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Structural basis for lamin assembly at the
molecular level
Jinsook Ahn 1,4, Inseong Jo 1,4, So-mi Kang2, Seokho Hong 1, Suhyeon Kim1, Soyeon Jeong 1,

Yong-Hak Kim 3, Bum-Joon Park2 & Nam-Chul Ha 1

Nuclear structure and function are governed by lamins, which are intermediate filaments that

mostly consist of α-helices. Different lamin assembly models have been proposed based on

low resolution and fragmented structures. However, their assembly mechanisms are still

poorly understood at the molecular level. Here, we present the crystal structure of a long

human lamin fragment at 3.2 Å resolution that allows the visualization of the features of the

full-length protein. The structure shows an anti-parallel arrangement of the two coiled-coil

dimers, which is important for the assembly process. We further discover an interaction

between the lamin dimers by using chemical cross-linking and mass spectrometry analysis.

Based on these two interactions, we propose a molecular mechanism for lamin assembly that

is in agreement with a recent model representing the native state and could explain patho-

logical mutations. Our findings also provide the molecular basis for assembly mechanisms of

other intermediate filaments.
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Intermediate filament (IF) proteins form flexible fibrous
structures that provide vital mechanical support in higher
eukaryotic cells1,2. All IF proteins have three domains: an

unstructured N-terminal head, a central α-helical rod, and non-
helical C-terminal tail domains2–4. The central rod domain is
further divided into three coiled-coil segments (coil 1a, 1b, and 2)
and two flanking linkers (L1 and L12). The central rod domains
have a high propensity to form coiled-coil dimers, which are
further assembled into a 10-nm-thick filament in cells in several
hierarchical steps in most IF proteins5.

The nuclear envelope structures are the hallmark of all eukaryotic
cells, and the intact structures are important for the proper func-
tioning of the nucleus and the cells. Nuclear lamins are IF proteins
that play an essential role in maintaining the nuclear envelope
structure6,7. They have been implicated in diverse cellular processes,
including mitosis, chromatin organization, DNA replication, and
transcription8–10. Many lamin mutations have been found to be
closely related to various human diseases, including muscular
dystrophy and Hutchinson Gilford progeria syndrome11–13.

Compared with the canonical IF proteins, such as vimentin
and keratin, the central rod domain of lamins has a longer coil 1b,
and the non-helical C-terminal tail region contains an additional
immunoglobulin (Ig)-like domain2,14. The fundamental soluble
unit of lamin is a dimer, which is different from the tetrameric
vimentin14,15. The lamin assembly is formed by longitudinal and
lateral association based on the coiled-coil dimers16,17. Initially,
many researchers studied lamin using the refolded proteins,
proposing an assembly model with 2–4 nm overlap between the
dimers by emphasizing the head-to-tail interaction between the
dimeric units of lamin14. Several fragments structures, together
with vimentin fragment structures, have been determined, and
full-length models of vimentin in the tetrameric arrangement
have been proposed by combining the fragment structures and
binding mapping with the electron paramagnetic resonance
spectroscopy17,18. Recently, a cryo-electron tomography (cryo-
ET) study revealed that lamins form 3.5-nm-thick filaments16

that are remarkably different from other canonical 10-nm thick
IF proteins and the proposed assembly model of lamin3,16,19,20.
The Ig-like domains of lamins were decorated at both sides of the
filament with an interval of ~20 nm and various cross-sections16.

The lamin filaments make up the three-dimensional meshwork
underlying the inner nuclear envelope10,21–23. The intrinsic
structural flexibility and self-aggregative properties of lamin have
allowed determination of only low-resolution electron micro-
scopy (EM) structures and crystal structures of short frag-
ments24–26. To date, their assembly mechanisms at the molecular
level are poorly understood16,26–28. In this study, we determined
the crystal structure of an N-terminal half fragment of the human
lamin A/C, which was stably expressed and amenable to studies
for the seamless full-length structures of lamin. This study pro-
vides a structural basis for how the lamin filament is assembled
with two interactions, giving insights into the assembly
mechanisms of other IFs.

