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Pineal glands from neonatal (0-1 day) Long-Evans
black-hooded rats were transplanted into the cerebral
hemispheres of litter mates for periods of 1 to 5.5
months. Grafts exhibited differentiated pinealocytes
that were intensely immunoreactive for serotonin.

Transplant vasculature was permeable to endogenous
IgG, comprised fenestrated endothelia with wide

pericapillary spaces typical of in situ glands, and had

a volume density intermediate to that of surrounding
cortex and in situ pineals. Along the periphery,
transplant capillaries tended to have continuous

endothelia similar to those of host cortex. This
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peripheral zone was impermeable to endogenous IgG
and appeared to increase in size in older grafts. The

presence of noradrenergic-like fibers within the

perivascular compartment suggested that transplants
were innervated by peripheral sympathetic neurons

from the superior cervical ganglia. In animals which

had been superior cervical ganglionectomized, nor-

adrenergic-like fibers were absent or degenerating.
Neural regulation of transplant metabolic activity was

suggested by the increased frequency of pinealocyte

synaptic ribbons in denervated grafts. These findings

are consistent with the hypothesis that factors from

both graft and host influence vasculature physiology
and differentiation in neural transplants. Further-

more, grafts appeared to receive appropriate neural

input from the peripheral sympathetic system.
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INTRODUCTION

The pineal gland, a neuroendocrine gland of
diencephalic origin, exhibits several characteristics that
make it a useful model for transplantation studies
concerning mechanisms of the blood brain barrier

(BBB) and innervation. First, the pineal gland of rats
is normally vascularized by fenestrated, permeable
blood vessels with wide pericapillary spaces/11,22/.
Second, it receives a well defined sympathetic
innervation from the superior cervical ganglion (SCG)
which is necessary for the normal circadian production
of the pineal hormone, melatonin /26/. The
sympathetic innervation is identified ultrastructurally
by the presence of characteristic dense-core vesicles
within the sympathetic terminals /21/. Third, the
pineal gland contains high concentrations of the
indoleamine, serotonin (5HT), and is the principal
source of circulating melatonin. These indoles, which
exhibit robust circadian rhythms and are easily
measured by both biochemical and histochemical
methods, provide important markers of the functional
integrity of the transplant. Finally, pinealocytes have
ultrastructure features such as the synaptic ribbon that
provide unequivocal identification of donor vs host

tissues/23/.
The present study examined various anatomical

features of the newborn pineal gland grafted into
cerebral neocortical lesion cavities made in newborn
rats. Particular emphasis was placed on the ultra-
structural differentiation of transplant pinealocytes and
the vascularization of the graft. Recent studies of
neuronal transplant vasculature have demonstrated an
impermeable BBB within fetal neocortical grafts
placed intracerebrally in newborn rats /32/. Using
adult recipients, similar findings have been reported
for hypothalamic grafts /3,36/, although other
evidence indicates a permeable blood supply for
neocortical grafts located intraventricularly/16,30/. In
comparison to central nervous system (CNS)
transplants, grafts of peripheral autonomic tissue (i.e.,
superior cervical ganglia and adrenal medulla)
demonstrated a permeable BBB/29,31/.

In the present report, intracerebral grafts of the
neonatal pineal gland into newborn hosts
demonstrated a permeable vasculature to circulating
macromolecules. These findings corresponded to ultra-
structural observations of fenestrated endothelial cells

comparable to the normal in situ gland. The
innervation of grafts by apparent sympathetic fibers
prompted further studies to determine whether this
noradrenergic input influenced grafted pinealocyte
function.

