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Abstract. Small cell lung cancer (SCLC) is one of the highly 
malignant tumors and a serious threat to human health. 
The aim of the present study was to explore the underlying 
molecular mechanisms of SCLC. mRNA microarray data-
sets GSE6044 and GSE11969 were downloaded from Gene 
Expression Omnibus database, and the differentially expressed 
genes (DEGs) between normal lung and SCLC samples were 
screened using GEO2R tool. Functional and pathway enrich-
ment analyses were performed for common DEGs using the 
DAVID database, and the protein-protein interaction (PPI) 
network of common DEGs was constructed by the STRING 
database and visualized with Cytoscape software. In addi-
tion, the hub genes in the network and module analysis of the 
PPI network were performed using CentiScaPe and plugin 
Molecular Complex Detection. Finally, the mRNA expression 
levels of hub genes were validated in the Oncomine database. 
A total of 150 common DEGs with absolute fold-change 
>0.5, including 66 significantly downregulated DEGs and 
84 upregulated DEGs were obtained. The Gene Ontology 
term enrichment analysis suggested that common upregulated 
DEGs were primarily enriched in biological processes (BPs), 
including ‘cell cycle’, ‘cell cycle phase’, ‘M phase’, ‘cell cycle 
process’ and ‘DNA metabolic process’. The common down-
regulated genes were significantly enriched in BPs, including 
‘response to wounding’, ‘positive regulation of immune 
system process’, ‘immune response’, ‘acute inflammatory 
response’ and ‘inflammatory response’. Kyoto Encyclopedia 
of Genes and Genomes pathway analysis identified that the 

common downregulated DEGs were primarily enriched in the 
‘complement and coagulation cascades’ signaling pathway; 
the common upregulated DEGs were mainly enriched in 
‘cell cycle’, ‘DNA replication’, ‘oocyte meiosis’ and the 
‘mismatch repair’ signaling pathways. From the PPI network, 
the top 10 hub genes in SCLC were selected, including topoi-
somerase IIα, proliferating cell nuclear antigen, replication 
factor C subunit 4, checkpoint kinase 1, thymidylate synthase, 
minichromosome maintenance protein (MCM) 2, cell division 
cycle (CDC) 20, cyclin dependent kinase inhibitor 3, MCM3 
and CDC6, the mRNA levels of which are upregulated in 
Oncomine SCLC datasets with the exception of MCM2. 
Furthermore, the genes in the significant module were 
enriched in ‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis’ 
signaling pathways. Therefore, the present study can shed new 
light on the understanding of molecular mechanisms of SCLC 
and may provide molecular targets and diagnostic biomarkers 
for the treatment and early diagnosis of SCLC.

Introduction

Lung cancer is one of the highly malignant tumors and a 
serious threat to human health. The incidence and mortality 
rates of lung cancer are the highest of any type of cancer, 
particularly in China (1). Despite the advances and develop-
ments in the treatments for lung cancer, the 5-year survival 
rate of patients with lung cancer remains only 16%, and the 
5-year recurrence rate is 50% (2). Based on differences in 
presentation and behavior, primary lung cancer is divided 
into two main histological subtypes: Small cell lung cancer 
(SCLC) and non-SCLC (NSCLC) (3). Although SCLC only 
accounts for 15% of lung cancers, it is an aggressive high-grade 
neuroendocrine tumor associated with early and widespread 
metastasis and development of resistance to chemotherapy, 
which contribute to the extremely poor prognosis of patients 
with the disease (4,5). Previously, several common genetic 
alterations in SCLC have been identified, including functional 
inactivation of the tumor-suppressor genes tumor protein 
p53 and RB transcriptional corepressor 1, as well as ampli-
fication of genes encoding Myc family members, enhancer of 
zeste homolog 2 (EZH2) involved in chromatin remodeling, 
epidermal growth factor receptor and B-cell lymphoma 2 
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receptor tyrosine kinases, their downstream effectors, and 
Notch family proteins (4,6-10). These may provide opportuni-
ties for classification and therapeutic intervention, including 
poly (ADP-ribose) polymerase (PARP) inhibitors, EZH2 inhi-
bition and Wee1 inhibitor (11-15). Therefore, more effort needs 
to be invested towards the investigation and understanding 
of molecular mechanisms in development and progression of 
SCLC, which are crucial for the development of more effective 
diagnostic and therapeutic strategies.

Recently, the gene expression profile chip, a high‑throughput 
and effective technique, has been widely used in a variety 
of disease research fields to reveal the association between 
disease and genes, and provide the valuable clues for the 
pathogenesis of the diseases, including lung cancer (16-18). 
Kikuchi et al (19) identified several genes, which may be used 
for the prediction of lymph-node metastasis and sensitivity 
to anti-cancer drugs. Yanaihara et al (20) identified that high 
hsa-mir-155 and low hsa-let-7a-2 expression levels correlated 
with poor survival, which indicated that micro (mi)RNA 
expression profiles are diagnostic and prognostic markers 
of lung cancer. Furthermore lung adenocarcinoma has been 
defined to represent distinct molecular subclasses according 
to the miRNA expression profiling data (21). Although the 
cellular and molecular genetic alterations underlying SCLC 
have become better understood, the molecular mechanisms of 
SCLC have yet to be fully elucidated.