Results
Structure determination of the lamin fragment. We determined
the crystal structure of an N-terminal half fragment of human
lamin A/C (residues 1–300; referred to as ‘lamin 300 fragment’ in
this study) at a resolution of 3.2 Å. This spans the N-terminal
head, coil 1a, L1, coil 1b, L12, and the first half of coil 2 (Fig. 1a
and Supplementary Table 1). The asymmetric unit consists of
four protomers (chains A–D), which are bundled by an anti-
parallel pair of parallel helical dimers (chain A:B and C:D). The
four helical bundle structure showed the α-helical conformations
in an ~38-nm-long structure (Fig. 1b).

The analyses of the two helical dimers using the programme
TWISTER (Supplementary Fig. 1a)29 showed two different super-
helical structures with regular α-helical regions. A typical left-
handed coiled-coil conformation was found in most of the coil 1a
and the N-terminal four-fifths of coil 1b (Supplementary Fig. 1a),
in which hydrophobic residues were regularly found at the heptad
positions a and d (Fig. 2a and Supplementary Fig. 1b; highlighted
in yellow). Remarkably, significant bending was found in the
regions near L1, probably caused by the crystal packing
interactions (Fig. 2b left). The junction between coil 1a and L1
(residues 65–69) showed a short α-helical segment without an
inter-helical hydrophobic interaction (Fig. 2). Linker L1 and an
adjacent coil 1b segment (residues 70–84) showed the hendecad
pattern30,31, which induces the formation of an untwisted helical
section (Fig. 2 and Supplementary Fig. 1). The hendecad pattern
is composed of 11 amino-acid repeats, where the residues at the a,
d, and h positions are involved in the inter-helical hydrophobic
interactions (Fig. 2a and Supplementary Fig. 1b; highlighted in
magenta).

In the helical dimers, coil 1b consists of the 18 N-terminal
heptad repeats (residues 79–204) forming a left-handed coiled-
coil structure (~22 nm; one and a half super-helical turn) and the
two C-terminal hendecad repeats (residues 204–222) forming an
untwisted helical section (Fig. 2 and Supplementary Fig. 1). The
hendecad repeat region in coil 1b is continuous to the N-terminal
half of L12 (residues 223–230; Fig. 2a and Supplementary Fig. 1b),
unlike previous predictions proposing a flexible hinge conforma-
tion17,26. The untwisted helical section is bent asymmetrically
near the junction between L12 and coil 2 (Fig. 2 and
Supplementary Fig. 1b), leading to mismatched inter-helical
hydrophobic interactions (Supplementary Fig. 2a). Interestingly,
the C-terminal end of the lamin 300 fragment interacts with the
symmetry-related molecules through hydrophobic interactions, as
observed in the coil 2 structure of vimentin32 (Supplementary
Fig. 2).

Anti-parallel interaction between the two coiled coils. The
tetrameric arrangement in the asymmetric unit is noteworthy.
Coil 1b and its flanking linker segments (residues 67–221) form
the anti-parallel contacts between coiled-coil dimers, and the
remaining parts (coil 1a and coil 2) are bifurcated from both sides
of the contacting region (Fig. 3a). The anti-parallel contact region
is subdivided into a central compartment and two side com-
partments, and each compartment is composed of a pair of half
super-helical turns of two α-helical dimers (Fig. 3a). The two side
compartments with the internal pseudo-2-fold symmetry exhibit
cross-sectional variation. At the central compartment, the four α-
helices form two dimers arranged in juxtaposition (Fig. 3a–c).
The cross-section in the middle region is ~3.5 nm in width, which
is similar to the thickness of the lamin filament model determined
by cryo-ET16 (Fig. 1b).

