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One of the hallmarks of acute myeloid leukemia (AML) is a block in cellular differentiation.

Recent studies have shown that small molecules targeting Lysine Specific Demethylase

1A (KDM1A) may force the malignant cells to terminally differentiate. KDM1A is a

core component of the chromatin binding CoREST complex. Together with histone

deacetylases CoREST regulates gene expression by histone 3 demethylation and

deacetylation. The transcription factors GFI1 and GFI1B (for growth factor independence)

are major interaction partners of KDM1A and recruit the CoREST complex to chromatin

in myeloid cells. Recent studies show that the small molecules that target KDM1A disrupt

the GFI1/1B–CoREST interaction and that this is key to inducing terminal differentiation

of leukemia cells.
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INTRODUCTION

AML is a clonal heterogeneous disorder, characterized by a block in differentiation and increased
proliferation of hematopoietic stem- and progenitor cells. Over the past years there have beenmany
insights in the molecular pathogenesis of AML, that have been translated into new possibilities
for targeted therapies (1). The biological processes underlying the growth advantage of leukemic
stem cells, cell differentiation, and apoptosis are of major interest. Cellular changes are often
associated with altered epigenetic modifications, that can be initiated by deregulated transcription
factors (2). Epigenetic modifications are interesting targets, as they are often reversible. Currently,
general therapies targeting the epigenome such as Azacytidine andDecitabine are being used widely
for the treatment of myeloid malignancies (3). However, there is an urgent demand for more
specific drugs targeting the biological processes underlying myeloid malignancies. The CoREST
complex is an important epigenetic complex in hematopoietic development, of which its core
components have been linked to malignant transformation (4–8). Core components of CoREST
are KDM1A, histone deacetylases (HDACs) and REST corepressor family (RCOR) proteins (9–11).
KDM1A binds histone 3 (H3) to demethylate di- and mono-methyl groups on lysine 4 and 9
(K4 and K9, respectively) while HDACs de-acetylate for instance H3K27 (12–15). In myeloid
cells, the CoREST complex is recruited to chromatin via an interaction of KDM1A with the
homologous transcription factors GFI1/1B (Figure 1). Small molecules inhibiting the function
of KDM1A in myeloid malignancies are now emerging the field. In this review we will discuss
the molecular function of the GFI1/GFI1B CoREST complex, and describe how targeting of this
complex forces myeloblasts to differentiate at the molecular and cellular level and how this could
improve treatment of leukemia.
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GFI1, GFI1B AND THE CoREST COMPLEX
IN MYELOID BLOOD CELL DEVELOPMENT

Transcription factors play a dominant role in controlling blood
cell proliferation and differentiation. Two key transcription
factors in these processes are GFI1 and GFI1B. Originally,
GFI1 was identified in a screen for factors promoting
interleukin-2 independent growth of a leukemia T-cell line,
demonstrating that GFI1 plays an important role in cell
proliferation (16). Later studies showed that GFI1 is important
for lymphoid as well as myeloid differentiation whereas
GFI1B is essential for the differentiation of megakaryocytes
and erythrocytes (17–21). GFI1/1B are also crucial for the
emergence of blood stem cells during murine embryogenesis
and in adult mice they inhibit stem cell cycling (22–24).
Inherited mutations in men have underscored the importance
of GFI-proteins in blood cell development. Dominant-negative
missense mutations in the DNA binding region of GFI1
result in an increase in monocyte numbers and block in
granulocytic differentiation causing congenital neutropenia,
characterized by recurrent infections (25, 26). Heterozygous,
truncating germline mutations in the DNA binding domain
of the parolog GFI1B cause autosomal dominant bleeding
disorders. These are associated with macro-thrombocytopenia,
hypogranular platelets, platelet CD34 expression, as well as
increased proliferation of megakaryocytes in the bone marrow
(27–31). Although direct targets in the disease pathogenesis
of mutant GFI1B remain unknown, it was shown that genes
implicated in blood coagulation were not properly induced (32).
Thus, GFI1/1B control the growth and differentiation of different
blood cell lineages.

