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Activity of vehicles in the bus rapid 
transit system Metrobús in Mexico 
City
Jaspe U. Martínez‑González1,2 & Alejandro P. Riascos1,2*

In this paper, we analyze a massive dataset with registers of the movement of vehicles in the bus 
rapid transit system Metrobús in Mexico City from February 2020 to April 2021. With these records 
and a division of the system into 214 geographical regions (segments), we characterize the vehicles’ 
activity through the statistical analysis of speeds in each zone. We use the Kullback–Leibler distance 
to compare the movement of vehicles in each segment and its evolution. The results for the dynamics 
in different zones are represented as a network where nodes define segments of the system Metrobús 
and edges describe similarity in the activity of vehicles. Community detection algorithms in this 
network allow the identification of patterns considering different levels of similarity in the distribution 
of speeds providing a framework for unsupervised classification of the movement of vehicles. The 
methods developed in this research are general and can be implemented to describe the activity of 
different transportation systems with detailed records of the movement of users or vehicles.

The study and understanding of human mobility in cities is an important and challenging problem since more 
than half of the world population lives in urban areas1. Nowadays human mobility can be explored in detail 
thanks to the digital traces people leave on mobile/digital platforms2,3. The identification of patterns in human 
mobility4–9 is necessary in topics like urban planning, dealing with traffic congestion10, the influence of the spatial 
distribution of a city1,11–14, the encounters or contacts that emerge15,16, among many others1,2,17. In these problems, 
the science of networks with well-established tools and methods to characterize and model complex systems18–20, 
provide a valuable framework to study transportation modes and their interactions21–23.

As one type of transit mode, bus rapid transit (BRT) systems have gained popularity worldwide for provid-
ing fast and easy access for citizens to fulfill their transportation needs24 and have been adopted widely over the 
world24–27. The merit of the BRT system lies in its ability to provide a high-quality public transit service with 
limited infrastructure and at relatively low capital and operating cost25. The benefits of a typical BRT system 
consist of dedicated lanes and proper vehicles and stations; such a layout guarantees a significant advantage in 
terms of operability26. In addition, BRT systems stand to significantly decrease personal vehicle mode share25 
and might pull together connecting parts of the city in ways which other systems do not, especially at the level 
of service and spatial coherence28. In many BRT systems, vehicles have a preinstalled global positioning system 
(GPS) device which helps in collecting the travel time-related data, this information gives a global picture of the 
system in real time and can be used for improving the overall performance and schedule adherence of the vehicle. 
In recent works, the availability of trajectory data collected from operational vehicles in transportation systems 
has made possible the statistical analysis of travel time of vehicles in roadway segments29–31, the development of 
mathematical tools for the estimation of travel times and temporal changes in public transport32,33, the imple-
mentation of techniques to detect patterns in vehicle trajectories34–36 and public traffic congestion estimation 
by using artificial neural networks37–41. However, approaches to systematically analyze information and identify 
activity patterns in BRT systems are limited; specifically, very little past research in BRT systems focused on the 
statistical analysis of the speed of vehicles in specific zones of the system.

In contrast, community detection in networks42–47 has been proved as an important tool to detect patterns in 
different complex systems. For example, in the identification of correlations in financial markets48,49, the study 
of physiological networks50, the classification of patents based on their semantic content in technology51 and 
pharmaceutics52, describing the network of stations in bike-sharing systems53,54 or the geographical structure of 
the Twitter communication network at the global scale55, just to mention a few examples of the applicability of 
this method for pattern detection, unsupervised-classification, and data mining.
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In this research, we analyze the activity of vehicles in the BRT system Metrobús in Mexico City. The database 
encompasses 383 days with registers of each active vehicle in the system with GPS geographical coordinates and 
speeds updated every 30 seconds. For this study, we divide the system into segments. In the first part, we applied 
statistical methods to characterize the movement of vehicles in each segment by comparing daily activity with 
the total data. Using the Kullback–Leibler distance between probability densities of speeds we identify zones 
with regular operation. In the second part, we compare the movement of vehicles in the system using a similar-
ity network. In this structure, each segment is represented as a node, and links are added when the probability 
densities of speeds in two segments are similar. The exploration of different levels of similarity in terms of a 
parameter H define networks for which community detection algorithms allow an unsupervised classification 
of the segments based on the speeds of vehicles. The methods introduced are general and provide a framework 
for the study of different transportation systems in cities when massive databases with geolocalized activity 
are available. This approach will help to a better understanding of variations in the speeds over space and time 
by means of statistical analyses and complement other techniques such as time reliability-based performance 
indicators introduced to study the travel time variations of vehicles in specific routes.

