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Neuron-derived FGF10 ameliorates 
cerebral ischemia injury via 
inhibiting NF-κB-dependent 
neuroinflammation and activating 
PI3K/Akt survival signaling 
pathway in mice
Yong-Hua Li1,*, Hai-Long Fu1,*, Mou-Li Tian1,*, Yong-Qiang Wang2, Wei Chen1, Lin-Lin Cai1, 
Xu-Hui Zhou3 & Hong-Bin Yuan1

FGF10 is a member of fibroblast growth factors (FGFs). We previously showed that FGF10 protects 
neuron against oxygen-glucose deprivation injury in vitro; however, the effect of FGF10 in ischemic 
stroke in vivo is unknown. In the present study, we showed that FGF10 was mainly expressed in neurons 
but not astrocytes, and detected FGF10 in mouse cerebrospinal fluid. The FGF10 levels in neurons 
culture medium and cell lysate were much higher than those in astrocytes. FGF10 expression in brain 
tissue and FGF10 level in CSF were increased in mouse middle cerebral artery occlusion (MCAO) model. 
Administration of FGF10 into lateral cerebroventricle not only decreased MCAO-induced brain infarct 
volume and neurological deficit, but also reduced the number of TUNEL-positive cells and activities of 
Caspases. Moreover, FGF10 treatment depressed the triggered inflammatory factors (TNF-α and IL-6) 
and NF-κB signaling pathway, and increased phosphorylation of PI3K/Akt signaling pathway. Blockade 
of PI3K/Akt signaling pathway by wortmannin and Akt1/2-kinase inhibitor, partly compromised the 
neuroprotection of FGF10. However, blockade of PI3K/Akt signaling pathway did not impair the 
anti-inflammation action of FGF10. Collectively, our results demonstrate that neuron-derived FGF10 
ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating 
PI3K/Akt survival signaling pathway in mice.

Stroke is the third leading cause of death in the United States and results in substantial health-care expenditures1. 
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the 
exception of thrombolytics2, suggesting that the physiopathological mechanisms of ischemic stroke are far more 
complex recognized previously. Besides the insufficient oxygen and glucose delivery, other detrimental factors 
such as excitotoxicity, acidotoxicity, nitrative stress and especially, post-ischemic neuroinflammation, contribute 
to the last outcome of ischemic stroke3. Moreover, the circulating factors released by brain or other peripheral 
organs may also affect the pathogenesis of stroke4,5.

Fibroblast growth factors (FGFs) are a family of growth factors that share a number of biochemical and bio-
logical properties released by various tissues6. FGFs are essential for embryonic development and often func-
tion postnatally in the response to injury and in the regulation of electrical excitability of cells. They regulate 
fundamental biological processes and play important roles in numerous diseases, including bone remodeling, 
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cardiovascular diseases, metabolism regulation, kidney diseases and cancer6–9. FGF10 is a member of the FGFs 
family. It was firstly cloned from rat embryos in 199610. Up to now, most studies about FGF10 focus on the role 
of FGF10 in development, differentiation and regeneration. FGF10 has been found to play an essential role in 
mesenchymal-epithelial interactions for the proper development of many organs including adipose, limb, lung 
and prostate11–13. FGF-10 also regulates cell mitogenesis, motility, differentiation and migration14. FGF10 criti-
cally regulates fibroblast development15. Nevertheless, the potential roles of FGF10 in other biological functions 
are poorly understood.

In our previous study16, we for the first time demonstrated that exogenous FGF10 administration prevented 
cultured cortical neurons from cell death caused by oxygen-glucose deprivation (OGD), an in vitro ischemic 
stroke model. However, the pathophysiological changes in ischemic brain are far more complex than that in neu-
ron alone because astrocytes, microglia, inflammatory cells and even microvascular endothelial cells participate 
in this process17,18. Thus, we further investigated the potential role of FGF10 on ischemic stroke in vivo in this 
study. We found that FGF10 was mainly expressed in neurons and could be released from neurons. We also tested 
the effect of FGF10 in mice with mouse middle cerebral artery occlusion (MCAO), a widely-used in vivo ischemic 
stroke model. Our data indicate that intracranial FGF10 administration protected experimental ischemic stroke 
via activating PI3K/Akt pathway and suppressing neuroinflammation triggered by cerebral ischemia.