GFI proteins have distinct functions in blood cell
development, yet have a highly similar structure. Both
transcription factors contain six C-terminal zinc fingers
and a conserved N-terminal Snail/GFI1 (SNAG) domain
(33–37). The intermediary domain between the SNAG
domain and zinc fingers is different and the function is
largely unknown. GFI1/1B bind DNA through zinc fingers
3-5 (35). Through their SNAG domain, the proteins bind
the CoREST complex via an interaction with one of its core
components KDM1A (Figure 1). Since its discovery, many
CoREST associated proteins have been identified but the exact
role of these components in myeloid biology remains largely
unknown (38).

In line with the KDM1A-GFI1/1B interaction, KDM1A by
itself plays an important role in blood cell development as
well as hematopoietic stem cell (HSC) self-renewal capacity and
the emergence of hematopoietic stem cells (39, 40). KDM1A
contains a catalytic amine oxidase (AO) domain, which upon
association with its co-factor flavine-adenine dinucleotide (FAD)
demethylates H3K4 and H3K9. KDM1A knockout (KO) or
knockdown (KD) mice show a severe terminal maturation defect
in red blood cell and granulocyte development and platelet
generation, but not in monocyte maturation. In addition, an
increase in myeloid progenitor cells and mature HSC was
observed (39, 41). In line with its demethylase activity, deletion
of KDM1A resulted in increased H3K4me1 and H3K4me2 levels,

which should normally be demethylated on hematopoietic stem
and progenitor genes during differentiation.

KDM1A is composed of three main structures, a SWIRM
domain (Swi3p, Rsc8p, and Moira), a Tower domain, and the
above mentioned catalytic amine AO domain. The SWIRM
domain associates with the AO domain to form a hydrophobic
groove that allows KDM1A to bind H3 tails. The Tower
domain provides a binding site on KDM1A for RCORs (42,
43). Major functions of the RCORs are preventing KDM1A
from proteasomal degradation, stabilization of the complex
and recruitment of the HDACs (44). There are three REST
corepressor family members (RCOR1, RCOR2, and RCOR3) and
they all interact with KDM1A. They have a common ELM2
(egl-27 and MTA homology2) domain, and two SANT (Swi3,
Ada2, N-CoR, and TFIIIB) domains (45). The C-terminal SANT
domain interacts with KDM1A to form a tight protein complex
(44, 46). The ELM2 domain interacts with the N-terminal SANT
domain to establish binding of HDAC1 and 2 (9, 47, 48).
Depending on cell context, RCOR1 and RCOR2 enhance the
demethylase function of KDM1A, while RCOR3 may counteract
its activity, especially during erythrocyte and megakaryocyte
differentiation (49, 50). HDAC1 and HDAC2 are highly similar
proteins which bind the CoREST complex via an interaction with
the RCORs. Besides being part of CoREST, they are also present in
many other protein complexes. HDACs repress gene expression
by removing active histone acetyl marks, such as H3K27ac.
Deletion of Hdac1 and Hdac2 in mice resulted in cell cycle
arrest, as well as apoptosis of megakaryocytes accompanied by
thrombocytopenia, similar to Gfi1b deletions (24, 51). Although
HDACs bind the CoREST complex via an interaction with the
RCORs, it has been suggested that they directly interact with
GFI1/1B as well (35).

GFI1/1B repress gene expression through CoREST
recruitment to DNA. The SNAG domain and the interaction
with KDM1A are crucial for GFI1/1B biology. A single point
mutation at position two (P2A) in this domain that abrogates
KDM1A binding renders wild type GFI1/1B completely inactive
in neutrophil differentiation and inhibition of megakaryoblast
growth, respectively (32, 52). Moreover, the same point mutation
renders a dominant-negative bleeding disorder GFI1B mutation
completely inactive (32). In addition to the proline at position
two, a lysine at position eight within the SNAG domain needs
to be dimethylated for efficient KDM1A binding (53). Similar
to the P2A mutation, a K8A point mutation rendered GFI1B
completely inactive in erythrocyte differentiation and loss of
the interaction between KDM1A and GFI1B was observed.
Interactions between GFI1/1B-CoREST have been confirmed by
co-immunoprecipitation and chromatin immunoprecipitation
experiments showing major overlap in GFI1/1B, KDM1A and
RCOR1 binding (32, 35, 54–58). Thus, the CoREST interaction
through KDM1A is crucial for GFI1/1B to control blood
cell specification.