Results
Global characteristics of the system.  The dataset analyzed in this research is part of an effort of Mexico 
City to have open databases for transportation systems, human mobility and other topics of interest56. In particu-
lar, for the BRT system Metrobús it is possible to have access to real-time registers with geographical coordinates 
(longitude, latitude) for positions and speeds of all the active vehicles in the system57. We analyze data for 383 
days collected from February 2020 to April 2021 (see “Methods” section for a detailed description of the data). 
From these registers of activity we have the speed of each vehicle in m/s . In this way, we have access to a global 
picture of the system’s activity at specific moments.

In Fig. 1 we illustrate a global analysis of the dataset. In Fig. 1a we show the positions and speeds of the 
vehicles in March 2nd, 2020 at 13:00 h, the system has 516 active vehicles at this moment. Each vehicle is 
depicted with a point and the color encodes its speed (see Supplemental Material with a video of the complete 
data collected for this day). This representation gives a general overview of the data, such as regions with the 
highest activity, and zones where the speed of the units is higher than the average. On the other hand, consider-
ing that each vehicle has a unique ID, we can count the total number of active vehicles in the collected data on 
a determined time scale. In Fig. 1b, we show the number of active units at the scale of months considering the 
15 months covered in this research. In this analysis, we assume that a vehicle is active in the system if at least has 
one register in the respective month. The results show that the number of vehicles changes significantly, especially 
due to the modifications in the system introduced in response to the different stages of the COVID-19 pandemic 
in Mexico City. In this respect, the number of vehicles in February and March of 2020 represents the common 
operation pre-COVID-19 in Mexico. This number reduced, particularly, from April to August 2020. In the last 
8 months of this study, the number of active vehicles increased from the low in May 2020 but not to the same 
levels observed in the first two months. To complement this part, in Fig. 1c, we analyze the information of the 
speeds of the vehicles in the whole system in each month. We explore the probability density ρmonth(v) of non-
null speeds v for the records of each month in the dataset. In strong contrast with the results for the number of 

Figure 1.   Global characteristics of the BRT system Metrobús in Mexico City. (a) Activity of vehicles at 13:00 h 
observed in registers on March 2nd, 2020. Each active vehicle in the system is represented by a point with speeds 
v encoded in the color bar. (b) Monthly active vehicles from February 2020 to April 2021. (c) Probability density 
ρmonth(v) of the speed v of active vehicles for each month in the color bar [the same colors are shown in the 
results in panel (b)]. We consider bin counts with increments �v = 0.25m/s . All figures were created using 
python 3.8 and the matplotlib (3.4.3) package (https://​matpl​otlib.​org).

https://matplotlib.org
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vehicles, we see that the distributions of speeds of the vehicles present similar characteristics with small changes at 
lower speeds v ≤ 5m/s and higher speeds v ≥ 10m/s , minimal variations are observed for 5m/s < v < 10m/s.

Vehicle activity in segments.  In addition to the vehicles, the infrastructure of the system Metrobús 
includes 195 stations where users access this service and are distributed in 7 lines with 225 km exclusive road-
ways dedicated to buses. We use all the information available for the movement of vehicles to study the opera-
tion of the system in different zones of Mexico City. To this end, we divide the system into N = 214 segments 
defined by polygons that include stations and the lanes that connect them. A simple segment is described by an 
elongated rectangle defining a specific geographical region that includes the system’s roads and stations at two 
of its ends. In this study, our partition of the systems considers 205 simple segments. In addition, 9 segments are 
general polygons, located in zones where different lines converge. In Fig. 2a, we present all the segments of the 
system. In this representation, polygons are sorted according to the geographical coordinates of their geometri-
cal centers starting from the south-west and considering the latitudes (from south to north) as the first variable 
and the longitudes (from west to east) as the second variable. An index i = 1, 2, . . . ,N codified in the color bar 
denotes the segment number; we maintain the same index in all the following analyses.