In order to investigate the molecular mechanisms of 
SCLC, the present study re-analyzed the gene expression 
profiles of GSE6044 and GSE11969 (22,23) and identified the 
differentially expressed genes (DEGs) between normal lung 
tissue and SCLC. Subsequently, comprehensive bioinformatics 
analysis was used for biological process (BP) annotation and 
biological pathway enrichment analysis. The protein-protein 
interaction (PPI) network of common DEGs was constructed 
and analysis performed on the hub genes and modules of the 
PPI network. Therefore, the findings of the present study may 
provide further understanding of SCLC development and lead 
to an improved diagnosis of SCLC.

Materials and methods

Expression profile microarray. Data was downloaded from the 
Gene Expression Omnibus (GEO), a public repository for data 
storage (www.ncbi.nlm.nih.gov/geo) (24). A total of 2 mRNA 
expression datasets of SCLC, GSE6044 and GSE11969, were 
included in the present study (22,23). The dataset GSE6044 
based on GPL201 (HG-Focus) Affymetrix Human HG-Focus 
Target Array platform (Affymetrix; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA), included 5 normal lung and 9 SCLC 
samples; the dataset GSE11969 also included 5 normal lung and 
9 SCLC samples based on the platform of GPL7015 Agilent 
Homo sapiens 21.6K custom array (Agilent Technologies, Inc., 
Santa Clara, CA, USA).

Identification of DEGs. The DEGs between normal lung and 
SCLC samples were screened by an interactive web tool, 
GEO2R (www.ncbi.nlm.nih.gov/geo/geo2r) (25). The adjusted 
P-value using the Benjamini and Hochberg false discovery 
rate (FDR) method was applied to correct for the occur-
rence of false positive results. The adjusted P-value <0.05 

and |logFC| >0.5 were set as the cut-off criteria. The heat 
map of DEGs was generated using the gplots package for R 
(http://cran.r-project.org/web/packages/gplots/; version 3.4.3).

Gene ontology (GO) terms and kyoto encyclopedia of genes 
and genomes (KEGG) pathway enrichment analysis. The 
Database for Annotation, Visualization and Integrated 
Discovery (DAVID, david.abcc.ncifcrf.gov) is an online 
program that provides a comprehensive set of functional 
annotation tools for researchers to understand the biological 
meaning behind numerous genes (26). GO, including molecular 
function, biological processes (BP) and cellular components 
and KEGG pathway enrichment analyses were performed 
for identified DEGs using the DAVID database (version 6.7). 
FDR <0.05 was used as a cutoff for significance.

Construction of PPI, hub gene identification and module 
analysis of the PPI network. The Search Tool for the Retrieval 
of Interacting Genes (STRING) database (version 10.5; 
http://string-db.org/), is an online tool designed to explore and 
analyze PPI information. To evaluate the interactive associa-
tions among common DEGs, the common DEGs were mapped 
using STRING, and interactions with a combined score 
>0.4 were selected. Then, the PPI network was constructed 
and visualized using Cytoscape software (version 3.5.1; 
www.cytoscape.org). In order to identify key elements in BP, 
the hub genes in the network defined as possessing a connective 
degree >10, were identified using CentiScaPe v2.0 plugin for 
Cytoscape (version 3.5.1; www.cytoscape.org). The topolog-
ical properties of the PPI network, including average clustering 
coefficients, topological coefficients and shortest path lengths, 
were investigated using a Network Analyzer (version 2.7; 
med.bioinf.mpi-inf.mpg.de/netanalyzer/download.php) and 
Cytoscape (version 3.5.1; www.cytoscape.org) plugin app (27). 
Finally, module analysis was carried out by the plug-in 
Molecular Complex Detection (MCODE; version 1.5.1) with 
cut-off criterion: MCODE score >4 and number >5.

Validation of the expression of hub genes in oncomine 
database. Oncomine (www.oncomine.org; Ion Torrent; 
Thermo Fisher Scientific, Inc.) is an online cancer microarray 
database to facilitate the discovery of genome-wide expression 
analyses (28). To validate the expression level of hub genes 
in SCLC, Garber et al (29) and Bhattacharjee et al (21) lung 
cancer gene expression data in the Oncomine database were 
searched for expression levels of hub genes in the network 
with a P-value <0.05. Thresholds for fold-change and gene 
rank were set to ‘all’, whereas the data type was restricted to 
mRNA. Statistical significance was provided by Oncomine in 
the form of a Student's t-test.

Results

Identification of DEGs. Gene expression datasets GSE6044 
and GSE11969 were downloaded from GEO datasets. GEO2R 
was applied to screen DEGs between normal lung tissue and 
SCLC samples. A total of 1,025 and 1,006 DEGs were identi-
fied from GSE6044 and GSE11969 datasets, respectively 
(Fig. 1A and B). Among them, 481 downregulated genes 
and 544 upregulated genes in the GSE6044 dataset, and 
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Table I. The 150 common DEGs in the GSE6044 dataset.