Finally, KDM1A has been shown to demethylate non-histone
proteins such as TP53 which is mediated through GFI1 by TP53
binding (59). Dimethylation of K372 of TP53 activates TP53,
whereas its monomethylation represses TP53 (60, 61). GFI1 KO
mice have increased levels of K372 methylated TP53, resulting
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FIGURE 1 | Model of GFI1/1B-KDM1A inhibition. By interacting with transcription factors GFI1/1B, the CoREST complex is recruited to DNA. (Upper panel) The

CoREST complex catalyzes demethylation of histone marks H3K4me1/H3K4me2 and H3K9me1/H3K9me2, resulting in chromatin modifications and altered gene

expression. The complex is stabilized by RCOR, which also facilitates HDAC1/2 binding. The HDACs contribute to gene repression by H3K9ac and H3K27ac

deacetylation. In acute myeloid leukemia cells, GFI1/1B-CoREST contribute to a block in monocytic differentiation. (Lower panel) Small molecules (indicated by the

red polygon) bind to FAD and inhibit the function of KDM1A as well as the interaction with transcription factors GFI1/1B. The release of GFI1-CoREST from chromatin

allows binding of the myeloid transcription factors SPI1 and C/EBPα resulting in gene expression that forces the malignant cells to differentiate toward monocytes,

exemplified by CD86 expression.

in TP53 activation and accelerated myeloid cell death (62, 63).
Taken together, GFI1/1B interplay with KDM1A and the CoREST
complex to regulate gene expression and to inhibit TP53 activity.

GFI1, GFI1B, AND THE CoREST COMPLEX
IN MYELOID MALIGNANCIES

GFI1/1B control the growth and differentiation of myeloid
cells, and disruption of this function may contribute to the
development and maintenance of AML cell expansion (35,
63–66). Remarkably, both low and high GFI1/1B expression
have been implicated in malignant myeloid cell development.
For instance, significantly increased GFI1 expression was
observed in cells derived from AML patients carrying the
oncofusion RUNX1-RUNX1T1 (67). Ablation of GFI1 expression
in RUNX1-RUNX1T1 mice models delayed AML initiation

and progression, defining GFI1 as an oncogene in this AML
subtype. However, KD, but also forced expression of GFI1/1B in
human leukemia cell lines inhibited their growth and induced
apoptosis (32, 68). In a megakaryoblast leukemia cell line,
it was shown that GFI1B induced growth inhibition strictly
depended on the KDM1A interacting P2 and K8 in GFI1B’s
SNAG domain (32). In mice, both Gfi1 KD and KO resulted in
increased immature myeloid cell numbers which transformed
to a myeloproliferative disease in Gfi1 KD but not KO mice
(63). In this study, it was shown that complete Gfi1 absence
resulted in impaired KDM1A-mediated TP53 demethylation
resulting in TP53 activation and cellular apoptosis. In contrast,
low GFI1 levels were sufficient to maintain KDM1A-mediated
TP53 demethylation to inhibit TP53 function and apoptosis.
In combination with inhibition of apoptosis, the increased
production of reactive oxygen species (ROS) observed in GFI1
KD mice may contribute to the onset of myeloproliferative
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disorders that can progress into myeloid leukemia. The myeloid
transformation could be rescued by restoring GFI1 expression,
confirming that low GFI1 expression is oncogenic (63). Besides
aberrant GFI1 expression, a polymorphism in the intermediary
domain in GFI1 (rs34631763, changing a serine at position 36 to
an asparagine, S36N) predisposes to human AML development
(69, 70). This may in part be caused by the inability of GFI136N to
regulate HOXA9 gene expression (71). Regarding GFI1B, a rare
somatic missense variant in the DNA binding domain (D262N)
was found in a patient upon transformation of myelodysplastic
syndrome (MDS) to AML (72). The mutant functioned in a
dominant-negative manner to inhibit erythroid- and stimulate
myeloid cell survival, thereby potentially contributing to the
observed transformation. This indicates that GFI1B functions as
tumor suppressor. Finally, wild type GFI1B is highly expressed in
cells from patients with chronic myeloid leukemia (CML) (73).
CML is caused by the mutated, constitutively active tyrosine
kinase BCR-ABL1. Treatment with BCR-ABL1 tyrosine kinase
inhibitors results in specific CML cell death. In part, this is
caused by a strong GFI1B induction that in turn represses anti-
apoptotic BCL-xL expression (74). Thus, in this setting GFI1B
functions also as a tumor suppressor. Together, the studies
mentioned above show that depending on cellular context,
expression levels and the presence of variants, GFI1/1B may
function as tumor suppressor or as oncogene, either by directly
altering gene expression or by inhibiting TP53 activity. It will
be interesting to determine in what conditions (high vs. low
expression) pharmacological GFI1/1B inhibition is an effective
anti-cancer strategy.