Once we define the information of polygons representing the segments, we proceed to analyze the activity of 
vehicles in each one of them. Due to the high volume of data, we use the geographical coordinates of the vehicles 
to divide the complete dataset into registers associated with each segment. In this manner, we have all the speeds 
in each segment during the 383 days in our study. The statistical analysis of the speeds v considering the move-
ment of vehicles (i.e. only registers with v > 0m/s corresponding to 164 867 137 speed values, a 76.7% of the 
total database) are presented in Fig. 2b, results show the probability density ρtotal(v) calculated with the relative 
frequencies of v in regular bin counts with �v = 0.25m/s . In this representation, we maintain the same colors 
that codified the segments in Fig. 2a. We define a maximum speed vmax = 20m/s = 72 km/h , only a 0.0114% 
of the total database contains registers with v > vmax . In addition, our analysis shows that in a high number of 
segments, most frequent values of speeds are observed in the interval 5m/s ≤ v ≤ 10m/s.

Also, the values v can be divided into sets considering a defined time window; for example, registers in a 
particular hour, day, weekday, month, among others. Once we establish a particular partition of the speeds, we 
have probability densities that we can compare with the total density ρtotal(v) in each segment. On a temporal 
scale of days, we obtain 383 densities ρday(v) per segment with the information of the movement of vehicles in 
each day considered in our study. Then, using the Kullback–Leibler distance58

we calculate the “distance” between each ρday(v) and ρtotal(v) (see the “Methods” section for a discussion about 
DKL ). In this way, we have 383 values of DKL in each segment comparing daily registers with the respective 
ρtotal(v) in Fig. 2b.

(1)DKL ≡

∫ vmax

0
ρday(v) log

[

ρday(v)

ρtotal(v)

]

dv,

Figure 2.   Activity of vehicles in segments of the system Metrobús in Mexico City. (a) Map with polygons 
associated to each of the N = 214 segments in the system. (b) Probability density ρtotal(v) of the speed v of 
vehicles in each segment. The values ρtotal(v) are obtained from bin counts in the interval 0 < v ≤ 20m/s with 
increments �v = 0.25m/s . Segments are sorted considering their geographical coordinates with a number 
codified in the color bar that applies for polygons in (a) and the respective ρtotal(v) in (b). All figures were 
created using python 3.8 and the matplotlib (3.4.3) package (https://​matpl​otlib.​org). The map in panel (a) was 
created using the geopandas (0.10.2) package (https://​geopa​ndas.​org).

https://matplotlib.org
https://geopandas.org
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In Fig. 3 we present the statistical analysis of the distances DKL found. Figure 3a shows the average values 
〈DKL〉 , error bars are obtained with the standard deviation of the values in each segment σKL =

√

�D 2
KL� − �DKL�

2 . 
We observe that the average values 〈DKL〉 lie in the interval 0.0204 ≤ �DKL� ≤ 0.6058 and 209 segments present 
distances that can be considered as small with �DKL� ≤ 0.155 . In contrast, in Fig. 3a we identify 5 segments 
i = 10, 55, 101, 187, 195 with average distances 〈DKL〉 > 0.2 . A detailed analysis of the Kullback–Leibler distances 
for these polygons reveal that in some days the distribution ρday(v) differs of the respective ρtotal(v) , this may be 
due to modifications in the routes of vehicles. In Fig. 3b we plot the map of the system Metrobús, the colors 
represent the value DKL/〈DKL〉 of each segment. This map allows the identification of zones with regularity in 
the movement of vehicles (small values of ρ(DKLS) ) and particular segments where average distances 〈DKL〉 > 0.2 
show that the daily distributions differ with the total activity captured in ρtotal(v) . In Fig. 3c we depict the statisti-
cal analysis of the values x = DKL/�DKL� in each segment, the respective probability densities ρ(x) are skew 
with a high fraction of distances below the average, (i.e. with x < 1).

