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1  |  INTRODUC TION

Neuropathic pain is a chronic pain condition caused by disease or 
injury of the somatosensory nervous system.1- 5 It encompasses ae-
tiologically distinct yet mechanistically similar disease entities, in-
cluding postherpetic neuralgia, trigeminal neuralgia, painful diabetic 
neuropathy, cancer- related and chemotherapy- induced neuropathic 
pain, and neural injury or impingement, such as spinal cord injury and 
nerve root compression.6- 11 Although the exact prevalence of neu-
ropathic pain varies from country to country, it has been estimated 
that up to 10% of the general population is afflicted with this poten-
tially disabling condition.12- 16 Different medical treatments (eg tri-
cyclic antidepressants, selective serotonin noradrenaline reuptake 
inhibitors, opioids, lidocaine) have been used clinically for the treat-
ment of neuropathic pain, but up to half of the patients with neu-
ropathic pain are refectory to these drugs.17- 22 The ineffectiveness 
of medical interventions arises partly due to the poorly understood 
molecular mechanism of neuropathic pain. Both peripheral and 

central sensitization are known to be implicated in the pathogene-
sis of neuropathic pain.23- 25 Whereas the anomalous excitability of 
the primary sensory neurons during peripheral sensitization may be 
due to maladaptive changes in the gene transcription and transla-
tion of enzymes, receptors, and voltage- dependent ion channels in 
the dorsal root ganglion, neuroinflammation caused by pathologi-
cal microglia activation takes a major part in the process of central 
sensitization.26- 29 However, how the deranged molecular pathways 
underlying peripheral and central sensitization could be targeted 
therapeutically is still an active area of investigation.

Circular RNAs (circRNAs) are a type of non- coding, regulatory 
RNAs evolutionarily conserved across mammalian species.30- 34 
CircRNAs exhibit brain region- specific expression,35,36 and the 
abundance of circRNAs in the brains of various species are largely 
similar.37- 40 CircRNAs exert their biological functions principally by 
acting as competing endogenous RNAs (ceRNAs) to regulate gene 
expression post- transcriptionally by sponging microRNAs (miR-
NAs).41- 44 CircRNAs have been shown to be deregulated in different 
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Abstract
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the 
somatosensory nervous system. It afflicts about 10% of the general population with 
a significant proportion of patients’ refractory to conventional medical treatment. 
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therapy. Circular RNAs (circRNAs) are a type of non- coding, regulatory RNAs that 
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ported that circRNAs may play pivotal roles in the development of neuropathic pain. 
In this review, we first summarize circRNA expression profiling studies on neuropathic 
pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, 
circAnks1a, ciRS- 7, cZRANB1, circZNF609 and circ_0005075) that play key functional 
roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, 
prognostic, and therapeutic utilization in the clinical management of neuropathic pain.
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human diseases, including neurological disorders.45,46 Recently, 
studies found that circRNAs may play important roles in the devel-
opment of neuropathic pain.47,48

In our review, we firstly summarize circRNA expression profiling 
studies on neuropathic pain so as to provide the scientific community 
with a comprehensive collection of data sets for subsequent integra-
tive analysis. The biological functions and molecular mechanisms of 
specific circRNAs involved in the pathogenesis of neuropathic pain 
are also discussed in relation to their diagnostic, prognostic and 
therapeutic potentials in clinical settings.