Structural comparison of the anti-parallel contact region of
lamin to the vimentin coil 1b structure depicting the A11
interaction revealed a striking structural similarity between the
side compartments of lamin and the vimentin coil 1b (Fig. 3a).
We further noticed that the insertion sequence of coil 1b of lamin
on the sequence alignment to vimentin represents the central
compartment of the anti-parallel contact region (Supplementary
Fig. 3). Each side compartment has two hydrophobic patches for
the anti-parallel inter-dimer interaction (Fig. 3a, b, d, e). The
inter-dimer interactions were not mediated by residues at the a, d,
and h positions in the hendecad repeat regions, and neither was
in vimentin (Supplementary Figs. 3 and 4). In contrast, only slight
contacts were found in the central compartment (Fig. 3b, c). At
the junctions between the central and side compartments, each

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11684-x

2 NATURE COMMUNICATIONS |         (2019) 10:3757 | https://doi.org/10.1038/s41467-019-11684-x | www.nature.com/naturecommunications

www.nature.com/naturecommunications


dimer is twisted by 90°, resulting in a parallel arrangement
without direct contacts (Fig. 3a). From these observations, we
concluded that the anti-parallel interaction between the two
coiled-coil dimers in the asymmetric unit of lamin corresponds to
the ‘A11 interaction’ of vimentin18,33–35 (Fig. 3a and Supple-
mentary Fig. 4). Thus, we referred to the anti-parallel contact
between the two dimers of lamin as an ‘A11 interaction’ in
this study.

Importance of the lamin A11 interaction for the lamin
assembly process. It is known that lamin proteins exist in the
dimeric form in solution before forming the filament15,23. To
probe the A11 interaction of lamin during the filament formation,
we noted Ala146 at the centre of the anti-parallel coiled-coil
dimers, which would be close enough to make a disulfide bond if
it is changed to cysteine (Fig. 3b, c). We first observed that the
A146C variant protein of the lamin 300 fragment formed a dis-
ulfide bond in SDS-PAGE, suggesting that the tetrameric
arrangement is formed in solution (Fig. 3c, d).

We next compared the molecular masses of the wild-type and
A146C variant of the lamin 300 fragment using size exclusion
chromatography-multiangle light scattering (SEC-MALS). The
A146C variant protein partially formed a larger complex
indicating a tetramer, while the wild-type fragment mostly
remained as a dimer. Moreover, the larger tetrameric complex
was shifted into the dimeric size in the presence of a reducing
agent (Fig. 3d). These results indicate that Ala146 makes a close
contact between two dimers during the assembly process, as
predicted from the crystal structure, and further suggest that the
tetrameric lamin formed by the A11 interaction represents a
snapshot of the assembly processing.

Enhanced binding of coil 2 by the A11 interaction. We
attempted to find the binding partners of the lamin 300 frag-
ment with four candidate fragments, as shown in Fig. 4a. We
performed a binding assay using the A146C variant of the
lamin 300 fragment that makes more stable A11 interactions
than the wild type lamin 300 fragment. Only the F3 fragment
(residues 250–400) was bound to the A146C variant of the
lamin 300 fragment (Fig. 4b). The F3 fragment is roughly

matched to coil 2 (residues 240–385) without the N-terminal
ten residues. The binding of the coil 2 fragment was weakened
when the disulfide bond was reduced in the A146C variant of
the lamin 300 fragment, and the wild type of the lamin 300
fragment also bound to the coil 2 fragment with a weaker
affinity than the A146C variant of the lamin 300 fragment
(Fig. 4c). These results showed that coil 2 is bound to the lamin
300 fragment, and the binding affinity is increased by the A11
interaction.