A, Downregulated DEGs

Gene symbol Log fold-change Adjusted P-value

CYP4B1 -4.26 3.14x10-4

CX3CL1 -4.23 7.58x10-4

FBLN5 -3.26 1.22x10-3

SCGB1A1 -3.16 5.10x10-3

AQP3 -2.76 3.70x10-2

ADH1C -2.75 9.50x10-4

CSTA -2.60 1.87x10-2

ALDH1A1 -2.49 2.66x10-3

CFH -2.32 1.49x10-3

CLU -2.08 1.28x10-3

ADH1B -2.07 3.39x10-3

PTGDS -1.94 5.01x10-3

PROS1 -1.87 1.93x10-3

TGFBR3 -1.80 7.75x10-3

ANXA11 -1.73 4.77x10-3

LAMB3 -1.73 4.78x10-3

DMBT1 -1.72 4.59x10-2

F13A1 -1.72 2.19x10-2

FLRT3 -1.72 4.58x10-2

RRAD -1.70 1.88x10-3

TACSTD2 -1.67 2.54x10-2

C3 -1.66 1.03x10-2

PLK2 ‑1.66 5.62x10-3

EPAS1 -1.65 6.31x10-3

PZP -1.57 2.83x10-3

CXCL1 -1.55 4.10x10-3

CAST -1.49 3.13x10-3

ANXA1 -1.42 3.49x10-2

RNASE4 -1.39 7.39x10-4

CTSH -1.33 7.49x10-4

CD9 -1.31 2.85x10-2

ADRB2 -1.30 2.62x10-2

PTGER4 -1.26 1.13x10-2

FOLR1 -1.22 5.56x10-3

BAG3 -1.21 1.50x10-2

CAPN2 -1.21 5.21x10-3

CD81 -1.21 2.21x10-2

SERPINA1 -1.21 2.26x10-2

VAMP8 -1.21 1.51x10-2

GPX3 -1.19 1.45x10-2

MYO5C -1.19 1.46x10-2

PCSK5 ‑1.19 2.10x10-3

HLA-E -1.18 5.52x10-3

FBLN1 -1.12 1.24x10-2

A2M -1.11 1.67x10-2

TGM2 -1.07 7.86x10-3

TGFBR2 -1.06 1.98x10-2

PXMP2 0.50 4.38x10-2

NOL4 0.51 4.98x10-3

MKI67 0.52 4.11x10-2

Table I. Continued.

A, Downregulated DEGs

Gene symbol Log fold-change Adjusted P-value

LYN -1.04 3.06x10-2

C6 -1.02 4.37x10-3

HNMT -1.01 4.43x10-3

PRNP -1.01 2.72x10-2

CCND1 -0.98 1.31x10-2

TCF21 -0.96 6.18x10-3

CST3 -0.95 2.20x10-3

CNN2 -0.95 1.07x10-2

NEDD9 -0.91 1.29x10-2

IL4R -0.91 3.37x10-2

THBD -0.90 4.91x10-2

EPHA2 -0.87 2.92x10-2

ZFP36L2 -0.86 4.88x10-2

SLC16A5 -0.83 2.59x10-3

STAT6 -0.83 2.09x10-2

SP110 -0.69 3.10x10-2

TLR2 -0.63 4.12x10-2

CFTR -0.61 2.77x10-2

VAV1 -0.53 3.77x10-3

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

KCNH2 0.52 2.49x10-2

RAD54L 0.52 2.49x10-2

CBX5 0.59 1.01x10-2

DDC 0.61 3.27x10-2

RECQL4 0.62 5.10x10-3

CHEK1 0.64 4.79x10-2

ENC1 0.64 2.00x10-2

SOX11 0.67 1.92x10-2

BIRC5 0.69 5.60x10-3

CKS1B 0.69 1.87x10-2

GNG4 0.70 2.24x10-2

EZH2 0.71 9.45x10-4

FANCA 0.71 9.45x10-4

STMN1 0.71 9.45x10-4

EXO1 0.71 7.39x10-3

GRP 0.71 7.39x10-3

CDKN3 0.73 7.18x10-3

FKBP3 0.78 7.93x10-3

NRTN 0.79 2.86x10-2

ASCL1 0.81 8.66x10-3

CENPF 0.81 5.56x10-3

PCSK1 0.83 5.62x10-3

MYBL2 0.86 2.27x10-2

TRIM36 0.86 2.26x10-2

MSH6 0.86 5.21x10-3

TPD52 0.89 1.64x10-2
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706 downregulated genes and 300 upregulated genes in the 
GSE11969 dataset, were identified. In addition, 150 common 
DEGs were obtained (Tables I and II), comprising 
66 co-downregulated genes and 84 co-upregulated genes 
(Fig. 1C and D).

Biological classification and pathway enrichment analysis of 
common DEGs. To gain an understanding of the GO catego-
ries of common DEGs, all common DEGs were uploaded to 
the DAVID database. The downregulated DEGs were signifi-
cantly enriched in BPs, including ‘response to wounding’, 
‘positive regulation of immune system process’, ‘immune 
response’, ‘acute inflammatory response’ and ‘inflammatory 
response’; the upregulated genes were significantly enriched 
in ‘cell cycle’, ‘cell cycle phase’, ‘M phase’, ‘cell cycle process’ 
and ‘DNA metabolic process’. For cellular component, the 
downregulated DEGs were significantly enriched in the 
‘extracellular region’, ‘extracellular region part’, ‘extracel-
lular space’, ‘platelet α-granule’, and ‘cytoplasmic vesicle 
part’; and the upregulated DEGs were significantly enriched 
in ‘chromosome’, ‘chromosomal part’, ‘nuclear lumen’, 
‘spindle’ and ‘intracellular organelle lumen’. In addition, MF 
analysis also indicated that the downregulated DEGs were 
significantly enriched in ‘enzyme inhibitor activity’, ‘endo-
peptidase inhibitor activity’ and ‘peptidase inhibitor activity’ 
(Fig. 2A and B).