2  |  CIRCRNA E XPRESSION PROFILING 
AND INTEGR ATIVE ANALYSIS IN 
NEUROPATHIC PAIN

Microarray is an efficient tool for circRNA profiling. Cao and col-
leagues inflicted chronic constriction injury (CCI) to the sciatic 
nerve of rats to induce neuropathic pain.49 They then extracted 
total RNA from ipsilateral spinal dorsal horns of CCI and sham- 
operated rats and performed circRNA microarray to analyse 
circRNA expression patterns. They found that there were 469 
differentially expressed circRNAs (363 upregulated and 106 
downregulated) in the CCI group compared to the sham- operated 
group. The expression levels of three circRNAs (circRNA_003724, 
circRNA_008008 and circRNA_013779) were increased by more 
than 10 folds after CCI. Furthermore, reverse transcription- 
quantitative PCR (RT- qPCR) was used to confirm the deregula-
tion of circRNA_008973, circRNA_013779, circRNA_008646, 
circRNA_35215, circRNA_011111, circRNA_007419, cir-
cRNA_007512 and circRNA_010913. CeRNAs network recon-
struction indicated that circRNA_013779 and circRNA_008008 
are the two key nodes in the circRNA- miRNA interaction network 
amongst the top 10 differentially expressed circRNAs. Cao and 
colleagues also performed the circRNA microarray to identify 
differentially expressed circRNAs in the postherpetic neuralgia 
(PHN) skin and the control skin.50 They showed that only cir-
cRNA_405463 showed differential expression when fold change 
cut-	off	was	set	as	≥2.0	between	the	PHN	and	control	group.	With	
a	 less	 stringent	 cut-	off	 (fold	 change	≥1.5),	 the	number	of	down-
regulated and upregulated circRNAs increased to 8 and 23, re-
spectively. They also performed miRNA microarray on the same 
set of samples, which identified of 317 differently expressed miR-
NAs	in	the	PHN	skin	(fold	change	≥2.0).	To	learn	the	functions	of	
these differential miRNAs, their potential target mRNAs were pre-
dicted and analysed by Genomes pathway, Kyoto Encyclopaedia 
of Genes (KEGG) and Gene Ontology (GO) enrichment analysis. 
Target mRNAs were found to be enriched in pathways such as 
AMP- activated protein kinase (AMPK), mitogen- activated protein 
kinase (MAPK) and forkhead box O (FoxO) signalling.

With the advancement of linear RNA depletion and bioinfor-
matic workflow, circRNAs have been increasingly profiled by RNA 
sequencing. Zhou and colleagues performed RNA sequencing to 

profile the expression levels of non- coding RNAs (ncRNAs) in the spi-
nal cord after spared nerve injury (SNI)- induced neuropathic pain.48 
They showed that 188 circRNAs were differentially expressed (68 
upregulated and 120 downregulated) in the rat spinal cord on day 
14 after SNI as compared to the control group. There were also 144 
differentially expressed lncRNAs (15 upregulated and 129 downreg-
ulated) and 12 differentially expressed miRNAs (6 upregulated and 
6 downregulated), and 1066 differentially expressed mRNAs (531 
upregulated and 535 downregulated) in the rat spinal cord after 
SNI at the same time point, in which circ_0006928- miR- 184 and 
LNC_001457- miR- 184 interactions were verified to play a crucial 
role in excessive neuronal cell apoptosis in the spinal cord after SNI. 
Zhang and colleagues also performed RNA sequencing to profile cir-
cRNA expression in the rat spinal dorsal horn on day 7 and day 14 
after spinal nerve ligation (SNL).51 They identified a total of 61,833 

F I G U R E  1 Dysregulated	circRNAs	in	neuropathic	pain
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distinct circRNAs according to the criterion of at the least one back 
spliced junction reads. Amongst them, the reads per million mapped 
reads (RPM) of 12,849 circRNAs was greater than 0.1. However, only 
21 circRNAs were identified to be significantly deregulated with 
>2.5- fold change at both time points.

Recently, He et al. performed RNA sequencing to study the ex-
pression patterns of circRNAs, lncRNAs and miRNAs in the spinal 
cord of streptozotocin- induced diabetic neuropathic pain (DNP) 
mice.52 They found that there were 135 circRNAs were differentially 
expressed and 71 circRNAs were downregulated and 64 circRNAs 
were overexpressed in spinal cord between control group and DNP 
group. Amongst these, circ_0010794, circ_0006623, circ_0006175, 
circ_0007095, circ_0005297, circ_0012840 and circ_0001580 was 
overexpressed and circ_0016083, circ_0006471, circ_0008757, 
circ_0004843 and circ_0013996 was downregulated (Figure 1 and 
Table 1).

3  |  FUNC TIONS AND MECHANISMS 
OF AC TION OF NE WLY DISCOVERED 
CIRCRNA S IN NEUROPATHIC PAIN

3.1  |  CircHIPK3

CircHIPK3 is a circRNA that has been shown to function as a tu-
mour suppressor gene or oncogene in a context- dependent manner 
to modulate tumour progression through sponging miRNAs.53- 55 
Wang and colleagues investigated the potential regulatory role of 
circHIPK3 in the development of diabetic neuropathic pain.56 Their 
data showed that circHIPK3 abundance was increased in the dor-
sal root ganglion from streptococci- induced diabetic rats and serum 
from patients with diabetic neuropathic pain. Higher expression of 
circHIPK3 was positively correlated with the grade neuropathic pain 
in cases with type 2 diabetes. Functionally, knockdown of circHIPK3 
alleviated neuropathic pain in the diabetic rats and suppressed in-
terleukin (IL)- 12, tumour necrosis factor (TNF)- α, IL- 1β and IL- 6. 
Moreover, they showed that circHIPK3 was found to sponge miR- 
124 to contribute to neuroinflammation and exacerbate neuropathic 
pain in the diabetic rats. Therefore, circHIPK3 may be a potential 
therapeutic target for the treatment of neuropathic pain.