In addition to the results for the DKL distances, we show in Fig. 3d,e the monthly distribution of speeds 
ρmonth(v) for two particular segments. Our analysis is similar to the presented for the total system in Fig. 1c, but 
now for the vehicles in segment 10 with �DKL� = 0.296 and segment 212 with �DKL� = 0.050 (the numbers of 
these particular segments are included in the map in Fig. 3b). With different colors, we represent the 15 months 
considered in our study. In the case of the segment 10 with higher distance 〈DKL〉 , the values of ρmonth(v) suf-
fered deviations with respect with the total data ρtotal(v) represented with a dashed line. On the other hand, in 
the segment 212 with 〈DKL〉 closer to zero, the ρmonth(v) remain approximately the same as ρtotal(v) for the total 
data in this segment.

The results in Fig. 3d,e are two particular examples to show how 〈DKL〉 allows identifying variations in the 
activity of vehicles in a particular segment, similar analyses can be implemented at different scales of time to 
characterize changes or the regularity in the vehicular activity in a particular region of the system. In Fig. 3, 
it can be seen that except for the 5 segments discussed above, the activity of vehicles (described by ρtotal(v) in 
each segment) maintains some regularity. This result is important considering the variations in the number of 
active vehicles in Fig. 1b. A particular case is found in segment 10 that includes stations close to the National 
Autonomous University of Mexico. Since many of the activities in this university were developed virtually, the 
number of users in these stations was reduced significantly. As a consequence of the low demand, the movement 
of vehicles in this segment was restructured as we can see in Fig. 3d.

Network of similarity between segments.  Now we compare all the speed probability densities associ-
ated with the activity of vehicles in each segment. We consider the complete probability density for all segments 
i = 1, 2, . . . , 214 , with the records 0 < v ≤ 20m/s in our database, denoted as ρ(i)

total(v) and presented in Fig. 2b. 

Figure 3.   Statistical analysis of the distances DKL for speed densities. (a) Average Kullback–Leibler distances 
〈DKL〉 in each segment, error bars represent the standard deviation of the values. (b) Average values 〈DKL〉 
represented in the segments map. (c) Probability densities of the values DKL/〈DKL〉 in each segment codified 
in the color bar. Probability densities ρmonth(v) of the speed v at the scale of months for: (d) segment 10 with 
�DKL� = 0.296 and (e) segment 212 with �DKL� = 0.050 , dashed lines represent ρtotal(v) for the segment. All 
figures were created using python 3.8 and the matplotlib (3.4.3) package (https://​matpl​otlib.​org). The map in 
panel (b) was created using the geopandas (0.10.2) package (https://​geopa​ndas.​org).

https://matplotlib.org
https://geopandas.org
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In this case, it is convenient using a symmetric distance DKLS(i, j) between two probability densities of the seg-
ments i and j obtained with the average of the Kullback–Leibler distance, hence we define

with

With the definition in Eq. (2), we obtain a N×N symmetric matrix with the information of similarity 
between the vehicle activity in the segments, the value DKLS = 0 is obtained for two equal speed distributions 
and values DKLS large show cases where the segments have a completely different activity. Our findings are 
depicted in Fig. 4, where we present as an inset the matrix with elements DKLS(i, j) for i, j = 1, . . . , 214 . We also 
statistically analyze all the entries of the matrix of distances, obtaining the probability density ρ(DKLS) . Both 
representations show that a high fraction of the distances DKLS between segments have values in the interval 
0 ≤ DKLS ≤ 0.5 , revealing different degrees of similarity in the activity in segments.

Looking for a better understanding of the similarities in all the distributions presented in Fig. 2b, we use the 
values of the distances in Fig. 4 to define a similarity network. In this representation, each node is associated with 
a segment of the BRT system, the size of the network is N = 214 and an edge connecting two different nodes i and 
j is established if DKLS(i, j) ≤ H where H is a given threshold limit to decide if two segments have similar activ-
ity. The result is an undirected network with an adjacency matrix A with elements Aij = 1 if 0 < DKLS(i, j) ≤ H 
and Aij = 0 for DKLS(i, j) > H . By definition, the adjacency matrix considers the diagonal entries Aii = 0 to 
avoid loops or connections of a node to itself. In the general case, it is hard to have intuition about the values of 
H to define a similarity network and its choice depends on the particular structure of the dataset explored and 
the metric used for the distance or relation between two nodes. In this respect, it is convenient to perform the 
statistical analysis of all the entries DKLS(i, j) presented in Fig. 4. In this representation of ρ(DKLS) , the area under 
the curve 

∫ H
0 ρ(z)dz gives the fraction of edges included in the network with respect to a fully connected graph. 