Results
Neuron is the main source of brain FGF10.  Immunoblotting analysis confirmed the expression of 
FGF10 in mouse brain tissue (Fig. 1A). FGF10 was also detected in mouse CSF (Fig. 1A), suggesting FGF10 
can be released by neural cells in CNS. To explore which type of neural cells is the main source of brain FGF10, 
we first detected FGF10 expression in mouse brain tissue using double staining immunohistochemistry. FGF10 

Figure 1.  Neuron is the main source of brain FGF10. (A) FGF levels in mouse brain tissue (lane 2) and 
cerebrospinal fluid (CSF, lane 3) were determined by immunoblotting. Recombinant FGF10 (lane 1) was used 
as positive control. (B) FGF10 expression pattern in neurons (stained by NeuN) in cerebral cortex (frontal lobe) 
was determined by double immunohistochemical staining. The images in white boxes were further enlarged 
to show the intracellular distribution of FGF10. Scale bar, 50 μ m. (C) FGF10 expression pattern in astrocytes 
(stained by GFAP) in cerebral cortex (frontal lobe) was determined by double staining immunohistochemistry. 
Scale bar, 50 μ m. (D) Double staining immunohistochemistry showing the primary cultured neurons and 
astrocytes. DAPI was used to stain nuclei. Scale bar, 100 μ m. (E) MAP-2 and FGF10 double staining were 
performed to illustrate the intracellular distribution of FGF10. (F,G) Comparison of FGF levels in the 
conditional cultured medium (F) or cell lysate (G) of primary cortical neurons and astrocytes.
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was mainly co-localized with neuron (Fig. 1B, up panel) but not astrocytes (Fig. 1C). Moreover, enlarged images 
demonstrated that FGF10 protein is located not only in nucleus, but also in cytoplasm (Fig. 1B, low panel).

We also compared FGF10 levels in the conditional culture medium of primary neurons and astrocytes 
(Fig. 1D). Double-immunochemistry staining confirmed that FGF10 is located in both nucleus and cytoplasm 
(Fig. 1E). As shown in Fig. 1F–G, the FGF10 levels in both culture medium and cell lysate of primary neurons 
were much higher than those in astrocytes. These results suggested that FGF10 is expressed in brain, and neuron 
may be the main source of brain FGF10.

Brain FGF10 is upregulated in MCAO model.  Next, we tested the influence of experimental cerebral 
ischemia on FGF10 mRNA and protein expression. As shown in Fig. 2A, FGF10 mRNA level in brain penumbra area 
of MCAO mice was significantly higher than that in non-ischemia brain area. The mRNA level of FGF10 reached peak 
at 8 h post MCAO (~4 folds). Protein expression of FGF10 in brain penumbra area was also enhanced and reached 
peak at 24 h post MCAO (~2.5 folds, Fig. 2B). Moreover, the FGF10 protein level in CSF was significantly induced by 
MCAO (Fig. 2C). These results suggest that brain FGF10 is upregulated by experimental cerebral ischemia.

Exogenous FGF10 treatment ameliorates cerebral ischemic injury and reduces neuronal apop-
tosis in MCAO model.  Since brain FGF10 is upregulated by cerebral ischemia, we proposed that the upreg-
ulated FGF10 might have important physiopathological roles during cerebral ischemia. Thus, we injected FGF10 
(5 μ g) into the lateral ventricles using stereotaxic techniques. As shown in Fig. 3A, TTC staining assay demon-
strated that FGF10 treatment significantly reduced the brain infarct area in MCAO mice (from ~32% to ~20%, 
P <  0.05). FGF10 treatment also ameliorated the neurological function deficit in MCAO mice (Fig. 3B). TUNEL 
assay showed that FGF10 treatment decreased the number of apoptotic cells in infarcted area (Fig. 3C). FGF10 
treatment suppressed the activities of Caspase-3, Caspase-8 and Caspase-9 (Fig. 3D). These results suggest that 
FGF10 treatment ameliorates cerebral ischemic injury and reduces neuronal apoptosis in mouse MCAO model.

FGF10 decreases post-ischemic neuroinflammation in MCAO model.  It is well accepted that 
post-ischemic neuroinflammation is one of the important mechanisms of ischemic brain injury19. MCAO signif-
icantly elevated TNF-α  mRNA expression, which was partly blocked by FGF10 treatment (Fig. 4A). Also, FGF10 
treatment partly inhibited the TNF-α  protein upregulation in infarcted brain tissue (Fig. 4B). Similar phenotypes 
were observed in IL-6. The mRNA and protein levels of IL-6 in infarcted brain tissue were increased, while FGF10 
treatment partly depressed these changes (Fig. 4C,D).

