCS), is limited, and their

findings are controversial. Therefore, more studies should be

conducted in the future to further explore the prognostic effect

of sST2 on CAD.

Reflect left ventricular remodeling
after acute myocardial infarction

Left ventricular remodeling (LVR) refers to changes in

the shape and size of the whole left ventricle after acute

myocardial infarction (AMI). Important pathological features

of postinfarction LV remodeling include infarct expansion,

myocardial hypertrophy, cardiac fibrosis, and ventricular

dilation, which are mainly due to inflammatory responses and

neuroendocrine activation (40, 41). The development of adverse

LVR after AMI remains a significant problem despite current

achievements in invasive and pharmacological treatment (40).

Meanwhile, ST2 regulates the expression of

proinflammatory cytokines from macrophages and prevents

uncontrolled inflammatory reactions in the MI region. The

sST2 level could be responsible for myocardial fibrosis and

LVR, which could affect the prognosis after MI (40, 42). By

constructing a mouse model of MI, Ghali et al. illustrated

that IL-33 administration was associated with deterioration

of cardiac function and ventricular remodeling. This study

validated the role of the IL-33/ST2 axis in LVR after MI and laid

the theoretical foundation for subsequent clinical studies (42).

Thus, several studies using cardiac magnetic resonance (CMR)

or echocardiography (ECHO) as a measure of LVR have been

performed to demonstrate the relationship between sST2 and

LVR after MI. Weir et al. included 100 patients with AMI for

whom serum biomarkers were measured and CMR scans were

performed and demonstrated a direct relationship between

sST2 and LVR (43). It was also shown that sST2 was higher in

individuals with microvascular obstruction (MVO), which is

related to a more significant LVR and a poorer cardiovascular

prognosis following AMI (44, 45). Kercheva et al. reached a

similar conclusion from ECHO endpoints that the rise in serum

sST2 was strongly associated with LVR after 6 months (46).

Another similar study also found that sST2 levels correlated with

both early LVR (<3 months) and late LVR (>3 months) (47).

Based on these studies, using novel drugs that may antagonize

this pathway, e.g., novel interleukin-1 monoclonal antibodies to

antagonize the process of LVR, becomes theoretically possible,

but this builds on more experiments demonstrating the causal

relationship between sST2 and LVR (47).

Currently, mainly instrumental markers, such as the

parameters of ECHO and CMR, are used to indicate the

development of adverse LVR (48). The quest for a practical

and reliable biomarker of adverse LVR, which would allow us

to predict this disease in its early stages based on an exact

assessment date, appears to be promising (49). Since both

hemodynamic stress and an inflammatory nature are involved

in the pathophysiological process of LVR, indicators that might

reflect this process, such as NT-proBNP and hsCRP, have been

of interest to cardiologists (36). Unlike NT-ProBNP, which

responds to cardiac mechanical stress, sST2 reflects the degree

of necrosis and inflammatory response of cardiomyocytes (50).

Meanwhile, the dynamics of serum levels are different, which

affects the timing and purpose of their clinical application. The

level of sST2 decreased rapidly during the 7 days after MI;

however, the level of NT-proBNP decreased effectively after the

first 7 days (46). Then, Pecherina et al. performed a correlation
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analysis of echocardiographic parameters and serum biomarkers

in patients with STEMI and preserved left ventricular ejection

fraction, which showed that sST2 predicted LVR better than

NT-proBNP (AUC 0.8 and 0.7, respectively), and several other

biomarkers, such as matrix metalloproteinases (MMPs) and

galectin-3, were also included in the study, illustrating that

biomarkers combined with imaging findings can better predict

the occurrence of LVR (51).

Moreover, several studies have found a link between sST2

and circulating aldosterone, implying that the IL-33/sST2

signaling system and the RAAS are linked (43). This raises

the possibility of a direct role for the IL-33/sST2 system

in the pathogenesis of postinfarction remodeling. Studies are

already underway in this area, and the effects of drugs such as

eplerenone, spironolactone, and beta-blockers on the IL-33/sST2

axis are gradually being discovered by cardiologists (52, 53), but

more research is still needed in this area to find an optimal

strategy to detect and cope with ventricular remodeling in an

early stage after MI.

As help for management of
myocardial infarction

The IL-33/ST2 signaling pathway is involved in various

adverse pathophysiological processes after infarction, such as

fibrosis, inflammation, and hypertrophy, which are important

targets for a variety of neuroendocrine antagonists currently

available to improve the prognosis of MI patients. Xia et al.

demonstrated that beta-blockers could inhibit fibrosis, reduce

infarct size, and improve cardiac function by enhancing the

IL-33/ST2 signaling pathway through the construction of an

AMI mouse model and that this effect results in a decrease

in serum sST2 levels (54). It is possible that measurement of

serum sST2 levels may reflect the efficacy of beta-blockers in

patients with AMI. Next, Gaggin et al. performed a post-hoc

analysis of the PROTECT study in which the group of patients

who received high-dose beta-blockers with low sST2 levels

had the best prognosis, suggesting that sST2 levels can assist

cardiologists in selecting the best treatment option for patients

with MI (53). Like beta-blockers, mineralocorticoid receptor

antagonists (MRAs) are also widely used as neuroendocrine

antagonists that can inhibit myocardial remodeling and improve

prognosis in patients with MI. Other studies have also shown

that both eplerenone and spironolactone antagonize aldosterone

and are able to enhance the IL-33/ST2 signaling pathway while

decreasing serum sST2 levels. Therefore, the detection of serum

sST2 levels can also reflect the efficacy of these drugs (52, 55).

Conclusion and clinical perspectives

Soluble ST2 is a promising biomarker in cardiology, not

only in heart failure but also in CAD. As a biomarker related

to inflammation and fibrosis, sST2 has important clinical value

in CAD, which may guide prognosis prediction, treatment plan

selection, risk assessment, and long-term management of MI

patients. In this article, we reviewed the use of sST2 in coronary

artery disease, including reflecting plaque burden, predicting no-

reflow events, predicting the prognosis of patients, reflecting

LVR, and guiding the management of patients with MI. We

hope that, in the near future, new studies will be conducted

to better characterize and understand the relationship between

sST2 and CAD.
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