MATERIALS AND METHODS

Long-Evans, black-hooded rats were used. The pineal
gland of 0-1 day-old rats was dissected under
hypothermic anesthesia into sterile Ringer’s solution
and gently aspirated into a glass pipet glued to the tip
of a 50/m Hamilton syringe. Simultaneously, small
neocortical lesions were made by aspiration into litter
mates also anesthetized by hypothermia. The recipient
lesions were made 1-2 mm from the midline just
rostral to the coronal suture and grafts were

immediately placed into the lesion cavity by slowly
ejecting them from the syringe canula with the aid of
a micromanipulator. The grafts were held in place by
a flap of the cartilaginous skull and the pups were

warmed by an incandescent lamp before returning
them to their mothers. Donor rats were killed by
decapitation while under hypothermic anesthesia. The
results reported in this study are from 28 rats receiving
such transplants.
After 1 to 5.5 months, animals were overdosed with

sodium pentobarbital and perfused with physiological
saline followed by a 4% paraformaldehyde/0.1%
glutaraldehyde solution. In eight rats the SCG were

surgically removed (SCGX) bilaterally under sodium
pentobarbital anesthesia (45 mg/kg) 5-7 days prior to
sacrifice.

Tissue blocks containing the transplant were

vibratome sectioned at 50-100 m and examined
either with Nissl or immunohistochemically for
serotonin and IgG as previously described /32/.
Transplant blood vessel permeability to endogenous
immunoglobulin (IgG) was analyzed by incubating
tissue in biotinylated rabbit anti-rat IgG (1:200).
Serotonin positive pinealocytes were demonstrated
using rabbit anti-serotonin antiserum (INCstar,
Stillwater, MN at 1:100-1:1500) followed by incubation
with biotinylated goat anti-rabbit IgG (1:200). Avidin-
Biotin histochemistry was performed according to the
protocol in the Vectastain ABC kit (Vector Labs,
Burlington, CA) using the chromogen diamino-
benzidine. Immunoreacted sections were also
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processed for routine electron microscopy. Sections
were post-fixed in osmium tetroxide, dehydrated in
ethanol followed by propylene oxide and flat
embedded on plastic slides with epoxy resin. After the
blocks were cured, the transplants were photographed
for purposes of orientation and the transplants cut out
and remounted on plastic stubs for sectioning.
Toluidine blue 1/am sections from these blocks were
photographed for purposes of orientation in the
electron microscope and were used to estimate volume
density of blood vessels (V%v) with a 90-point grid on
a transparent overlay and applying standard
stereological point-counting methodologies/35/. Thin
sections (70-80 nm) were examined with an Hitachi H-
600 TEM operated at 75 kV. Counts of pinealocyte
synaptic ribbons were obtained by systematically
scanning three grid spaces (300 mesh; Pelco, Tustin,
CA) at a magnification of 6,000 on the microscope
screen. Each of the grids was coded so that the
individual performing the counts was unfamiliar with
the experimental group. Differences between the
means were statistically analyzed by the Student’s t-
test (2-tailed).

RESULTS

Transplants were located within the cortical lesion
cavity near the cortical surface (Fig. 1), bordering the
lateral ventricle (Fig. 2) or within the lateral ventricle
(Fig. 3). Pineal tissue was easily distinguished from
surrounding cortex with Nissl stain (Figs. lc, 2a) and
revealed positive immunoreactivity for both IgG
(Figs. la,b,2b) and serotonin (Fig. 3). The IgG
immunoreactivity sometimes had a trabecular
appearance corresponding to the vasculature of the
gland (Fig. la). In some transplants, especially older
ones, the IgG immunoreactivity was greatest in the
central part of the transplant and declined in intensity
toward the periphery of the graft (Fig. lb,2b).
Morphometric analysis of the transplant vasculature
revealed that capillary volume density: (1) did not
differ between transplants located in the cortex and
ventricle; and (2) had a mean value which was
intermediate to that of in situ pineal glands and the
surrounding cortex (Table 1). Capillary volume
densities of individual transplants fell within the ranges
of values calculated for cortex and h situ glands
(Table 1).