Figure 2.  Experimental cerebral ischemia increases brain FGF10 expression and release. (A,B) FGF10 mRNA 
(A) and protein (B) levels in brain penumbra area were determined by real-time PCR analysis and immunoblotting 
respectively. *P <  0.05 vs non-ischemic, n =  6 per group. (C) FGF10 levels of cerebrospinal fluid (CSF) in MCAO 
mice and control mice were determined by immunoblotting. *P <  0.05 vs control, n =  3 per group.
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FGF10 treatment inhibits NF-κB signaling pathway and activates PI3K/Akt survival signaling 
pathway in MCAO model.  Since NF-κ B signaling pathway is the major inflammatory mediator regulating 
TNF-α  and IL-6 production in CNS20, we further studied the effects of FGF10 treatment on NF-κ B signaling 
activation in MCAO model. The nuclear NF-κ B p65 subunit level (Fig. 5A) whereas the cytosolic Iκ B expression 
was lower in infarcted brain tissues compared with non-ischemia brain tissue (Fig. 5B), indicating the NF-κ B 
signaling-dependent neuroinflammation was activated by experimental ischemic stroke. Treatment of FGF10 sig-
nificantly attenuated the nuclear NF-κ B p65 subunit level and upregulated cytosolic Iκ B level (Fig. 5A,B). These 
observations indicate that FGF10 suppresses the activation of the NF-κ B signaling pathway during ischemic 
stroke.

Figure 3.  FGF10 treatment reduces ischemic infarcted volume, neurological deficit and neuronal apoptosis 
in MCAO model. (A) Brain infarcted volume was assayed by TTC staining at 24 hours after MCAO. The 
white area surrounded by green dotted line was considered as infarcted brain tissue. *P <  0.05 vs control, n =  8 
per group. (B) Neurological deficit score was assessed at 24 hours after MCAO. *P <  0.05 vs control, n =  8 
per group. (C) Representative images and quantitative analysis of apoptosis using fluorescent TUNEL assay. 
TUNEL-positive cells (green) were considered as apoptotic cells. *P <  0.05 vs vehicle, n =  6 per group.  
(D) Activities of Caspase-3, Caspase-8 and Caspase-9 in non-ischemic and infarcted brain tissue of MCAO 
mice were determined. *P <  0.05 vs vehicle, n =  6 per group.
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We previously showed that in cultured neurons FGF10 induced expression of heme oxygenase-1 (HO-1)16, 
which is a target gene of PI3K/Akt signaling pathway. And PI3K/Akt is one of the most critical pro-survival sig-
naling pathway in ischemia and reperfusion21. Therefore, we determined the effect of FGF10 treatment on PI3K/
Akt signaling pathway in vivo. Centrally FGF10 treatment significantly increased the phosphorylation of PI3K at 
Tyr 458 site (Fig. 5C) and phosphorylation of Akt at Thr 308 site (Fig. 5D).

PI3K/Akt signaling pathway is required for the neuroprotection of FGF10.  Next we investi-
gated whether the activation of PI3K/Akt signaling is important for the neuroprotection of FGF10. The reduced 
infarcted brain area by FGF10 treatment was partly reversed by injection of wortmannin, a selective inhibitor of 
PI3K/Akt signaling (Fig. 6A).

We performed additional experiments using Akt1/2 kinase inhibitor (Akt1/2-KI), another Akt specific inhib-
itor. Using this specific pharmacological tool, we confirmed that blocking Akt signaling pathway was able to 
abolish the neuroprotection of recombinant FGF10 (Fig. 6B).

PI3K/Akt signaling pathway is not essential for the inhibition of inflammation by FGF10.  Further, 
wortmannin injection partly abolished the decreased apoptosis (Fig. 7A) and Caspase-3 activity (Fig. 7B) by 
FGF10 treatment. However, wortmannin did not impair the inhibitory effect of FGF10 on TNF-α  and IL-6 pro-
duction (Fig. 7C,D). Wortmannin also did not affect the inhibitory effect of FGF10 on nuclear NF-κ B p65 subunit 
level (Fig. 6E). These results suggest that activation of PI3K/Akt signaling pathway by FGF10 is required for the 
neuroprotection of FGF10, but may be not essential for the anti-inflammatory action of FGF10.