The higher the threshold H, the more edges are included in the network. In particular, in our analysis for the 
BRT system Metrobús, we see that the interval 0 < H ≤ 1 could produce networks with useful information. For 
H ≫ 1 , a high fraction of the edges are included in the similarity network losing any particular structure at the 
level of groups of zones. For the readers interested in this part, we refer to the recent work of Rincón et al.52, where 
a network of patents is explored using similar methods with a metric implemented to compare keywords in texts.

In this way, for each value of H we have a network of segments and we can apply standard methods for its 
analysis. In Fig. 5 we centered our study on the different networks generated and in the largest connected compo-
nent (LCC), defined by the largest set of connected nodes within the network. In Fig. 5a we present the number of 
nodes in the LCC as a function of the similarity threshold H in the interval 0.01 ≤ H ≤ 1 . In this representation 
of the results, we observe the effect of H defining different scales in the similarity between segments. For small 
values H < 0.02 the similarity network is formed by small size disconnected clusters showing that a reduced 

(2)DKLS(i, j) =
DKL(i, j)+DKL(j, i)

2

(3)DKL(i, j) ≡

∫ vmax

0
ρ
(i)
total(v) log

[

ρ
(i)
total(v)

ρ
(j)
total(v)

]

dv.

Figure 4.   Statistical analysis of symmetric Kullback–Leibler distances between segments. The values DKLS are 
obtained from Eq. (2) for all the segment pairs i, j = 1, . . . , 214 . We present the probability density ρ(DKLS) 
obtained with bin counts in intervals with �DKLS = 0.05 , the inset shows the matrix representation with entries 
DKLS(i, j) codified in the color bar. All figures were created using python 3.8 and the matplotlib (3.4.3) package 
(https://​matpl​otlib.​org).

https://matplotlib.org
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number of probability densities are almost identical. This behavior changes in the interval 0.02 ≤ H ≤ 0.1 where 
the size of the LCC increases monotonically with H. For H > 0.1 a high fraction of the network is connected and 
in H ≥ 0.357 the LCC includes all the N = 214 nodes. Here H = 0.357 is the lowest value of H that produces a 
connected network including the 214 segments.

In this manner, all the information contained in the distance matrix can be analyzed considering different 
degrees of similarity of probability densities establishing connections between nodes as the structures in Fig. 5b–d 
obtained for the values H = 0.05 , H = 0.1 and H = 0.357 . In the case with H = 0.05 , each edge requires high 
similarity between two segments and the LCC contains N = 159 nodes, with an average degree �k� = 7.7 , a global 
clustering coefficient �C� = 0.410 indicating that the structure has a low fraction of triangles; also, the average 
number of edges in the shortest path connecting two nodes in the network is �l� = 4.42 (see “Methods” section 
for a formal definition of 〈k〉 , 〈C〉 , 〈l〉 for networks with N nodes). In contrast, for H = 0.1 the similarity network 
includes more edges defining a LCC with N = 199 nodes, �k� = 29.0 , �C� = 0.598 and �l� = 2.64 revealing a 
more connected structure. For H = 0.357 the LCC contains all the N = 214 nodes in a network with �k� = 127 , 
�C� = 0.822 and �l� = 1.48 allowing a coarse-graining description of the segments in the system Metrobús. In 
networks with H ≫ 0.357 , increasing H we lose information of the similarity between segments and the network 
gradually approaches to a fully connected graph.

Community structure and identification of patterns.  In networks, the distribution of edges is not 
only globally, but also locally inhomogeneous, with high concentrations of edges within special groups of nodes 
and low connectivity between these groups. This feature in networks is called community structure. Communi-
ties (also clusters or modules), are sets of vertices that probably share common properties and/or play similar 
roles within the network45. Community detection endorses the identification of local connectivity patterns and 
guides the understanding of interactions in a complex structure. In this work, the communities represent groups 
of segments with similar activity of vehicles, which arose from considering all the information contained in the 
similarity network for different thresholds H, something not immediately visible if comparing the probability 
densities of speeds by pairs of segments. We apply modularity-based clustering algorithms42,43 to analyze the 
community structure of the LCC of similarity networks generated with H = 0.05 and H = 0.357 and depicted 
in Fig. 5b,d, the results derived from the community structure are presented in Figs. 6, 7 and Table 1.