TABLE 1
MEANS (_.+SEM) OF VOLUME DENSITIES
(mm3/mm3) OF VASCULARIZATION IN

TRANSPLANTS COMPARED TO CORTEX AND
IN SITU GLANDS

In situ glands
(n=6)

Transplants
(n=15)
Cortical
(n=11)

Ventricular
(n=4)

Cortex (n=9)

Mean SEM Range

.236 +_.038 .214-.414

.127 +_ .018 .032-.242

.123 +_ .022 .032-.228

.139 +- .037 .070-.242

.037 __..006 .017-.057

The fine structure of transplant pinealocytes was

indistinguishable from that of in situ cells (Fig. 4a).
Coplasmic organelles were well differentiated and
included the synaptic ribbon which is characteristic of
this cell type (Fig. 4b). The ultrastructure of the
vasculature was variable. Within the central part of the
transplant, capillary endothelia were attenuated and
had fenestrae with diaphragms (Fig. 5). The HRP
immunoreaction product for IgG was located in the
wide perivascular space (Figs. 5b,d). Fenestrated
endothelia were observed within all transplants
although the frequency of fenestrae was reduced in
those transplants located within the ventricle. Along
the periphery of transplants, capillaries tended to
resemble host cortical tissue lacking both fenestrae
and a wide perivascular compartment (Fig. 6). Nerve
terminals containing clear and dense-cored vesicles 40-
60 nm in diameter were observed in the perivascular
spaces (Figs. 5A,7). The nerve fibers tended to be
more common in grafts located within the cortex as
compared to those lying within the lateral ventricle.

Superior cervical ganglionectomy resulted in the
complete degeneration of noradrenergic-like
perivascular terminals in six out of eight in situ glands
analyzed. Counts of synaptic ribbons in these six
animals were significantly elevated above unoperated
controls (Table 2). Although all eight animals which
had undergone SCGX experienced bilateral ptosis, in
two of these animals noradrenergic terminals were

infrequently observed within the gland, suggesting that
denervation was not complete. The counts of synaptic
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lb

Examples of grafts in the cortex.
A. 1-month-old graft immunoreacted for IgG. Bar indicates 200 #m. B. 5-month-old graft immune-reacted for IgG. Bar indicates
500 #m. C. 5-month-old graft with Nissl stain. Bar indicates 500 #m.
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ribbons in these two animals did not differ from
unoperated controls and were therefore not included
in the statistical analysis presented in Table 2.

Fig. 2: Adjacent sections from a graft bordering the
lateral ventricle. 6-month-old graft. Bars indicate
500 gm. A. Nissl stain. B. IgG immunoreacted
section with reaction product confined to the
center of the graft.

TABLE 2
MEAN (_+SEM) COUNTS OF SR

(#/20,000 mm2) AFTER DENERVATION

Mean SEM Range
In situ
with. NE terminals 37.4 _+3.6 25.2-52.6
(n =6)
without NE terminals 143.8 +20.5* 84.7-201.5
(n=6)

Transplants
with NE terminals 44.2 + 15.0 22.9-73.2
(n=3)
without NE terminals 119.3 __. 10.0" 68.7-144.0

rt--- 7)
*Indicates significant differences at p < 0.05.

Fig. 3: Transplant reacted with anti-5HT within the lateral
ventricle. 2-month-old graft. Bar indicates
500 ttm.
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Fig. 4: A. Survey, electron micrograph of pinealocytes in a 4-month-old transplant. Pinealocytes are highly differentiated and contain all
of the usual organelles. Bar indicates 5 .m.B. Higher magnification of pinealocytes from the transplant depicted in Fig. 4A
illustrating the characteristic synaptic ribbons (SR) and an extensive junctional complex .between adjacent cells (arrow). Bar
indicates .m.
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Fig. 5: A. Capillary in 1-month-old graft located in the cortex illustrating the fenestrae (arrows) in the endothelia and noradrenergic nerve

fibers (NE) in the peivascular space. Bar indicates .m.B. Cortically-located pineal graft with fenestrated endothelial cell (arrow)

and IgG immunoreaction product in the wide perivascular compartment (asterisk). L= capillary lumen. Bar indicates 0.5 #m.