Discussion
In the present study, we provide the first evidence that neuron-derived FGF10 ameliorates cerebral ischemia 
injury in vivo (Fig. 8). Firstly, we found that brain FGF10 was upregulated by ischemic insult and intracranial 
FGF10 administration successfully reduced brain infarcted volume. Secondly, FGF10 treatment in vivo decreased 

Figure 4.  FGF10 treatment decreases post-ischemic neuroinflammation at 24 hours after MCAO. (A,B) 
TNF-α  mRNA (A) and protein (B) expression in non-ischemic and infarcted brain tissue of MCAO mice were 
determined by real-time PCR analysis and immunoblotting respectively. *P <  0.05 vs vehicle, n =  4 per group. 
(C,D) IL-6 mRNA (C) and protein (D) expression in non-ischemic and infarcted brain tissue of MCAO mice 
were determined by real-time PCR analysis and immunoblotting respectively. *P <  0.05 vs vehicle, n =  4 per 
group.
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neuronal apoptosis and inhibited NF-κ B signaling activation during ischemic stroke and thereby neuroinflam-
mation (TNF-α  and IL-6 production). Thirdly, FGF10 treatment activated phosphorylation of PI3K/Akt signal-
ing pathway. At last, blockade of PI3K/Akt compromised the neuroprotection of FGF10 but did not diminish the 
anti-inflammatory effect of FGF10.

The first interesting finding of this study is that we found FGF10 is a neuron-derived paracrine factor and 
can be induced by ischemic insult. Previous studies have showed FGF10 expression in brain22–24. In the present 
study, we found that FGF10 was detected in CSF. Moreover, we observed that neurons, but not astrocytes, may be 
the main source of secreted FGF10. These results are in line with a very recent report25 and suggest that FGF10 

Figure 5.  FGF10 treatment inhibits NF-κB signaling pathway and activates PI3K/Akt survival signaling at 
24 hours after MCAO. (A) Expression of p65 NF-κ B in nuclear fractions in non-ischemic and infarcted brain 
tissue of MCAO mice was determined by immunoblotting. *P <  0.05 vs vehicle, n =  4 per group. (B) Expression 
of Iκ B in cytosol fractions in non-ischemic and infarcted brain tissue of MCAO mice was determined by 
immunoblotting. *P <  0.05 vs vehicle, n =  4 per group. (C) Phosphorylation of PI3K at Tyr458 site in non-
ischemic and infarcted brain tissue was determined by immunoblotting. *P <  0.05 vs vehicle, n =  4 per group. 
(D) Phosphorylation of Akt at Thr308 site in non-ischemic and infarcted brain tissue was determined by 
immunoblotting. *P <  0.05 vs vehicle, n =  4 per group.

Figure 6.  Blockade of PI3K/Akt signaling pathway by wortmannin impairs the neuroprotection of FGF10 
at 24 hours after MCAO. (A) Effect of wortmannin injection on brain infarcted volume was assayed by TTC 
staining at 24 hours after MCAO. The white area surrounded was considered as infarcted brain tissue. *P <  0.05 
vs control, #P <  0.05 vs FGF10, n =  8 per group. (B) Effect of Akt1/2-KI injection on brain infarcted volume was 
assayed by TTC staining at 24 hours after MCAO. The white area surrounded was considered as infarcted brain 
tissue. *P <  0.05 vs control, #P <  0.05 vs FGF10, n =  8 per group.
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is a neuronal secretory factor. We propose that neurons, but not astrocytes, may be the major source of cerebral 
FGF10 according to our results. Additionally, both brain FGF10 expression and FGF10 level in CSF were induced 
in MCAO mice. In view of that our previous results have revealed the potential neuroprotection of FGF10 in 

Figure 7.  Blockade of PI3K/Akt signaling pathway by wortmannin does not affect the anti-inflammatory 
action of FGF10 at 24 hours after MCAO. (A) Effect of wortmannin injection on apoptosis (TUNEL staining. 
*P <  0.05 vs control, #P <  0.05 vs FGF10, n =  8 per group. (B) Effect of wortmannin injection on Caspase-3 
activity in brain tissue. *P <  0.05 vs control, #P <  0.05 vs FGF10, n =  8 per group. (C,D) Effect of wortmannin 
injection on mRNA levels of TNF-α  (C) and IL-6 (D) in infarcted brain tissue. *P <  0.05 vs control, n =  8 per 
group. NS, no significance. (E) Effect of wortmannin injection on nuclear p65 NF-κ B expression in infarcted 
brain tissue. *P <  0.05 vs control, n =  8 per group. NS, no significance.