When investigated, the biological role of GFI1/1B did
depend on an intact SNAG domain strongly suggesting
that the interaction with KDM1A is key to malignant
transformation. In line with these findings clear roles for
the CoREST components KDM1A and HDACs have been
identified in myeloid malignancies (4, 75, 76). In an AML
mouse model positive for the MLL-AF9 oncofusion protein,
KDM1A contributed to the inhibition of cell differentiation.
KDM1A bound at similar regions as MLL-AF9 to maintain
expression of an oncogenic gene program (5). Furthermore,
aberrant recruitment of HDACs in leukemia by oncogenic fusion
proteins such as RUNX1-RUNX1T1 and PML-RAR contributes
to disease pathogenesis (6). Whether this strictly relies on the
CoREST complex or other complexes in which HDAC1 and 2
are core complexes remains to be seen. Targeting the CoREST
complex remains of major interest in the development of AML
therapeutics. Inhibitors targeting KDM1A have been developed
in recent years, and several clinical trials have started to test small
molecules inhibiting KDM1A.

KDM1A INHIBITORS INDUCE FORCED
MONOCYTIC DIFFERENTIATION OF
MALIGNANT MYELOBLASTS

High KDM1A expression has been implicated in cancer
development and cancer progression (5, 8, 39, 41, 75, 76).
Based on these findings, KDM1A has been defined as

therapeutic target. An important class of KDM1A inhibitors are
represented by tranylcypromine (TCP) derivatives (77). TCP
was originally designed as an antidepressant targeting flavin
dependent monoamine oxidases A and B (MAO-A, MAO-B).
It binds irreversibly to FAD, that upon binding inhibits the
AO domain (78). Based on sequence homology of the AO
domain between MAO-A/B and KDM1 proteins, inhibition
of the latter by TCP was demonstrated (79). Through this
inhibition, KDM1A can no longer remove methyl groups
from K4 and K9 of histone 3 (Figure 1). Initially, a KDM1A
inhibitor was successfully combined with all-trans retinoic
acid (ATRA) to induce differentiation of AML cells that are
insensitive to ATRA alone (80). Exposure of 165 cancer cell
lines to another inhibitor showed a strong effect on AML
and small cell lung cancer (SCLC) cell lines, but hardly any
effect on other cell types (81). This has been followed by
the development and validation of numerous TCP-derivatives
(Table 1) (77). Treatment of leukemia cell lines with KDM1A
inhibitors promoted monocytic differentiation (exemplified by
CD86 expression) and subsequent cell death at the nanomolar
range (89). Terminal differentiation was observed of cell lines
representing myeloblasts, megakaryoblasts and erythroblasts
(Table 1). Especially, the latter two exhibited transdifferentiation
toward monocytic-like cells upon KDM1A inhibition (86,
88) (Table 1). Primary human blasts also differentiated upon
KDM1A inhibitor exposure and clear responses were observed
in AML mice models. Based on these results, several KDM1A
inhibitors have been or are being tested in clinical trials (Table 1).