In Fig. 6 we explore the Metrobús system using the similarity network with threshold limit H = 0.357 . This 
network has two communities: C1 with 108 nodes and C2 formed by 106 nodes; the community structure is 
represented in Fig.  6a, other quantities that characterize the subnetworks defining each cluster (average degree 
〈k〉 , global clustering 〈C〉 and average lengths of the shortest path connecting different nodes 〈l〉 ) are presented 
in Table 1(a). In Fig. 6b we show the communities in a map, in which segments in communities C1 and C2 are 
distributed in the whole system. We also present the total density of speeds ρ(i)

total(v) for the segments i ∈ C1 and 
i ∈ C2 (see panels in Fig. 6c,d), dashed lines are generated with the registers of v in all the segments represent-
ing the total activity in each community. The speed distributions found in the communities C1 and C2 present 
particular features. One of the differences observed is that in C1 the speeds v ≥ 10m/s appear in a 30.46% of the 
non-null records; whereas, only a 9.34% in C2 fulfill this condition. In this way, the classification of segments 
through community detection in similarity networks with H = 0.357 establishes a coarse-grained classification 
with two categories: C1 for high-speed segments and C2 for low-speed zones. The average speeds v̄ in each com-
munity reported in Table 1(a) also confirm this characteristic observed in both categories, we also include the 

Figure 5.   Similarity networks in the activity of vehicles in the BRT system Metrobús. (a) Size of the largest 
connected component (LCC) as a function of the threshold value H for the similarity between segments. Three 
particular LCCs obtained for H = 0.05 , H = 0.1 and H = 0.357 are presented in panels (b)–(d), respectively. 
H = 0.357 is the lowest value of H that produces a connected network including the 214 segments. All figures 
were created using python 3.8 and the matplotlib (3.4.3) package (https://​matpl​otlib.​org). Networks in panels 
(b)–(d) were created using the networkx (2.6.3) package (https://​netwo​rkx.​org).

https://matplotlib.org
https://networkx.org
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standard deviations σv of the speed values. In the results in Fig. 6c,d, for ρ(i)
total(v) (represented with thin lines for 

each segment i), some probability densities deviate from the result obtained with the records for the whole com-
munity, something that is more marked in the C1 community. This is because having the threshold H = 0.357 , 
some differences are allowed in the similarity network.

In Fig. 7, we present the results for the analysis using H = 0.05 , a criterion that requires greater similarity 
to form a link in the network of segments. In this case, community detection algorithms applied to the LCC 
allow defining 6 communities C1,C2, . . . ,C6 that contain at least four segments as we illustrate in Fig. 7a. In 
the map in Fig. 7b, we see that these categories produce a more varied map, although as H is small, several seg-
ments (represented in white) cannot be grouped into a community, being outside the LCC (we also omitted a 

Figure 6.   Community detection and activity of vehicles for similarity networks. (a) Similarity network with 
threshold value H = 0.357 with two communities C1 and C2 . (b) Segments map representing the communities. 
Probability densities ρ(v) for the segments in C1 (c) and C2 (d). In panels (c) and (d), thin lines represent the 
ρ
(i)
total

(v) for each segment as in Fig. 2b and thick dashed lines depict the probability density found for all the 
values of v in i ∈ C1 and i ∈ C2 . The network in panel (a) was generated using Mathematica 12.3.1 (https://​www.​
wolfr​am.​com/​mathe​matica/). (b)–(d) were created using python 3.8 and the matplotlib (3.4.3) package (https://​
matpl​otlib.​org). The map in panel (b) was created using the geopandas (0.10.2) package (https://​geopa​ndas.​org).

Table 1.   Classification of segments using community detection. Analysis of similarity networks for (a) 
H = 0.357 and (b) H = 0.05 . The number of segments in each community is reported with the average degree 
〈k〉 , global clustering 〈C〉 , and average lengths 〈l〉 of the shortest path connecting the nodes for each subnetwork. 
For the non-null speeds in the segments in each community v̄ denotes the average speed and σv the standard 
deviation, we also report the fraction (as percentage) of speeds with v ≥ 10m/s.