C. Capillary from 2-month-old transplant in lateral ventricle. The endothelium is fenestrated (arrows) and there is a wide

pericapillary space. Bar indicates #m. D. Capillary with IgG reaction product in the pericapillary space. 5-month-old transplant

in the lateral ventricle. Bar indicates .m.
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Noradrenergic-like terminals were never observed
within transplants of animals that had been
sympathectomized (as judged by ptosis and lack of
terminals within the fl situ gland). In one case an

apparent degenerating terminal was found within the
transplant of an animal that had undergone SCGX
(Fig. 7c). Noradrenergic-like terminals were also not

detectable in one graft located within the ventricle
from an animal that had not been sympathectomized.
Terminals were observed in the remaining transplants
from innervated controls and from animals that had
been partially sympathectomized. The frequency of
nerve endings within these transplants was highly
variable. When grafts were grouped according to the
presence/absence of noradrenergic terminals, the
frequency of synaptic ribbons was significantly greater
in transplants lacking noradrenergic-like innervation

(Table 2). Counts of synaptic ribbons in grafts with

sympathetic terminals were not significantly different
from in situ control glands.

DISCUSSION

The present study revealed that transplants of the

pineal gland into the cerebral hemisphere of newborn
rats survived and developed anatomical features
indistinguishable from those of in situ glands. By one

month transplant pinealocytes were highly
differentiated ultrastructurally, the capillaries exhibited
fenestrated endothelia with wide pericapillary spaces,
and the grafts were innervated by sympathetic fibers.
Transplants also appeared capable of indoleamine

biosynthesis as evidenced by the intense immuno-

Fig. 6: A. Capillary located along the periphery of 1-month.old graft located in the cortex. The endothelium is continuous with a narrow
pericapillary space. Pinealocytes completely surround this capillary. Bar indicates 2 #m. B. Non-fenestrated capillary along the
border of a graft in the lateral ventricle. Note that the pericapillary space is wider (asterisk) where it borders pinealocytes (P)
compared to where it borders ependyma (E). Bar indicates 2 #m.
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reactivity to serotonin antisera. Survival and
differentiation of pineal tissue from adult rats and
hamsters into the fourth and lateral ventricles of adult
hosts has been previously reported/2,10,18/.

Previous work involving the transplantation of fetal
neocortex into the cerebral hemisphere of newborn
rats demonstrated a transplant vasculature that was

impermeable to exogenous or endogenous macro-

molecules/32/. In the present report, similarly placed
newborn pineal grafts demonstrated a permeable BBB.
These contrasting findings suggest that transplant
vascular differentiation and physiology is determined
by the graft and not the host tissue. Because the
neonatal grafts and hosts used in these studies were

undergoingendothelial differentiation and proliferation
at the time of transplant, it is conceivable that graft
vascularization comprised both native and host vessels.
Concerning pineal grafts, the high volume density of
capillaries, which in some grafts was identical to that
of in situ glands, further suggests the proliferation of
native transplant vessels. In this regard it is noteworthy
that pineal tissue contains substantial amounts of
"endothelial cell stimulating angiogenesis factor

(ESAF)" /33/. The possibility that host vessels also
supply the graft is supported by the occurrence of
capillaries with continuous endothelia along the
periphery of transplants. These peripherally located
vessels showed a morphology typical of CNS capillaries
suggesting that host vessels penetrated the graft to

anastomose with existing capillaries /15,17/. An
ingrowth of renal vessels into neocortical tissue grafted
in the subcapsular space of the kidney further supports
the possibility that host vessels are able to penetrate
transplants of neural tissue/28/. Furthermore, non-

neuronal host cells have been shown to invade fetal
tectal tissue grafted to the midbrain of newborn rats

12o/.