Chromatin immunoprecipitation data in myeloblasts showed
a major overlap between GFI1/1B, KDM1A and RCOR1
binding at enhancers of key myeloid differentiation genes
(54–56, 58). Inhibition of KDM1A in myeloblasts resulted in
increased expression of these genes (83) (Table 1). These changes
were accompanied by a gain in chromatin accessible sites,
generally associated with increased H3K4 methylation (in line
with KDM1A inhibition), but also an increase in H3K27ac
levels was observed. A motif analysis of emerging chromatin
accessible regions showed enrichment for SPI1, C/EBPα and
RUNX2 binding sites (54, 56, 58). SPI1 showed increased
binding to these regions following KDM1A inhibition (54). KD
experiments targeting SPI1 or deleting C/EBPα showed that
KDM1A inhibition was no longer effective in inducing myeloid
differentiation (54). This suggests that upon KDM1A inhibition,
SPI1 and C/EBPα take over to initiate a myeloid differentiation
program (Figure 1).

SMALL MOLECULE DISRUPTION OF THE
KDM1A-GFI1/1B INTERACTION IS KEY TO
MYELOID CELL DIFFERENTIATION

The SNAG domain shows remarkable similarity to the N-
terminal region of H3. SNAG domain peptides bind the KDM1A
catalytic AO region in a very similar fashion as those representing
the tail of histone 3 (90). In fact, SNAG-peptide KDM1A
interactions are stronger than those of H3K4me. Binding of
TCP-FAD adducts to KDM1A inhibit the GFI1/1B interaction
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TABLE 1 | Overview of CoREST inhibitors tested in vitro or in vivo.

Inhibitor GSK2879552 GSK-LSD1 IMG-7289 NCD38 OG86 ORY-1001 T-3775440 TCP

Clinical trial NCT02177812,

NCT02929498

n.a. NCT02842827 n.a. n.a. EudraCT

2013-002447-29

n.a. NCT02273102

NCT02717884

NCT02261779

Study model 165 cancer cell lines

tested, 20/29 AML cell

lines were sensitivea,

various primary AML

samples

Various AML cell linesa,

MEG-01, SET2, MV4;11,

primary MLL-AF9

xenografts, various

primary AML samples

SET2 cells, Mice

with JAK2 V617F

positive MPNb

Primary MDS and AML

samples, MV4;11,

KPLRY, MDS-L, SKM-1,

HL60, HEL and CMK

cells

Various AML cell lines, e.g.,

THP1, MV4;11, HL60, K562,

NB4c, murine MLL-AF9 AML

cells, primary human MLL

translocated leukemia

samples

24 AML cell linesd,

MV4;11 xenograft

mice and two AML

patients

AEL and AMKL

xenograft mice

models, TF-1a,

HEL92.1.7,

CMK11-5, M07e

Various AML cell

lines (HL-60, TEX,

U937, KG1a)c,

primary AML

samples

Increased CD86 expression Yes Yes n.a. n.a. Yes Yes Yes Yes

Histone modifications n.a. Global gain chromatin

accessible sites

(ATAC-seq) Increased

H3K27ac and H3K4me2

Global increase in

H3K4me3 and

H3K9me2

Gain in H3K4me3 and

H3K27ac but not in

H3K4me2 at the GFI1

promoter.

No significant increase in

H3K4me1 and H3K4me2,

significant increase in

H3K4me3, H3K9ac, and

H3K27ac

Increased

H3K4me2 at

selected target

genes

Increased

H3K4me2 at

KDM1A target PI16

Global increase

H3K4me2

Affecting GFI1/1B KDM1A

interaction?

n.a. Yes n.a. Yes Yes Yese Yes n.a.

Inhibitor Major findings References

GSK2879552 In vitro: In total 20/29 AML cell lines were sensitive to the treatment. Reduced colony growth of AML cells and differentiation of cells. Combined treatment with ATRAf increased growth reduction in

AML cell line, associated with enrichment of differentiation associated gene signatures in AML cells. Increased caspase mediated cell death when the drugs were combined, as well as impaired colony

formation.