Community Segments 〈k〉 〈C〉 〈l〉 v̄(m/s) σv(m/s) % v ≥ 10m/s

(a) H = 0.357

C1 108 77.11 0.877 1.32 8.07 4.03 30.46

C2 106 89.1 0.921 1.15 5.99 2.97 9.34

(b) H = 0.05

C1 55 11.7 0.625 2.33 6.41 3.17 13.28

C2 41 3.85 0.287 3.36 8.05 3.81 30.69

C3 32 4.75 0.494 2.83 5.71 2.61 5.31

C4 12 2.67 0.281 2.41 6.93 3.09 14.2

C5 10 3 0.250 1.91 4.73 2.69 3.16

C6 4 1.5 0 1.67 8.68 3.57 37.81

https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://matplotlib.org
https://matplotlib.org
https://geopandas.org
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community defined by three segments in the LCC). In Fig. 7c we present the probability density for v with the 
records of non-null speeds in the segments of each community. In this case, the unsupervised classification of 
the segments produces more varied results that are reported in Table 1(b). For example, in the analysis of the 
proportion in which the velocities v ≥ 10m/s appear, C2 , C6 define groups of segments with high speeds where 
more than 30% of the data meet v ≥ 10m/s . Communities C1 , C4 have a fraction of around 14% for these speeds, 
and C3 , C5 define low-speed zones with less than 10% . This type of classification is also evident for the average 
velocities v̄ in each community, being the highest v̄ = 8.68m/s in community C6 and the lowest v̄ = 4.73m/s 
obtained for C5 . The measures that describe the communities as networks also give us important information; 
for example, C1 and C2 are the subnetworks that have more nodes; however, considering the links, C1 is much 
more connected, a fact that is evidenced in the highest average degree and clustering. Finally, the most valuable 
information is the probability density ρ(v) in Fig. 7c for the data in each community. The obtained distribu-
tions have particular characteristics that describe the vehicular movement in each group of segments. All this 
information and the map in Fig. 7b, help us to understand the global activity of the Metrobús system and its 
operation since the results obtained with the combination of methods implemented in this research allow us to 
detect emerging patterns when comparing the activity of the entire system.

Discussion
From the study of the data with the activity of vehicles in the BRT system Metrobús for 383 days and a parti-
tion of the regions where these vehicles move defining 214 segments, it is found that this system operates with 
relative regularity in each zone. In particular, the distributions of speeds in the entire system and in each of the 
segments are preserved, presenting small variations depending on the day, with some exceptions that also can 
be detected using the statistical methods implemented for this study. In this way, the speed distribution of each 
segment is a good reference for the specific behavior of the vehicles in each of the geographical zones defining 
the segments. The variations in each segment at different temporal scales can be effectively studied using Kull-
back–Leibler distances.

In addition, the analysis of the Kullback–Leibler distance between speed distributions of all pairs of segments 
allows the representation of the entire system as a network. In this structure, community detection algorithms 
allow identifying groups of segments with similar vehicular activity, the number of communities found varies 
according to parameter H required to define the similarity network. In a case with H = 0.357 two categories 
are established, one with segments in which speeds with v ≥ 10m/s are more frequent and another in which 
these speeds appear less frequently. The analysis of a network with a greater similarity between segments with 
H = 0.05 gives a classification with more specific characteristics in the speed distributions, in this case the records 
with v ≥ 10m/s appear in different proportions in each community. Our findings show that the Metrobús BRT 
system presents certain regularity in its operation, in the sense that the distribution of speeds of vehicles in 209 
segments of the system suffered only small variations even with the reduction of active vehicles implemented 

Figure 7.   Segment classification through similarity networks with H = 0.05 . (a) Largest connected component 
for a similarity network with communities Cl ( l = 1, 2, . . . , 6 ) represented with different colors. (b) Segments 
map with the representation of communities. (b) Probability densities ρ(v) for all the values in the segments in 
each community. The network in panel (a) was generated using Mathematica 12.3.1 (https://​www.​wolfr​am.​com/​
mathe​matica/). Figures (b)–(c) were created using python 3.8 and the matplotlib (3.4.3) package (https://​matpl​
otlib.​org). The map in panel (b) was created using the geopandas (0.10.2) package (https://​geopa​ndas.​org).

https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/
https://matplotlib.org
https://matplotlib.org
https://geopandas.org


9

Vol.:(0123456789)

Scientific Reports |           (2022) 12:98  | https://doi.org/10.1038/s41598-021-04037-6

www.nature.com/scientificreports/

due to the COVID-19 pandemic in Mexico City. It seems plausible to associate this regularity with the exclusive 
lanes in the system and the rules that operators of the vehicles must follow.