The eA22 interaction. To identify the binding sites between the
lamin 300 fragment and the bound coil 2 fragment, we conducted
a chemical cross-linking assay, followed by MS/MS analysis. Since
both fragments contain many lysine residues without any cysteine
residue, we introduced a cysteine residue at the Arg388 site in
the C-terminal end region of a shorter coil 2 fragment (residues
286–400). The cysteine residue would be covalently linked to a
lysine residue of the lamin 300 fragment via sulfo-SMPB [sulfo-
succinimidyl 4-(N-maleimidophenyl) butyrate] cross-linker if the
coil 2 fragment is bound to the lamin 300 fragment. The treat-
ment of the cross-linker at low concentration (2.5 μM) built up
specific conjugate bands (~52 and ~30 kDa) on SDS-PAGE
(Fig. 5a). The MS/MS analysis of the conjugate band (~52 kDa)
indicated that the Cys388 site of coil 2 is near Lys171 in the lamin
300 fragment in the highest proportion among all modified lysine
residues at each position (Fig. 5b and Supplementary Table 2). It
is also possible that Lys180 and Lys181, which are close to the
Lys171 site, are involved in this eA22 interaction if the length of
cross-linker and surface geometry of the coiled-coil are con-
sidered. These results indicated that the entire coil 2 dimers make
an extensive anti-parallel interaction with each other (Fig. 5c).
We call this interaction an eA22 (extensive anti-parallel binding
between coil 2s) interaction in this study and is distinguished
from the ‘A22 interaction’ of vimentin, where only the C-terminal
half parts of coil 2 (called coil 2b) are involved36. In addition, the
~30 kDa conjugate band was revealed to be the coil 2 fragment
dimer.

Since the eA22 interaction was enhanced by the A11
interaction, the eA22 interaction should be considered in terms
of the tetramer made by the A11 interaction. We structurally
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evaluated the possible overlapping region for the coil 2 region in
the presence of the A11 and eA22 interactions. In the tetrameric
arrangement by the A11 interaction, we noted ~6-nm-long spaces
between the bifurcated coil 1a and coil 2 on both sides (Fig. 6).
The bifurcated coils appear to hold a long α-helix or coiled-coil
dimer like a crocodile clip if they are stretched from the core anti-
parallel contact part (Fig. 6b), which would be allowed by the
conformational flexibility at the linker segments (L1 and L12;
Fig. 2 and Supplementary Fig. 1). We next noted ~4-nm-long
grooves in the tetrameric arrangement at each side compartment
in the anti-parallel contact part (Fig. 6a). The grooves would
accommodate a longer structural motif together with the
bifurcated coils, since they are continuous to the space between
the bifurcated coil 1a and coil 2, making a 10-nm-long binding
motif (Fig. 6b). The groove and space would provide the major
part of the long overlapping region with the 6 α-helical
intersection.

Proposed lamin assembly model at the molecular level. To
build the assembly model of the lamin filament, we started from a
54-nm-long coiled-coil dimer model of the central rod domain by
combining this structure with fragmented structures25,26,32

(Fig. 7a). The missing parts (residues 283–385) were presumed by
the typical coiled-coil structure with a rise per residue of 1.5 Å.
The A11 interactions were applied between coiled-coil dimers,
leading to the formation of a 72-nm-long tetramer with 19-nm-
long overhangs of coil 2 on both sides (Supplementary Fig. 5a).
Sequentially or simultaneously, coil 2 of the coiled-coil dimer was
inserted to the tetramer by the eA22 interaction with ~14 nm-
long overlapping, including 10-nm-long binding motif. This
assembly resulted in ~40-nm-long intervals between the C-
terminal ends of two coiled-coil dimers in the same direction
(Fig. 7b and Supplementary Fig. 5b). Due to the twofold sym-
metry in the four lamin subunits, an interval averaging ~20 nm is
generated between the Ig-like domains attached to coil 2 (Fig. 7c).
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We believe that the A11 and eA22 interactions would occur
simultaneously and synergistically for the further extensions of
the lamin filament (Fig. 7b, c). This assembly model is well
matched to the previous cryo-ET structure representing the
native state, including the features of different cross-section
shapes and the interval between the adjacent Ig-like domains16.

Laminopathies correlated with A11 and eA22 interactions. We
noted that many genetic mutations causing laminopathies were

mapped on the interfaces of the A11 and eA22 interactions,
suggesting their importance in the formation of a functional
nucleus (Supplementary Fig. 6a). To gain insights into the lami-
nopathies at the molecular level, we selected two mutations Y45C
and L59R, which are related to muscular dystrophy37,38 and
dilated cardiomyopathy13,39,40 respectively. We compared the
binding affinity of the lamin 1–300 fragments to the C-terminal
part of coil 2 in low and high salt buffers containing 50 or 150
mM NaCl (Fig. 4c), where the eA22 interaction was strengthened
in the low salt buffer more than that in a high salt buffer (Fig. 4c).
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The Y45C mutation in the lamin 300 fragment abolished binding
to the C-terminal part of coil 2 (Fig. 8a and Supplementary
Fig. 6b). In contrast, we observed that the L59R mutation
increased the eA22 interaction in the high salt buffer (Fig. 8a
right). Furthermore, isothermal titration calorimetry (ITC) results
showed ~40-fold higher binding affinity of L59R mutation than
the wild type against the C-terminal part of coil 2 in the