(81–83)

GSK-LSD1 In vitro: Differentiation of AML cells toward the myeloid lineage, associated with increase in granule formation, nuclear condensation and maturation of the cells. Accumulation of cells in G0-G1 phase,

suggesting cell cycle arrest of AML cells. Decreased differentiation toward megakaryocytes. Combination treatment with azacytidine was highly sensitive in TET2 mutated AML.

(32, 54, 58,

81–83)

In vivo: In mice a decrease of MLL-AF9 positive cells was observed, associated with decline in platelet count.

IMG-7289 In vitro: Decreased expression of BCL-xL (anti-apoptosis), cell cycle arrest, decreased proliferation, decreased colony formation which was stronger when combined with JAK-inhibitor Ruxolitinib.

In vivo: Improved blood cell counts, reduced spleen volumes, restored splenic architecture, reduced bone marrow fibrosis. Inhibited proliferation of the cells, induced apoptosis of JAK2 V617F cells.

Increased expression and methylation of TP53 and PUMA, decreased expression of BCL-xL.

(84)

NCD38 In vitro: Myeloid differentiation and block in cell growth in HEL, CMK and MDS-L cells. Derepression of super-enhancers from hematopoietic regulators [such as GFI1 and ETS-related gene (ERG)],

inducing a myeloid development program.

(85, 86)

OG86 In vitro: Loss of clonogenic potential in cell lines and primary human MLL-AF9 AML cells. Increase in differentiation of the cells, associated with increased expression of myloid genes (SPI1, C/EBPα).

Increase in CFU-M potential but less erythroid colonies.

In vivo: In mice xenografts less circulating MLL-translocated AML cells were observed, which was accompanied with anemia and thrombocytopenia.

(5, 55)

ORY-1001 In vitro: Induction of differentiation markers in THP1 cells associated with macrophage/monocytic differentiation. Reduced colony forming potential was observed. Cell lines carrying the MLL-AF9 fusion

were most sensitive to ORY-1001 treatment, whereas BCR-ABL1, PML-RARA, RUNX1-RUNX1T1 positive cell lines were less sensitive to the treatment, although still significantly affected.

In vivo: AML xenograft mice models showed a reduction in percentage of leukemic blasts after treatment, as well as increased survival.

(87)

T-3775440 In vitro: Transdifferentiation of megakaryocyte and erythrocyte leukemic cell lines toward myeloid lineage. Transcriptional derepression of GFI1B target genes.

In vivo: In AELg/AMKLh xenograft mice a rapid tumor decrease as well as platelet number reduction was observed.

(88)

TCP In vitro: TCP KDM1A inhibition led to ATRA driven responses in non-APL AML. Increased expression of myeloid differentiation associated genes.

In vivo: Diminished engraftment of primary human AML cells (FAB M1i ) in NOD-SCIDj mice in combined treatment with ATRA.

(5, 80)