The statistical methods and the network science approach implemented in this research can be used for the 
multi-scale study of different transportation systems. In systems like taxis, buses, car-sharing services, in which 
large amounts of data are available with registers of the movement or quantities associated with vehicles or agents 
along with their geographic coordinates, this approach can lead to the unsupervised detection of regions with 
similar activity of vehicles. Other studies can incorporate the statistical analysis of different quantities of interest; 
for example, schedule adherence of the vehicles, carbon emissions, or user’s accessibility to stations. A profound 
understanding of the vehicle activity and similarities detected in groups of segments can help researchers and 
transit specialists to draw up strategies tailored to improving operational aspects of the system.

Methods
Dataset description.  With the implementation of location-enabled devices on public transportation, a 
large amount of bus trajectory data is being generated. Since April 2019 all the information of the movement of 
all active vehicles in the BRT system Metrobús is available under request to the public57. The information pro-
vided contains the timestamp, vehicles ID, and registers in real-time of the GPS coordinates (longitude, latitude) 
of each vehicle in the system, their speeds in meters per second (m/s) , and qualitative descriptions of the state 
of each vehicle or the levels of congestion for example: on time, stopped, among others. Each vehicle updates this 
information every 30 seconds. The Metrobús system operates from 4:30 to 00:00 h on weekdays (Monday to 
Friday) and starts operation at 5:00 h on weekends (Saturday, Sunday) and holidays, the description of stations 
and routes is available to the public in the webpage of Metrobús59. By using a code written in Python, we request 
the data automatically (waiting 30 seconds between requests), an initial treatment of the retrieved records is 
performed to save the data. We maintained the download of data from February 16th, 2020 to April 8th, 2021. In 
total, we have data for 383 days with 215 025 258 registers of position and speed of vehicles. On some particular 
days, the data was not available for download due to maintenance or problems connecting with the server.

Kullback–Leibler distance.  The Kullback–Leibler distance is a standard method to calculate the difference 
between two probability distributions P(z) and Q(z) describing a stochastic variable z58,60. This tool is widely 
used for database comparison. For continuous distributions, this distance is given by58

Here Q acts as a reference distribution. Also, it is important to emphasize that DKL(P||Q) is not a distance in 
the sense of a metric since the distance between P and Q is not necessarily the same as between Q and P. Also, 
from the definition in Eq. (4), it is clear that DKL(P||Q) > 0 and is null when P = Q.

Networks.  Symmetric networks with N nodes are described by an adjacency N × N adjacency matrix A 
with entries 1 if two different nodes are connected and 0 otherwise. An important quantity in the study of net-
works is the degree of node i given by ki =

∑N
l=1 Ail , that gives the number of connections to that node. In terms 

of this quantity we define the average degree as

Another measure to characterize the topology of networks is the clustering coefficient18. This coefficient Ci of 
the node i, quantifies the fraction of connected neighbors △i of the node i with respect to the maximum number 
of these connections given by ki(ki − 1)/2 . In terms of the adjacency matrix we have for ki ≥ 2

otherwise Ci = 0 . Here (A3)ii = (AAA)ii = △i/2 . The average clustering coefficient is given by

From the information in the adjacency matrix, different algorithms allow the calculation of the shortest path 
connecting the nodes i and j, the length lij with the number of edges in this shortest path is a measure of the 
distance between two nodes18. This information allows defining an average distance 〈l〉 given by

In this way, for a particular connected undirected network with N nodes, we can calculate the adjacency 
matrix A and obtain the global quantities 〈k〉 , 〈C〉 and 〈l〉 that describe this structure.

(4)DKL(P||Q) =

∫

P(z) log

[

P(z)

Q(z)

]

dz.

(5)�k� =
1

N

N
∑

i=1

ki .

(6)Ci =
(A3)ii

ki(ki − 1)
,
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N
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1
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