Following KEGG pathway enrichment analysis, the 
common downregulated DEGs were identified to be primarily 
enriched in the ‘complement and coagulation cascades’ 
signaling pathways; the common upregulated DEGs were 
mainly enriched in ‘cell cycle’, ‘DNA replication’, ‘oocyte 
meiosis’ and ‘mismatch repair’ signaling pathways (Table III). 
Therefore, these significantly enriched GO terms and pathways 
could aid further understanding of the roles of these DEGs, 
involved in the occurrence and development of SCLC.

Construction of PPI network and module analysis. PPI 
network of common DEGs was constructed using the STRING 
online database and Cytoscape software (Fig. 3). A total of 
123 DEGs (50 downregulated and 73 upregulated) of the 150 
commonly altered DEGs were filtered into the DEGs PPI 
network complex, containing 123 nodes and 869 edges, and 27 
of the 150 DEGs fell outside the DEGs PPI network (Fig. 3A). 
Then, the hub genes in the networks with a connectivity degree 

Table I. Continued.

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

CDC7 0.90 1.98x10-3

PSIP1 0.90 1.98x10-3

PRDX2 0.91 2.19x10-2

FZD3 0.91 4.66x10-3

HDAC2 0.94 3.14x10-4

MCM6 0.94 3.14x10-4

MEST 0.94 3.14x10-4

SOX4 0.94 3.14x10-4

TOP2A 0.94 3.14x10-4

TYMS 0.94 3.14x10-4

CDC20 0.95 1.88x10-3

LHX2 0.97 2.16x10-2

HPRT1 0.99 9.71x10-3

PARP1 0.99 9.71x10-3

CDC6 1.02 2.97x10-3

PCNA 1.08 1.84x10-3

NELL1 1.09 1.92x10-2

SHMT2 1.11 9.89x10-3

FANCG 1.19 1.62x10-3

TTK 1.19 1.62x10-3

BUB1 1.20 2.72x10-3

PAFAH1B3 1.23 2.62x10-3

SPAG5 1.25 4.19x10-3

CELSR3 1.26 2.51x10-3

ITGB3BP 1.27 1.56x10-2

DTYMK 1.29 1.77x10-3

DLK1 1.31 3.32x10-3

DEK 1.33 6.17x10-4

RFC5 1.39 1.21x10-3

KIF11 1.41 3.53x10-3

NEK2 1.41 3.09x10-3

UNG 1.48 1.28x10-3

MCM3 1.52 1.39x10-3

CAMK2B 1.53 2.43x10-2

TIMELESS 1.60 2.07x10-3

USP1 1.60 6.35x10-4

CCNB2 1.61 3.13x10-3

FBXO5 1.62 1.46x10-3

ZWINT 1.67 7.39x10-4

GMNN 1.79 1.52x10-3

COCH 1.83 1.45x10-3

PTTG1 1.85 7.46x10-3

MCM2 1.90 4.17x10-3

MAD2L1 1.98 2.59x10-3

CCNE2 1.99 7.62x10-3

RACGAP1 2.00 1.77x10-3

CHGB 2.04 3.42x10-3

ASNS 2.16 2.61x10-3

RRM2 2.40 2.24x10-3

RFC4 2.52 3.41x10-4

Table I. Continued.

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

CKS2 2.60 1.09x10-3

RBP1 2.75 5.41x10-3

UCHL1 3.08 3.37x10-4

ISL1 3.17 4.91x10-3

INSM1 3.65 5.28x10-3

DEGs, differentially expressed genes.
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Table II. The 150 common DEGs in the GSE11969 dataset.

A, Downregulated DEGs

Gene symbol Log fold-change Adjusted P-value

TGFBR2 -1.19 3.30x10-4

CFTR -1.16 1.03x10-3

CXCL1 -1.14 5.16x10-4

TGM2 -1.11 4.73x10-5

THBD -1.11 4.73x10-5

EPAS1 -1.10 4.13x10-4

AQP3 -1.10 1.00x10-5

CD9 -1.07 3.03x10-3

ALDH1A1 -1.03 4.22x10-3

RRAD -1.01 1.52x10-4

NEDD9 -0.99 3.32x10-4

CX3CL1 -0.98 6.32x10-5

ANXA1 -0.97 4.15x10-4

CNN2 -0.95 3.65x10-4

SLC16A5 -0.95 1.53x10-4

LAMB3 -0.94 2.82x10-4

PROS1 -0.93 1.49x10-3

FBLN1 -0.92 8.81x10-4

SP110 -0.89 1.36x10-2

TGFBR3 -0.88 7.00x10-5

RNASE4 -0.87 1.76x10-4

DMBT1 -0.86 6.02x10-3

CSTA -0.85 5.07x10-3

GPX3 -0.85 1.10x10-3

CTSH -0.85 3.15x10-3

PTGER4 -0.85 3.15x10-3

VAV1 -0.84 8.80x10-3

TCF21 -0.83 4.99x10-4

F13A1 -0.83 1.22x10-3

TACSTD2 -0.83 5.82x10-4

CST3 -0.83 2.69x10-2

STAT6 -0.83 1.02x10-2

ADH1B -0.81 3.64x10-3

ZFP36L2 -0.81 6.86x10-4

PZP -0.81 5.75x10-3

C3 -0.80 2.70x10-2

CLU -0.76 4.60x10-2

CYP4B1 -0.75 3.74x10-3

SCGB1A1 -0.75 5.88x10-3

FLRT3 -0.74 3.15x10-2

PCSK5 ‑0.74 2.91x10-3

CFH -0.72 2.45x10-2

LYN -0.72 1.19x10-2

ADRB2 -0.71 6.46x10-5

HLA-E -0.71 9.33x10-3

CAPN2 -0.70 8.30x10-3

BAG3 -0.69 1.44x10-3

TLR2 -0.69 1.15x10-3

FBLN5 -0.69 3.74x10-4

A2M -0.66 2.23x10-2

Table II. Continued.