3.2  |  CircAnks1a

Zhang and colleagues identified the aberrant upregulation of cir-
cAnks1a in the rat spinal dorsal horn after SNL by RNA sequenc-
ing.51 CircAnks1a was found to be localized in both the nucleus and 
cytoplasm. Knockdown of circAnks1a attenuated the pain- like be-
haviour caused by SNL. Mechanistically, circAnks1a increased the 
interaction between transportin- 1 and transcription factor YBX1 
and thereby inducing the nuclear translocation of YBX1 from the 
cytoplasm. CircAnks1a also directly bind to Vegfb promoter and 
promoted YBX1 recruitment to facilitate transcription of Vegfb. TA
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Moreover, cytoplasmic circAnks1a acted as a miRNA sponge to re-
press miR- 324- 3p to disinhibit VEGFB. Overexpression of VEGFB 
contributed to the increased excitability of the dorsal horn neurons 
and SNL- induced pain. These data suggested that the circAnks1a- 
miR- 324- 3p- VEGFB axis is a novel therapeutic target in neuropathic 
pain.

3.3  |  ciRS- 7

The circRNA ciRS- 7 has been found to take part in the development 
of different diseases.57- 60 For example, Han and colleagues demon-
strated that ciRS- 7 induced migration and growth through modulating 
the miR- 7- EGFR axis in papillary thyroid cancer.61 Zhang and col-
leagues also showed that ciRS- 7 enhanced epithelial- mesenchymal 
transition through sponging miR- 641 to derepress MDM2 and 
ZEB1 expression.62 In the CCI model of neuropathic pain, Cai et al. 
found that ciRS- 7 expression in the rat spinal cord dorsal horn was 
positively correlated with development of neuropathic pain partly 
through promoting inflammation, in which knockdown of ciRS- 7 at-
tenuated microglia activation and expression of pro- inflammatory 
cytokines IL- 6, IL- 12 and TNFα.63 Mechanistically, ciRS- 7 bound to 
and increased the availability of miR- 135a- 5p, whose inhibition also 
mitigated neuroinflammation and neuropathic pain. Their data in-
dicated that either targeting ciRS- 7 or miR- 135a- 5p could alleviate 
neuropathic pain through suppressing neuroinflammation.

3.4  |  cZRANB1

Wei and colleagues studied the expression and functional role of 
miR- 24- 3p in the development of neuropathic pain in the CCI rat 
models.64 They found that miR- 24- 3p expression was upregulated 
in the dorsal spinal cords of CCI rats, in which ablation of miR- 24- 3p 
significantly alleviated thermal hyperalgesia and mechanical allo-
dynia. Moreover, miR- 24- 3p upregulated Wnt5a- β- catenin signalling 

pathway to induce neuropathic pain by inhibiting LPAR3 expression. 
As the upstream modulator, the circRNA cZRANB1 was found to 
sponge miR- 24- 3p as predicted by bioinformatics analysis and con-
firmed by luciferase reporter assay and biotinylated RNA pull- down. 
Importantly, cZRANB1 expression was decreased in CCI rats, in 
which enforced expression of cZRANB1 alleviated thermal hyperal-
gesia and mechanical allodynia. The regulation of miR- 24- 3p- LPAR3 
axis by cZRANB1 was also confirmed in the CCI model.

3.5  |  CircZNF609

Li and colleagues demonstrated that the expression of miR- 22- 3p 
was downregulated in the dorsal spinal cord of CCI rats at the post-
operative day 0, 3, 7, 10 and 14 as compared to the sham- operated 
rats.65 Enforced expression of miR- 22- 3p attenuated neuropathic 
pain and suppressed the expression of pro- inflammatory cytokines 
IL- 6, TNF- α and IL- 1. Moreover, ENO1 was identified to be a direct 
target gene for miR- 22- 3p. Downregulation of miR- 22- 3p alleviated 
the thermal hyperalgesia and mechanical allodynia partly through 
targeting ENO1 expression. They also showed that the circRNA 
circZNF609, which was upregulated in CCI rats, was a sponge for 
miR- 22- 3p. Functionally, knockdown of circZNF609 alleviated ther-
mal hyperalgesia and mechanical allodynia levels and suppressed IL- 
6, TNF- α and IL- 1 expression by regulating miR- 22- 3p- ENO1 axis. 
These data suggested that circZNF609 induced inflammation fac-
tors to mediate central sensitization in neuropathic pain develop-
ment through regulating miR- 22- 3p- ENO1 axis.