Fig. 7: Examples of noradrenergic nerve terminals in
pineal glands. A. Nerve terminals in the
perivascular space of a 1-month-old transplant
lying in the cortex. End=endothelium. Bar
indicates 5/m. B. Higher magnification of
noradrenergic-like terminal in 1-month-old
transplant illustrating the clear and dense-cored
vesicles. Bar indicates 5 .m.C. Degenerating
nerve terminal in the perivascular space from a 4-
month-old transplant that had undergone SCGX.
Bar indicates #m.
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IgG immunoreactivity within the parenchyma of the
grafts as well as in the host circumventricular organs
and the median eminence /32/ correspond to the
presence of a permeable BBB that is morphologically
characterized by fenestrated endothelial cells. The
absence of IgG immunoreactivity along the margins of
some of our grafts indicates an impermeability that
corresponded to the observed non-fenestrated
endothelium in these regions. Appearing larger in
some of our older surviving animals, the peripheral
impermeable zone may reflect an age-related
increasing invasion of host vessels into the transplants.
This possibility could be tested by examining trans-

plants beyond the 5.5 month survival period used in
the present experiment.

Instead of representing an ingrowth of host vessel,%
the impermeable graft margins may alternatively
represent a zone where diffusible factors from the host
brain and/or transplant influence vessel permeability
characteristics. Varying concentrations of such factors
may account for the observed differences in size of this
zone in different animals. Altered capillary
permeability occurs in the dystrophic Royal College of
Surgeons (RCS) rats when the retinal photoreceptors
degenerate concomitant with neovascularization of the
retinal pigment epithelium (RPE)/5,8,9/. These new

vessels originate from inner retinal vessels/5/and are
modified both morphologically and functionally. When
surrounded by the RPE, the new vessels are

fenestrated and the plasma membrane composition is
altered/5,8/. This suggests that the RPE has trans-

formed these retinal vessels from a continuous, non-

permeable endothelium to a fenestrated, permeable
one/4,5/.
Transplants exhibited a pattern of innervation by

noradrenergic-like neurons within the perivascular
spaces which is typical of that observed h situ. These
observations prompted experiments to determine
whether the noradrenergic fibers were of CNS origin
(locus coeruleus) or of peripheral origin (SCG).
Normally, there is a widespread ascending
noradrenergic innervation of the brain from the locus
coeruleus /12,27/ in addition to peripheral sympathetic
fibers from the SCG which follow the vasculature of
the CNS. After specific brain lesions (medial septum,
globus pallidus), a proliferation and invasion of
peripheral noradrenergic fibers from the SCG was

observed/6,7/. Consequently, our placement of grafts

into neocortical lesion cavities may have induced an

ingrowth of peripheral fibers as a result of the lesion.
In support of this possibility, noradrenergic terminals
were either absent or in degenerative stages in the
transplants of animals that sustained complete SCGX.
This evidence for SCG innervation, which is also
supported by the observed increase in pinealocyte
synaptic ribbons after SCGX, is qualified by one
animal that was not surgically sympathectomized and
yet whose pineal transplant also lacked evidence of
noradrenergic innervation. Accordingly, the absence of
terminals in the surgical group is not proof that they
were removed by peripheral sympathectomy.
The pineal gland normally exhibits a 24-hour rhythm

in melatonin production that is dependent on its SCG
innervation/26/. If, as our denervation experiments
suggest, the transplants are innervated by sympathetic
fibers from the SCG, it would be important to
determine whether this connectivity establishes the
rhythmic production of melatonin over the 24-hour
light:dark cycle. Cyclical production of melatonin has
been described in pineals transplanted into the
anterior chamber of the eye after reinnervation by
sympathetic fibers which normally innervate the iris
/1,19,25/.
Our data on the frequency of pinealocyte synaptic

ribbons suggest that the sympathetic innervation to

transplants is functional. The significantly greater
number of ribbons found in transplants without

noradrenergic terminals paralleled the rise observed in

denervated in situ glands. Pinealocyte synaptic ribbons

normally exhibit quantitative changes related to

alterations in the melatonin production by the gland
/el 23/. Several studies have further suggested that
these organelles play a role in B-adrenergic
mechanisms controlling the rate of melatonin
biosynthesis /13,14,24,34/. Because synaptic ribbon

frequency in transplants appears dependent upon
sympathetic innervation, this organelle could be an

important marker to further test the hypothesis that
sympathetic innervation of the grafts conveys
appropriate information capable of synchronizing graft
metabolic activities to the light:dark cycle.
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