n.a,not available.
aFor more information see Smitheman et al. (82).
bMPN: myeloproliferative neoplasms.
cFor more information see Harris et al. (5).
dFor more information see Maes et al. (87).
eGFI1/1B KDM1A interaction was diminished but not absent.
fATRA; all -trans retinoic acid.
gAcute erythroblast leukemia.
hAcute megakaryoblast leukemia.
iFAB M1: French-American-British classification Acute myeloblastic leukemia without maturation.
jNOD-SCID mice: Nonobese diabetic severe combined immunodeficient mice.
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(Table 1, Figure 1) (32, 55, 58, 86, 88). As CoREST requires
an interaction with transcription factors to be recruited to
chromatin, disruption of this interaction could be important for
terminal differentiation. Indeed, GFI1 KD in amyeloblast cell line
had a similar effect on gene expression as KDM1A inhibition by
inducing a myeloid differentiation program (55, 85). Moreover,
forced expression of a GFI1-KDM1A fusion protein blocked
terminal differentiation upon inhibitor exposure, indicating that
the separation between these proteins is biologically relevant
(55). In the myeloblast cell line studied, the catalytic activity
of KDM1A appeared non relevant for the maintenance of its
clonogenic potential. This conclusion was based on the fact that
impaired growth following KDM1A KD was corrected by re-
introducing wild type but also catalytically inactive KDM1A.
In an independent study, similar results were observed in the
context of an erythroblast cell line (58). Separation of GFI1B
and KDM1A appeared essential for drug induced differentiation
and KDM1A function in malignant transformation did not
depend on its catalytic activity. Together, these results might
suggest that the catalytic activity of KDM1A in the CoREST-
GFI1/1B complex is less important than its scaffold function
in leukemogenesis. Also because KDM1A inhibition did not
result in significant increased H3K4me (in contrast to several
other studies, Table 1) but rather increased H3K27ac (55).
Based on these findings it was concluded that increased H3
acetylation, rather than increasedH3K4methylation is important
for differentiation. In contrast, in another recent study it was
shown that complete loss of KDM1A and expression of a
catalytic inactive mutant of KDM1A resulted in differentiation of
murine myeloid leukemia cells. Thus, the block in differentiation
mediated by KDM1A did not solely depend on its scaffold
function toward GFI1 (56). In vivo KO of KDM1A in murine
leukemia cells resulted in prolonged survival, while expression
of catalytic inactive KDM1A did not prolong survival. Based on
these findings it was concluded that both the scaffold function
and the catalytic activity of KDM1A need to be inhibited
for effective leukemia treatment. The observed differences in
H3K4-methylation following KDM1A inhibition in published
studies may be caused by differences in treatment duration and
timepoints of measurements. Furthermore, differences in the
used model systems (human vs. murine models, cell lines vs.
transduced cells) and the use of different inhibitors may play a
role in this as well. Additional studies in which normal KDM1A
is replaced by catalytically inactive KDM1A, followed by use
of the inhibitors may give a more clear result as to whether
enzymatic activity vs. separation of GFI1/1B from KDM1A are
both therapeutically relevant.

TARGETING THE KDM1-RCOR
INTERACTION

Besides FAD targeting KDM1A inhibitors, a reversible inhibitor
that inhibits the binding of KDM1A to RCOR has been designed
(SP2509, Table 1). Treatment of myeloblasts with the inhibitor
showed increased H3K4 and H3K9 methylation (91). The
compound inhibited growth of leukemia cell lines and primary

blasts and induced differentiation. A combination treatment
with the HDAC inhibitor Panobinostat caused synergistic effects
in cell killing compared to either drug alone. Although these
results are encouraging, it remains to be seen whether they
can be attributed to KDM1A inhibition alone as the drug
exhibited identical cytotoxic activities in normal and KDM1A
null HAP1/BCR-ABL1+ cells (92).

FUTURE PERSPECTIVES

The inhibition of KDM1A has emerged as a potential
treatment for AML as this forces malignant cells to terminally
differentiate. KDM1A is a lysine specific demethylase that
targets mono- and dimethylated histone 3 as well as other
cellular proteins. H3K27 deacetylation and H3K4 demethylation
both contribute to a repressive chromatin state leading to
inhibition of gene expression. The best studied KDM1A
inhibitors are the antidepressant TCP and derivatives thereof.
By binding the catalytic active amine oxidase pocket, these
drugs inhibit the demethylase activity of KDM1A toward
histone 3. In myeloid cells, KDM1A is one of the core
components of the CoREST complex. This complex is recruited
to chromatin through the transcription factors GFI1/1B. Binding
of aforementioned inhibitors to KDM1A block the interaction
between KDM1A and GFI1/GFI1B. This triggers the dissociation
of KDM1A and GFI1 from chromatin and subsequently
decreases repressive marks and increases activating marks. The
induction of a myeloid gene expression program that follows,
triggers the differentiation of AML cells irrespective of their
nature; both megakaryoblasts, erythroblasts and myeloblasts are
forced to differentiate upon inhibition of GFI1/GFI1B. This
is somewhat counterintuitive, as GFI-proteins and KDM1A
normally stimulate myeloid, erythroid and megakaryocytic
differentiation and this depends on the SNAG domain that
interacts with KDM1A. Apparently, GFI1/1B-CoREST adopt
other functions in malignant transformation that can be
counteracted by their inhibition. Alternatively, GFI1/1B may
exclusively block monocytic differentiation which can be
overcome by KDM1A inhibition.