3.6  |  Circ_0005075

circ_0005075 deregulation has been implicated in cancer 
development.66- 70 Zhang and colleagues showed that circ_0005075 
was upregulated in the dorsal spinal cord of CCI rats, in which knock-
down of circ_000507 suppressed neuropathic pain behaviours such 

F I G U R E  2 Schematic	of	circRNA-	
miRNA interactions in neuropathic pain. 
circRNAs functions as ‘miRNA sponge’ to 
reduce the expression levels of miRNA 
in NP, it prevents TFs (such as TNFAIP1, 
ZEB1, STAT3) from microRNA- mediated 
suppression, or directly decrease the 
release of inflammatory cytokines, thus 
alleviating the symptoms of neuropathic 
pain
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as thermal hyperalgesia and mechanical allodynia.47 Knockdown 
of circ_0005075 also inhibited neuroinflammation through target-
ing TNF- α, IL- 6, IL- 10 and cyclooxygenase (COX)- 2. Mechanistically, 
circ_0005075 was found to sponge miR- 151a- 3p and derepress 
NOTCH2 to mediate its promoting effects on neuroinflammation 
and neuropathic pain development (Figures 2, 3 and Table 2).

4  |  CONCLUSIONS AND FUTURE 
PERSPEC TIVES

Neuropathic pain is a serious public health issue that is poorly tack-
led by medical treatment, representing an unmet medical need. 

Emerging molecular studies have shed new light on the mechanisms 
of peripheral and central sensitization in neuropathic pain.

The increasing number of studies have suggested that circRNAs 
play crucial roles in the development of neuropathic pain through 
neuroinflammation in both the dorsal root ganglia and spinal cord 
dorsal horns. From the mechanistic point of view, circRNAs may 
regulate glial activation and expression of the pro- inflammatory 
genes by sponging pain- related miRNAs (miR- 124, miR- 324- 3p, miR- 
135a- 5p, miR- 24- 3p, miR- 22- 3p and miR- 151a- 3p). These studies 
have also supported the potential clinical utility of circRNAs and 
their downstream signalling mediators as therapeutic targets. In 
this connection, different approaches could be used to target pain- 
related circRNAs— (1) CRISPR/Cas9- mediated ablation; (2) antisense 

F I G U R E  3 CircRNAs	regulated	genes	
expression via sponging miRNAs and 
played crucial roles in excitability and 
inflammation in neuropathic pain

TA B L E  2 Dysregulated	circRNAs	in	neuropathic	pain.

Name Dysregulation
Sponge 
target Function Related gene Role References

circHIPK3 Upregulated miR- 124 Neuroinflammation HMGA2 Harmfulness 56

circAnks1a Upregulated miR- 324- 3p Excitability 
inflammation

YBX1
Vegfb
VEGFB

Harmfulness 51

ciRS- 7 Upregulated miR- 135a- 5p Inflammation Harmfulness 63

cZRANB1 Downregulated miR- 24- 3p Inflammation Wnt5a- β- catenin
LPAR3

Protective 64

CircZNF609 Upregulated miR- 22- 3p Inflammation ENO1 Harmfulness 65

Circ_0005075 Upregulated miR- 151a- 3p Neuroinflammation NOTCH2 Harmfulness 47
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oligonucleotides or small interfering RNAs- mediated knockdown; 
and (3) steric blockade of circRNA- miRNA interactions by morpholi-
nos. Through circRNA microarray and RNA sequencing, a growing 
number of deregulated circRNAs are expected to be identified in 
neuropathic pain. The potential implications in the clinical diag-
nosis and prognostication of circRNAs in neuropathic pain will be 
achieved. Then, it needs to measure these deregulated circRNAs in 
large samples of neuropathic pain. However, unlike other ncRNAs, 
such as long non- coding RNAs (lncRNA), the correlation between 
pain scores of patients and circRNA levels in the plasma has not yet 
to be demonstrated. Further research in this direction will help iden-
tify novel biomarkers for monitoring patients with neuropathic pain. 
However, more in- depth functional and mechanistic investigations 
on pain- related circRNAs are warranted. It is hopeful that, with more 
translational studies, circRNAs will one day be utilized for the clinical 
management of patients with neuropathic pain.
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