Figure 8.  A proposed framework for the neuroprotection of neuron-derived FGF10 against cerebral 
ischemic injury by inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival 
signaling pathway. 
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cultured neuron model (in vitro), we considered that the upregulated brain FGF10 level by cerebral ischemia 
might affect the outcome of ischemic stroke in vivo.

To further answer this question, we directly injected recombinant FGF10 into lateral cerebroventricle in 
MCAO mice. Our previous study suggested that FGF10 has neuroprotection in neuron OGD model16. However, 
the pathophysiological changes in brain are far more complex than that in neurons. So we further studied FGF10 
in MCAO model. As expected, FGF10 reduced the infarcted area and ameliorates neurological deficit. Moreover, 
ischemia-induced neuronal apoptosis was also inhibited by FGF10 treatment. In agreement with our previous 
findings showing the anti-apoptotic activity of FGF10 in cultured neurons16, the present results provide the first 
in vivo evidence supporting the neuroprotection of FGF10 in brain. This result is in line with previous studies 
showing that FGF1 and FGF2 protects against ischemic brain injury26,27. Since neuroprotection in vivo may be 
resulted by multiple parameters that are not confined to anti-apoptosis activity, we determined post-ischemic 
cerebral inflammation, another critical factor contributing neuronal injury after ischemic stroke. Interestingly, 
we detected significant decreases of TNF-α  and IL-6 mRNA and protein expression in brain of FGF10-treated 
mice. Additionally, nuclear p65 NF-κ B level was reduced, while cytoplasmic Iκ B level was increased in brain of 
FGF10-treated mice. The brain responds to ischemic damage with an acute and prolonged inflammatory activa-
tion which are characterized by both rapid activation of resident microglia and subsequent infiltration of vari-
ous types of inflammatory cells (including neutrophils, different subtypes of T cells, monocyte/macrophages, 
and other cells) into the ischemic area28. The proinflammatory factors such as TNF-α  and IL-6 are released 
by activated microglia and other inflammatory cells28. In patients with ischemic stroke, IL-6 levels in plasma 
and cerebrospinal fluid (CSF) are associated with early clinical deterioration, indicating that proinflammatory 
cytokines and early neurological worsening in ischemic stroke29. The attenuated proinflammatory cytokine level 
by FGF10 treatment implies the possible effects of FGF10 on microglia and other inflammatory cells. Although 
there is no previous study about the effect of FGF10 on microglia or other inflammatory cells, we noted that both 
direct NF-κ B activation and inflammatory cytokines reduced FGF10 expression in bronchopulmonary dyspla-
sia30, which suggests a potential causal association between FGF10 and inflammation. However, the exact role of 
FGF10 in post-ischemic inflammation, especially in the activation of astrocytes and microglia, may need more 
studies in future.

PI3K/Akt signaling is a critical growth and survival pathway in many biological processes, especially on the 
process of early ischemia/reperfusion injury as we previously described31. So far, no negative effects of PI3K/
Akt signaling on the ischemic stroke have been found21. We previously showed that FGF10 protects neuron 
against OGD injury through inducing HO-116. In the present study, we found that FGF10 treatment activated 
phosphorylation of PI3K/Akt in brain tissue, suggesting that the activation of Akt by FGF10 may account for the 
upregulation of HO-1 in neuron. In addition, blockade of PI3K/Akt signaling by wortmannin, a selective chemi-
cal inhibitor32, partially abrogated the anti-apoptotic activity of FGF10. However, wortmannin failed to attenuate 
the anti-inflammatory action of FGF10. These results indicated that activation of PI3K/Akt signaling pathway 
is required for the neuroprotection of FGF10 but not for the anti-inflammation action of FGF10. The inhibition 
on NF-κ B-dependent neuroinflammation and activation of PI3K/Akt signaling pathway by FGF10 might be 
two independent molecular mechanisms for the neuroprotection of FGF10 in vivo. The activation on Akt sig-
naling by FGF10 was observed in hepatocytes33 and endothelial cells34, but not in lung mesenchymal cultures35 
and human endometrial carcinoma cells36. This cell type-dependent activation on Akt signaling by FGF10 may 
attribute to the presence or absence of FGFR2B, the receptor of FGF1011–13. Previously, a large number studies 
have showed that Akt activation positively controls NF-κ B-dependent transcription, whereas blocking PI3K/
Akt signaling leads to a marked reduction of constitutive NF-κ B activity37–41. In our study, we found that FGF-10 
activated Akt signaling pathway, which seemed to be able to result in an enhanced NF-κ B activity under ischemic 
stress. Nevertheless, immunoblotting assay demonstrated that FGF10 inhibited NF-κ B activity in our experi-
ments (Fig. 5), and blocking Akt by wortmannin did not affect the inhibitory effect of FGF10 on nuclear NF-κ B 
p65 subunit level in cerebral ischemic model (Fig. 7). These results clearly point out that the inhibitory effect of 
FGF10 on NF-κ B activity is not mediated by Akt. We did not know how FGF10 modulates NF-κ B indeed. In 
addition, we are still trying to find which signaling pathway contributes to the suppressed NF-κ B activity upon 
FGF10 treatment. We think this issue may need further clarification with detailed works as it raises an important 
question about the complexity of FGF10-induced biological functions in ischemic stroke.