A, Downregulated DEGs

Gene symbol Log fold-change Adjusted P-value

C6 -0.66 1.32x10-4

FOLR1 -0.65 9.53x10-4

PLK2 ‑0.65 1.92x10-4

HNMT -0.63 1.23x10-2

MYO5C -0.61 1.28x10-2

CAST -0.61 1.05x10-2

PTGDS -0.61 4.53x10-3

ANXA11 -0.59 2.59x10-2

CCND1 -0.58 3.88x10-5

EPHA2 -0.58 3.88x10-5

SERPINA1 -0.58 5.84x10-4

PRNP -0.57 4.65x10-2

VAMP8 -0.56 5.03x10-3

ADH1C -0.54 1.74x10-3

CD81 -0.52 3.13x10-3

IL4R -0.51 3.98x10-4

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

CCNB2 0.50 1.59x10-4

DDC 0.50 1.59x10-4

HPRT1 0.50 1.59x10-4

CDC20 0.50 3.39x10-4

PARP1 0.51 3.92x10-3

FANCG 0.51 3.74x10-4

PSIP1 0.51 3.74x10-4

ENC1 0.51 4.43x10-2

DEK 0.52 2.91x10-3

FZD3 0.52 6.44x10-3

ZWINT 0.52 2.34x10-4

UNG 0.52 3.02x10-4

CDC7 0.53 3.98x10-5

MCM3 0.53 8.82x10-3

CHEK1 0.53 5.88x10-3

NRTN 0.53 1.43x10-3

RBP1 0.53 5.99x10-4

MSH6 0.53 2.16x10-4

DTYMK 0.54 6.60x10-5

MCM2 0.55 4.74x10-4

CHGB 0.56 3.30x10-4

EXO1 0.56 3.30x10-4

CELSR3 0.56 8.00x10-4

CDKN3 0.56 7.01x10-3

SHMT2 0.56 1.85x10-4

TRIM36 0.56 1.58x10-3

BUB1 0.56 1.23x10-3

CDC6 0.56 4.94x10-5

USP1 0.57 5.25x10-4
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>10 were identified. The most significant 10 node degree genes 
were topoisomerase IIα (TOP2A), proliferating cell nuclear 
antigen (PCNA), replication factor C subunit 4 (RFC4), 
checkpoint kinase 1 (CHEK1), thymidylate synthase (TYMS), 
minichromosome maintenance protein (MCM) 2, cell division 
cycle (CDC) 20, cyclin dependent kinase inhibitor 3 (CDKN3), 
MCM3 and CDC6. The heat map of the most significant 
hub genes expression in GSE11969 is shown in Fig. 3B. To 
assess the basic properties of the PPI network, the Network 
Analyzer was used to compute several indices, including 
average clustering coefficient distribution, closeness centrality, 
average neighborhood connectivity, node degree distribution, 
shortest path length distribution and topological coefficients. 
In scale-free networks, the majority of nodes have a low 
degree, increasing the likely accuracy of the network (30). The 
computed parameters revealed that the constructed network 
was scale‑free and stable (Fig. 4). In addition, one significant 
module was obtained from the PPI network of DEGs using 
MCODE, consisting of 35 nodes and 550 edges (Fig. 3C). 
Functional and KEGG pathway enrichment analysis revealed 
that genes in this module were primarily associated with 
‘cell cycle’, ‘DNA replication’ and ‘oocyte meiosis’ signaling 
pathways (Table IV).

Validation of hub genes mRNA level in the oncomine data-
base. Based on the Oncomine database, it was identified 
that the mRNA expression levels of TOP2A, PCNA, RFC4, 
CHEK1, TYMS, CDC20, CDKN3, MCM3 and CDC6 were 
significantly increased in SCLC samples compared with 
normal lung samples, while MCM2 was not significantly 
differentially expressed, which was inconsistent with the 
bioinformatics investigation (Fig. 5).

Discussion

Although research on SCLC has made great progress in the 
past decade (31,32), the pathogenesis of SCLC has yet to be 
fully elucidated due to its complexity of biological traits and 
high heterogeneity. As a result, the early diagnosis and treat-
ment of SCLC remains a problem. Therefore, understanding 
of molecular mechanisms of SCLC based on microarray 
technology, which has developed rapidly and has been widely 
used to reveal the general genetic alteration in progression of 
diseases (16‑18), may aid the identification of the key gene 

Table II. Continued.