In two independent studies, it was shown that in THP1,
SET2, and MV4;11 leukemia cells the separation of GFI1/1B
from KDM1A rather than inhibiting its enzymatic activity played
a crucial growth inhibitory role (55, 58). However, KDM1A is
part of several other chromatin complexes besides CoREST that
do not contain GFI1/1B (77). For instance, in breast cancer
cells KDM1A associates with the zinc finger protein ZNF516,
which together regulate the expression of the epidermal growth
factor receptor (EGFR). Dysregulation of this receptor has been
implicated in malignant transformation (93). Thus, it remains
to be seen whether KDM1A inhibition affects other processes
than CoREST associated functions that may contribute to cell
differentiation. Apart from the TCP-like inhibitors other types
of KDM1A inhibitors have been developed [for an extensive
review see (77)]. Recently, a dual inhibitor that simultaneously
inhibits KDM1A and class I HDACs was developed (94). This
inhibitor targets CoREST more efficiently and induced cell death
more effective than single HDAC inhibition in melanoma. It will
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be interesting to determine whether the dual inhibitor exhibits
enhanced activity in AML.

KDM1A also demethylates non-histone proteins such as
TP53. GFI1 facilitates TP53 demethylation resulting in its
inhibition. Although most studied myeloid leukemia cell lines
have inactive TP53, it is conceivable that KDM1A inhibition
contributes to TP53 activation and apoptosis in primary AML.
This is relevant because in the majority of AML cases, TP53 is
not mutated and it can be re-activated (95). KDM1A also binds
as pseudosubstrate to the tumor suppressor and ubiquitin ligase
FBXW7 (96). This results in FBXW7 auto-ubiquitination and
subsequent proteasomal and lysosomal degradation. Because this
function of KDM1A is independent of its catalytic activity it
will be important to determine whether inhibitor induced release
from chromatin will allow KDM1A to diminish FBXW7 levels
and whether this counteracts cell death.

GFI1/1B are methylated in their SNAG domain on K8 and
this methylation is important for efficient KDM1A recruitment
and function (53, 97). Whether KDM1A/CoREST can remove
this methyl mark followed by dissociation from GFI1/1B, and
subsequent demethylation of nearby histone 3, remains an open
question. Yet, an increase in H3 methylation and acetylation
following KDM1A inhibition at regions bound by GFI1/1B
have been observed, although these findings were not seen in all
studies. This inconsistency is likely due to different AMLmodels,
inhibitors and duration of the treatment used. Besides MLL-AF9

positive leukemia, studies targeting different AML subtypes are
pointing toward a broader purpose for KDM1A inhibition in
leukemia development. Recent insights have shown that different

AML subtypes are sensitive to treatment with a KDM1A
inhibitor (83, 98). The RUNX1-RUNX1T1 translocation was
among the most sensitive subtypes, which might be explained
by the essential role of GFI1 in the maintenance of the leukemic
cell growth (67). Interestingly, a recent study showed that the
combination of Azacytidine with KDM1A inhibition has an
enhanced effect on targeting leukemic stem cells compared
to either treatment individually (83). Particularly primary
TET2 mutated AML cells were sensitive to this combination,
suggesting novel approaches to sensitize less-responsive
AML subtypes.

Finally, we and others showed that many proteins associate
with CoREST in the context of GFI1/1B (32, 35, 57). Although
the effect on CoREST function has been studied for some of
these factors, the role of others like ZNF217, and PHF21A
is still unclear. Taken together, further (clinical) studies are
required to answer these outstanding questions, and determine
the most efficient approach to induce cellular differentiation of
the different leukemia subtypes.
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