As an extracellular protein, the half-life time of FGF10 is critical for its potential application in future clinics. 
Buchtova et al. recently showed that FGFs, including FGF1, FGF3, FGF4, FGF6, FGF8, FGF9, FGF10, FGF16, 
FGF17, FGF18, FGF20, and FGF22, exist as unstable proteins with half-life times as 0.5 ~ 4 hours in cell-free 
medium; however, exogenous heparin binding rescued stabilization of these FGFs42. In our opinion, this feature 
of FGF10 would not hamper its therapeutic value in stroke because the time window for stroke treatment is 
3.5–4 hours1 and the intracellular signaling cascade triggered by a bolus FGF10 treatment could still exert biolog-
ical functions in this period. In this study, we detected inflammation, apoptosis, and PI3K pathway in infarcted 
area and detected protein and mRNA changes of FGF10 in penumbra. We considered that the apoptosis and 
inflammation are important processes occurred mainly in died or dying neural cells. These phenotypes would be 
more pronounced in the infracted areas. Thus, we detected inflammation and apoptosis, as well as the PI3K/Akt 
signaling pathway, which might regulate NF-κ B transduction to control inflammation and apoptosis in infarcted 
area. By contrast, the upregulation and release of FGF10 are intracellular adaptive responses which require living 
neural cells. In infracted areas, living neural cells are sparse. So we detected the upregulation and release of FGF10 
in penumbra.

Most of FGFs are likely to be localized predominantly in cytoplasmic region and cell surface. However, the 
nuclear localization of a number of FGFs has been reported in various cell lines and tissues. The FGF1 and FGF2 
(also known as basic FGF [bFGF]) are two most studied members of FGFs. These two FGFs have been reported to 
locate in both nuclei and cytoplasm43. Moreover, there are many researches regarding the molecular mechanisms 
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of their nuclear translocation and export. The nuclear translocation has been demonstrated to be associated with 
neurotrophic activity44, tumor45,46, ischemic injury47 and other biological functions48. In addition, Bryant DM  
et al. have reviewed the biological significance of nuclear translocation of FGFs43. We detected FGF10 in both 
cytoplasm and nuclei in brain tissues, which indicates that neural FGF10 may also have nuclear translocation 
process. Moreover, the possible nuclear translocation process of FGF10 may play an important role in biological 
function of FGF10. However, this interesting question needs further detailed investigation.

In conclusion, we demonstrate that neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting 
NF-κ B-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. These find-
ings have implications for understanding the pathophysiology of ischemic stroke and may open new directions 
focusing on the therapeutic value of FGF10 in the treatment of ischemic stroke.