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

PXMP2 0.57 3.87x10-5

RACGAP1 0.57 3.87x10-5

FKBP3 0.57 1.01x10-3

MAD2L1 0.57 1.01x10-3

DLK1 0.58 1.17x10-2

HDAC2 0.58 9.39x10-5

ASCL1 0.60 3.29x10-3

SOX4 0.60 1.89x10-2

COCH 0.60 4.20x10-4

PRDX2 0.61 7.76x10-5

FANCA 0.62 4.21x10-4

RFC5 0.62 1.00x10-5

ITGB3BP 0.63 1.14x10-3

LHX2 0.64 8.68x10-4

MCM6 0.64 5.32x10-5

CKS2 0.65 1.92x10-3

CCNE2 0.66 2.14x10-4

ASNS 0.68 5.25x10-5

CKS1B 0.69 1.55x10-3

FBXO5 0.69 9.25x10-5

KCNH2 0.71 2.95x10-3

TPD52 0.75 1.99x10-4

STMN1 0.75 2.13x10-5

TYMS 0.75 2.13x10-5

RRM2 0.76 6.99x10-5

CBX5 0.76 2.44x10-3

KIF11 0.76 1.09x10-3

SOX11 0.77 1.42x10-2

RECQL4 0.79 3.77x10-4

PCNA 0.79 4.39x10-4

GMNN 0.80 1.27x10-5

MYBL2 0.81 7.84x10-4

TTK 0.83 5.23x10-5

TOP2A 0.84 1.95x10-4

EZH2 0.85 7.70x10-6

PAFAH1B3 0.85 7.70x10-6

RAD54L 0.85 7.70x10-6

TIMELESS 0.85 2.82x10-5

GNG4 0.87 1.04x10-5

SPAG5 0.87 1.04x10-5

PTTG1 0.88 3.01x10-5

NELL1 0.92 3.40x10-3

MEST 0.93 1.25x10-3

NOL4 0.93 2.14x10-3

UCHL1 0.94 3.18x10-3

INSM1 0.97 2.25x10-4

MKI67 0.98 1.13x10-3

PCSK1 0.98 1.20x10-2

BIRC5 1.00 3.28x10-5

RFC4 1.01 9.53x10-6

Table II. Continued.

B, Upregulated DEGs

Gene symbol Log fold-change Adjusted P-value

NEK2 1.01 9.94x10-4

CENPF 1.08 1.84x10-4

CAMK2B 1.10 1.89x10-4

ISL1 1.30 7.31x10-3

GRP 1.32 1.16x10-2

DEG, differentially expressed genes.
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targets or signaling pathways for diagnosis, treatment, and 
prognosis of SCLC.

In the present study, two microarray datasets were 
obtained to identify the DEGs common to normal lung tissues 
and SCLC samples. A total of 150 common DEGs, including 
66 significantly downregulated DEGs and 84 upregulated 
DEGs were identified and used for further analysis. To inter-
pret the biological functions of these common DEGs, GO and 

pathway analysis based on the DAVID tool was performed. 
GO and pathway analysis for the common DEGs indicated that 
the common upregulated DEGs were mainly enriched in cell 
cycle, cell cycle phase, M phase, cell cycle process and DNA 
metabolic process, and the common downregulated genes 
were significantly enriched in response to wounding, positive 
regulation of immune system process, immune response, acute 
inflammatory response and inflammatory response. These 

Figure 2. GO classification of common DEGs in the listed categories (top 5 biological processes and cellular components, and top 3 molecular functions). GO 
enrichment analysis results of (A) downregulated and (B) upregulated common DEGs with P<0.05 and absolute fold-changes >0.5. The top x axis represents 
the number of genes in the marked category; the bottom x axis indicates the minus Log10 (FDR) of categories. Only functional categories with P-value <0.05 
are shown. GO, Gene Ontology; DEG, differentially expressed genes; FDR, false discovery rate.

Figure 1. Volcano plot and Venn diagram of DEGs in mRNA expression profiling datasets. Volcano plots of DEGs in normal lung and small cell lung cancer 
samples in (A) GSE6044 and (B) GSE11969 datasets. DEGs were selected by P<0.05 and |log2 (fold-change)| >0.5. The x-axis shows the fold-change in gene 
expression between normal lung and small cell lung cancer samples, and the y‑axis shows the statistical significance of the differences. Colors represent 
different genes: Red for genes without significantly different expression and blue for significantly differentially expressed genes. Venn diagrams illustrating 
the number of (C) downregulated and (D) upregulated genes in the two datasets, respectively. The intersection in grey represents the DEGs common between 
the two datasets. DEG, differentially expressed genes.
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results are consistent with the evidence that disorders in cell 
cycle regulation and alterations of immune response contribute 
to carcinogenesis and development of tumor (33‑35). KEGG 
pathway analysis indicated that the common downregulated 
DEGs were mainly enriched in the complement and coagula-
tion cascades signaling pathways. Previous studies have shown 
that the tissue factor-activated coagulation cascade in the tumor 
microenvironment, in addition to coagulation, can facilitate 
the spreading of tumor cell in the pulmonary vasculature 
during early metastatic colony formation (36,37). Conversely, 

the common upregulated DEGs were mainly enriched in cell 
cycle, DNA replication, oocyte meiosis and mismatch repair 
signaling pathway, consistent with the results from GO and 
pathway analysis.