Materials and Methods
Reagents.  Recombinant FGF10 (catalogue: 345-FG-025) was purchased from R&D Systems (Minneapolis, 
MN). Antibodies against FGF10 (ab115825), MAP-2 (ab5392), GFAP (ab7260), tubulin (ab179513) and t-PI3K 
(ab22653) were purchased from Abcam (Cambridge, MA). Antibodies against p65 nuclear factor-κ B (NF-κ B, 
sc-372), Iκ B (sc-371), TNF-α  (sc1351) and IL-6 (sc-1265) were purchased from Santa Cruz Biotechnology, Inc. 
(Santa Cruz, CA). Antibody against p-Akt (2965), t-Akt (9272) and p-PI3K (4288) was purchased from Cell 
Signaling Biotechnology (Danvers, MA). Fluorescent terminal deoxynucleotidyl transferase dUTP nick end labe-
ling (TUNEL) assay kit was purchased from Promega (Medison, WI). Caspase-3, − 8 and − 9 activity colorimetric 
kits were purchased from Abcam. 2,3,5-triphenyltetrazolium chloride (TTC), wortmannin and Akt1/2-KI were 
purchased from Sigma Chemical Company (St. Louis, MO)

Animals.  Male 8–12 weeks old C57BL/6 or CD1 mice were supplied by the Shanghai Sino-British Sippr BK 
Lab Animal Co., Ltd. Animals were housed in a facility with controlled temperature (23 ±  2 °C) and lighting 
(08: 00 to 20: 00 h), with free access to tap water. All animal experiments were approved by the Animal Ethics 
Committee of Second Military Medical University and were performed in compliance with the Guide for Care 
and Use of Laboratory Animals published by the US National Institutes of Health (NIH publication no. 85–23, 
revised 1996).

Cerebrospinal fluid collection.  CSF was from male CD1 mice (4 months) anesthetized with pentobarbital 
sodium (60 mg/kg, ip) as described previously49. We collected 40 μ l CSF from 8 mice and concentrated it to 8 μ l 
using Amicon®  Ultra Centrifugal Filters (EMD Millipore, Billerica, MA) for immunoblotting.

MCAO.  MCAO surgery in mice was performed as described previously50,51. Briefly, mice were anesthetized 
with chloral hydrate (400 mg/kg, i.p.) and the core temperature (rectum) was maintained at 36.5 °C–37.5 °C using 
a homeothermic heating pad (CWE Inc., Ardmore, PA) throughout the surgery. Cerebral focal ischemia was 
produced by intraluminal occlusion of the left middle cerebral artery using a silicone rubber-coated nylon mono-
filament. The cerebral blood flow was reduced by more than 85% using a laser Doppler flowmeter (VMSTM-LDF1; 
Moor Instruments, Axminster, UK). Two hours after MCAO, the occluding filament was withdrawn to allow 
reperfusion. Penumbra is an established concept in stroke, defined as a region of hypoperfused, metabolically 
active tissue surrounding the ischemic core52. The non-ischemic area is defined as the contralateral brain tissue.

Neurological deficit score and TTC staining.  Mice were examined for neurological deficit using a 
5-point scale50,53. Animals with normal motor function were scored as 0, flexion of the contralateral torso and 
forearm on lifting the animal by the tail as 1, circling to the contralateral side but normal posture at rest as 
2, leaning to the contralateral side as 3, and no spontaneous motor activity as 4. For TTC staining, brain was 
removed swiftly from mice being deeply anesthetized (400 mg/kg, i.p.) and sacrificed and was cut into slices with 
brain-cutting matrix (ASI Instruments, Warren, MI). Then the slices were bathed in the TTC solution at 37 °C for 
30 minutes. The TTC-stained brain slices were photographed with a digital camera. Infarction volume was the 
sum of all lesion areas multiplied by slice thickness with Image J software (National Institutes of Health, USA)50.

Drug treatment in vivo.  Anesthetized mice (chloral hydrate, 400 mg/kg, i.p.) were fixed in a stereotactic 
frame (ASI Instruments, Houston, TX) and were injected with FGF10 (5 μ g, dissolved in 4 μ l saline) or vehicle 
(saline) into the left lateral cerebroventricle (1 mm posterior, 1.0 mm lateral, and 2.0 mm ventral to the bregma) 
over 10 minutes as described previously50. During the 10 minutes of i.c.v. infusion, a homeothermic heating blan-
ket was used to maintain the core temperature (rectum) at 37 °C. For experiments with PI3K/Akt signaling block-
ade, wortmannin (0.2 μ M, 1 μ l) or Akt1/2-KI (0.5 μ M, 1 μ l) dissolved in saline was injected into the left lateral 
cerebroventricle after FGF10 injection. The MCAO model was performed at 30 minutes after FGF10 infusion. 
At 24 hours post MCAO, the non-ischemia brain tissue and infarcted brain tissues were dissected carefully and 
frozen at − 80 °C for subsequent molecular assays.