To predict the associations of protein functions of the 
identified 110 common interacting genes, a PPI network was 
constructed in which the top 10 hub genes with the highest 
connective degree were selected, including TOP2A, PCNA, 
RFC4, CHEK1, TYMS, MCM2, CDC20, CDKN3, MCM3 and 
CDC6, which were also primarily associated with ‘cell cycle’, 

Figure 3. PPI network constructed from the common DEGs, module analysis and hub genes. (A) Using the STRING online database, a total of 123 DEGs were 
filtered into the DEGs PPI network complex. The nodes represent proteins, the edges represent the interaction of proteins and green circles and red circles 
indicate downregulated and upregulated DEGs, respectively. (B) Expression heat map of the top 10 hub genes in GSE11969. (C) The most significant module 
in the PPI network with MCODE score ≥4 and node >5. PPI, protein‑protein interaction; DEG, differentially expressed genes; MCODE, Molecular Complex 
Detection plug in; SCLC, small cell lung cancer; TYMS, thymidylate synthase; PCNA, proliferating cell nuclear antigen; RFC4, replication factor C subunit 4; 
MCM, minichromosome maintenance protein; CHEK1, checkpoint kinase 1; CDC, cell division cycle; CDKN3, cyclin dependent kinase inhibitor 3; TOP2A, 
topoisomerase IIα.
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‘DNA replication’ and ‘oocyte meiosis’ signaling pathways. In 
addition, to validate the expression levels of these hub genes, 
the mRNA expression level of hub genes was searched for by 
mining the Oncomine database, which further supported the 
bioinformatics data. Although previous research has suggested 
that the majority of these deregulated hub genes correlated 
with diagnosis, treatment and prognosis of the various malig-
nancies, the precise roles and molecular mechanism of them 

in the occurrence and development of SCLC have not yet been 
fully elucidated.

The TOP2A gene encodes a 170 kDa nuclear enzyme that 
catalyzes the ATP-dependent transport of one intact DNA 
double helix through another, by which TOP2A is involved in 
the chromosome segregation and cell cycle progression (38), 
and numerous studies indicated that the expression, genetic 
alteration and enzyme activity of TOP2A have been identified 

Table III. Signaling pathway enrichment analysis of common DEGs in normal lung and small cell lung cancer.

Pathway Name Gene count Genes FDR

Common downregulated DEGs    
  KEGG_PATHWAY: hsa04610 Complement 8 A2M, THBD, C3, C6, F13A1, CFH,  3.17x10-4

 and coagulation  SERPINA1, PROS1
 cascades
Common upregulated DEGs    
  KEGG_PATHWAY: hsa04110 Cell cycle 15 CDC7, CDC6, TTK, CHEK1, CDC20,  5.06x10-11

   PTTG1, MCM2, MCM3, MCM6, CCNE2,
   CCNB2, HDAC2, MAD2L1, PCNA, BUB1
  KEGG_PATHWAY: hsa03030 DNA replication 6 RFC5, RFC4, PCNA, MCM2, MCM3, MCM6 4.67x10-3

  KEGG_PATHWAY: hsa04114 Oocyte meiosis 8 CCNE2, MAD2L1, CCNB2, BUB1, FBXO5,  1.04x10-4

   CDC20, CAMK2B, PTTG1
  KEGG_PATHWAY: hsa03430 Mismatch repair 5 RFC5, EXO1, MSH6, RFC4, PCNA 1.80x10-2

DEG, differentially expressed genes; FDR, false discovery rate; KEGG, kyoto encyclopedia of genes and genomes.

Figure 4. Topological parameters of the protein‑protein interaction network. (A) Average clustering coefficient distribution. (B) Closeness centrality. 
(C) Average neighborhood connectivity distribution. (D) Node‑degree distribution. (E) Shortest path length distribution. (F) Topological coefficients. Avg, 
average; topol, topological. 
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in several types of malignancies; therefore, it TOP2A should 
be investigated to determine whether it represents an effective 
therapeutic target for a wide variety of malignancies, such 
as SCLC, testicular cancer, neuroblastoma, leukemia and 
lymphoma (39-41).

PCNA encodes a nuclear protein acting as a subunit of DNA 
polymerase δ, which is essential for DNA replication (42). 
Although several studies have been performed to investigate 
the association between PCNA expression and clinical prop-
erties of NSCLC, the data is controversial; certain studies 
claimed that patients with increased expression of PCNA had 
a worse outcome compared with patients with a lower expres-
sion of PCNA (43-45), however, a subsequent study indicated 
that PCNA cannot predict disease-free survival in patients 

with lung adenocarcinoma (46). Furthermore, no correlation 
has been observed between PCNA expression in biopsy speci-
mens and tumor responsiveness to chemotherapy (47).

RFC4 encodes the fourth largest subunit of the RFC complex, 
which helps PCNA load onto DNA in an ATP-dependent 
process during DNA synthesis and serves an important role 
in DNA repair activities following DNA damage. It has been 
reported that the expression level of RFC4 is upregulated in 
colorectal cancer, correlates with tumor progression and can 
predict the prognosis for colorectal cancer (48).

CHEK1 is an evolutionarily conserved Ser/Thr kinase, 
which mediates cell-cycle arrest following DNA damage (49). 
Previous results demonstrated that upregulated CHEK1 has 
been considered a potential target for cancer therapy (50,51). 

Figure 5. Analysis of expression of hub genes in the Oncomine database. Gene expression data was obtained from Garber and Bhattacharjee lung datasets 
and analyzed with Oncomine. mRNA expression levels of (A) TOP2A, (B) PCNA, (C) RFC4, (D) CHEK1, (E) TYMS, (F) CDC20, (G) CDKN3, (H) MCM3, 
(I) CDC6 and (J) MCM2 in normal lung vs. SCLC were compared. Pre-processed expression levels are Log2 normalized and median centered. Data are 
presented as box plot with minimum (from bottom to top), 10th percentile, 25th percentile, median, 75th percentile, 90th percentile and maximum. Ctr, control; 
TOP2A, topoisomerase IIα; PCNA, proliferating cell nuclear antigen; RFC4, replication factor C subunit 4; CHEK1, checkpoint kinase 1; TYMS, thymidylate 
synthase; CDC, cell division cycle; CDKN3, cyclin dependent kinase inhibitor 3; MCM, minichromosome maintenance protein; SCLC, small cell lung cancer.

Table IV. GO function enrichment analysis of gene in module.

Category Term Description Count Genes FDR

KEGG hsa04110 Cell cycle 13 CDC7, CDC6, TTK, CDC20, CHEK1, PTTG1, MCM2,  5.06x10-12

    MCM3, MCM6, CCNB2, MAD2L1, PCNA, BUB1
KEGG hsa03030 DNA replication 6 RFC5, RFC4, PCNA, MCM2, MCM3, MCM6 1.81x10-4

KEGG hsa04114 Oocyte meiosis 6 CCNB2, MAD2L1, BUB1, FBXO5, CDC20, PTTG1 4.83x10-2

GO, Gene Ontology; FDR, false discovery rate; KEGG, kyoto encyclopedia of genes and genomes; Count, the number of enriched genes in 
each term. 
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Therefore, CHEK1 inhibitors (including LY2606368) have 
been tested as treatment for several types of cancer including 
lung cancer, and the inhibitors may affect the sensitivity of 
radiotherapy and chemotherapy, including cisplatin or the 
PARP inhibitor olaparib (52-55).

TYMS is a key enzyme in the de novo synthesis of thymi-
dine and is upregulated in different histological types of lung 
cancer, particularly in SCLC (56). In addition, the expression 
level of TYMS is considered to be associated with the prog-
nosis and treatment efficacy of chemotherapy (57,58).

MCM2 is a component of the prereplicative complex, 
which is essential for eukaryotic DNA replication and is only 
expressed in proliferating cells. Several studies indicated that 
the expression of MCM2 is also upregulated in NSCLC and is 
a predictor of survival in patients with NSCLC (59). Recently, 
Cheung et al (60) performed a multi-dimensional proteomic 
analysis to investigate the biological networks of MCM2 in 
the lung cancer and the results indicated that the deregulation 
of MCM2 is involved in lung cancer cell proliferation, the cell 
cycle and migration.

MCM3, another family member of MCMs, has been 
proved to be overexpressed in various human cancers, 
including leukemia, malignant melanoma, lymphoma, and 
carcinomas of the uterine cervix, colon, lung, stomach, kidney 
and breast (61).

CDC20, a homolog of Saccharomyces cerevisiae cell divi-
sion cycle 20 protein, is an activator for the anaphase-promoting 
complex. Evidence has demonstrated that CDC20 is essential 
to govern cell cycle progression for cell division by targeting 
several key substrates including securin, cyclin B1, cyclin 
A, Nek2A, p21 and myeloid cell leukemia-1 for degrada-
tion (62,63). Subsequent studies have indicated that CDC20 
is frequently upregulated in numerous types of malignancies, 
including NSCLC, and is associated with the prognosis of 
patients with tumors (64,65).

CDKN3 is a negative regulator of CDK1 and CDK2 (66). 
Since CDK‑driven cell cycle is essential for proliferation of 
cancer cells and CDKN3 inhibits CDK activities, CDKN3 was 
initially perceived as a tumor suppressor (66). However, the 
overexpression of CNKN3 in a number of types of cancers 
has recently demonstrated that CDKN3 mRNA overexpres-
sion in cancer is due to the presence of dominant-negative 
CDKN3 mutations (67,68). Although upregulated CDKN3 
may be a prognostic marker in lung adenocarcinoma and serve 
functional roles in the pathogenesis and diagnosis of SCLC, 
it has not been investigated other aggressive forms of lung 
tumors (69).

CDC6, initially identified to participate in the assembly of 
pre-replication complexes, is essential for DNA replication in 
mammalian cells (70). CDC6 expression represses E-cadherin 
transcription, and loss of this gene occurs frequently in 
carcinogenesis, contributing to invasion and metastasis (71). 
In addition, previous studies have confirmed the association 
between CDC6 and prognosis and the treatment sensitivity of 
patients with tumors (72,73).

Therefore, given the key roles, associated signaling 
pathways and results of the present study on the hub genes 
mentioned above, future studies may focus on these to explore 
their roles in the pathogenesis and diagnosis of SCLC. 
However, the present study has certain limitations: One is that 

the microarray data were obtained from GEO database, not 
generated by the authors. Another limitation of the study is the 
relatively small sample size.

In summary, based on the gene expression profile analysis 
of microarray datasets, the present study identified the 
common deregulated DEGs between normal lung tissues and 
SCLC tissues, associated signaling pathways and hub genes in 
the network in different datasets, which may possess impor-
tant roles in the carcinogenesis and development of SCLC. 
These findings may provide new clues for the investigation of 
the potential biomarkers and biological mechanisms of SCLC, 
further developing the potential diagnosis and therapeutic 
intervention methods of SCLC.
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