Cell culture and conditional culture medium.  Primary mouse cortical neurons and astrocytes were 
used in this study. For primary neuron culture, the dissociated cortical cells were added to poly-L-lysine-coated 
culture plates and maintained in Neurobasal medium supplemented with 2% B2754. Glial growth was suppressed 
by addition of 5-fluoro-2-deoxyuridine and uridine (10 μ M), yielding cultured cells with > 95% neurons. After 
6 days in vitro, the neurons were used for experiments. For primary astrocytes culture, the dissociated cortical 
cells were added to poly-L-lysine-coated culture plates and maintained in DMEM/F12 medium supplemented 
with 10% FBS. After 12 days in vitro, the astrocytes were used. For collection of conditional culture medium, the 
neurons and astrocytes were cultured for 3 days without changing the medium. Conditional medium (2 ml) was 
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collected and concentrated to ~50 μ l using Microcon-10 kDa Centrifugal Filter Unit (Millipore, Bedford, MA) as 
described previously55.

Real-time quantitative PCR.  Real-time quantitative PCR was performed as described previ-
ously56,57. Total RNA for real-time quantitative RT-PCR was isolated from tissues using RNAiso Reagent 
(TaKaRa, Tokyo, Japan) and reverse transcripted into the single strand cDNA. Primers were designed 
using the Primer Express software version 1.5 (Applied Biosystems, Foster City, CA, USA). The prim-
ers for TNF-α  are as follows: sense, 5′-TTCTGTCTACTGAACTTCGGGGTGATCGGTCC-3′ ; anti-
sense, 5′-GTATGAGATAGCAAATCGGCTGACGGTGTGGG-3′ . The primers for IL-6 are as follows: 
sense, 5′-ATGGATGCTACCAAACTGGAT-3′  and antisense, 5′-TGAAGGACTCTGGCTTTGTCT-3′ . 
Gene expression of GAPDH was used for control. The primers for GAPDH are as follows: forward, 
5′-TCTGACGTGCCGCCTGGAG-3′ ; reverse, 5′-TCGCAGGAGACAACCTGGTC-3′ . Quantification of mRNA 
was performed using the ABI Prism 7500 (Applied Biosystems) with PrimeScript™  RT-PCR Kit (TaKaRa, Tokyo, 
Japan).

Immunoblotting.  Immunoblotting analysis was performed as described previously58. Brain tissues were 
lysed with RIPA buffer with protease inhibitors. Protein samples were separated in 12% SDS-PAGE, and trans-
ferred onto PVDF membranes at 100V for 1~2 h. After blocking by 5% evaporated milk, membranes were 
incubated with primary antibodies diluted in TBS containing 1% w/v bovine serum albumin and followed by 
HRP-labeled secondary antibody59. The signal of immunoblotting was detected using the enhanced chemilumi-
nescence system.

Immunofluorescence and immunohistochemistry.  Immunofluorescence and immunohistochemistry 
were performed as described previously16,57. Cultured cells or brain sections were fixed in 4% paraformaldehyde, 
blocked by 8% normal goat serum, and incubated in specific primary antibodies as follows: NeuN (1:500), GFAP 
(1:1000), MAP-2 (1:400) and FGF10 (1:500). After being washed three times by PBS, the sections and cells were 
incubated with Alexa 488-conjugated or Alexa 555-conjugated secondary antibodies. Images were obtained by 
fluorescence microscope (IX-71, Olympus, Tokyo, Japan) with a digital camera (Olympus).

TUNEL assay.  Immunofluorescence TUNEL assay was performed according to the instructions of manufac-
turer (Roche, Penzberg, Germany) as described previously53,60. Images were obtained by fluorescence microscope 
(IX-71, Olympus, Tokyo, Japan) with a digital camera (Olympus).

Caspases activity.  Activities of Caspase-3, 8 and 9 were assessed as described in our previous study16. Briefly, 
brain tissues were lysed and then performed according to the manufacturer’s instruction. Samples were read at 
405 nm in a microtiter plate reader. Fold-increase in Caspase-3, − 8 and − 9 activities were determined by com-
paring these results with the level of control (non-ischemic brain tissue).

Statistical analysis.  Data are expressed as mean ±  SEM. Differences were evaluated by two-tailed Student’s 
t test or ANOVA followed by Tukey’s post-hoc test with GraphPad Prism 5.0 version. Statistical significance was 
set at P <  0.05.
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