phosphate-buffered saline, based on KD values (Supplementary
Fig. 7). Consistent results were obtained in the nuclear shapes and
the distribution of the lamin A/C when the mutant lamin genes
were overexpressed in the cell lines (HT1080 and SHSY5Y).
Lamin A-Y45C formed a blebbing in the nucleus, and they dif-
fused to the cytosol when mechanical stress was applied to the
nucleus by cleaving the chromosomal DNA with a nuclease

Fig. 3 A11 interaction of the lamin 300 fragment. a Structural comparison of the tetrameric structures of the lamin 300 fragment (this study, residues
75–213) and vimentin coil 1b (PDB code: 3UF118, residues 144–251). Top panel, the anti-parallel contact region and its three compartments (left side, central
part, and right side) of the lamin 300 fragment are indicated by double-headed arrows. Four chains (chains A–D) are in green, blue, violet, and yellow,
respectively. Left and right-side parts of the lamin 300 fragment and vimentin are marked as dotted boxes. The N and C terminus of each chain is
indicated by N and C, respectively. The contact interfaces between chain A:B and C:D are marked as black boxes labelled with a–e, which are enlarged in
b. b Residues involved in hydrophobic or molecular contacts are shown in the stick representations. See also Supplemental Fig. 4 for interfaces of the
vimentin. c SEC profile of the lamin 300 fragment A146C mutant and molar ratio of disulfide-bonded proteins in each peak on Superdex 200 10/300
column. Five labelled fractions (left) were analysed using non-reducing SDS-PAGE (middle), and the relative portion of disulfide-bonded protein (tetramer)
to free Cys protein (dimer) was calculated based on the band intensity using ImageJ (right). d SEC-MALS analysis of lamin 300 fragment (2.5 mg/ml, wild
type; left and A146C mutant; middle) in the absence (black line) or presence of a reducing agent TCEP (red line). Relative refractive index (right y-axis) and
molecular weight of each peak (left y-axis) are plotted against the elution volume. The protein samples were also analysed using SDS-PAGE in the presence
or absence of the reducing agent TCEP (right). Molecular sizes (kDa) of the marker proteins (M) are labelled on the left. Note that MALS might not give
the accurate values when two peaks were not resolved. Considering the SDS-PAGE analysis of the fractions (in c), the two peaks (middle) correspond to
the tetramer and dimer, respectively
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lamin 300 A146C mutant on CNBr-activated resin. Four candidate fragments (66 μM) were incubated with lamin 300 A146C-coupled resin or Tris-
coupled resin under the non-reducing condition (right SDS-PAGE gel). c Comparison of binding affinity between the lamin 300 variants and F3 depending
on A11 interaction. An in vitro pull-down assay was conducted using His-F3 (residues 250–400)-bound Ni-NTA resin. BSA and wild type (WT; dimer),
non-reduced A146C (A146C; tetramer), and reduced A146C (A146CR; dimer) of the lamin 300 fragment were incubated on the empty (−) or His-F3-
bound (+) Ni-NTA resins. The resins were pre-equilibrated and washed with the 20mM Tris-HCl (pH 8.0) buffer containing 150mM (left) or 50mM
NaCl (right). For A146CR, the buffer was supplemented with 2mM TCEP (reducing agent). The bound proteins in the resins were analysed using SDS-
PAGE. Molecular weights (kDa) of the marker (M) are labelled on the left
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(benzonase). When lamin A-L59R was overexpressed, stronger
lamin aggregates were found at the peripheral region of the
nuclear envelopes, probably by reinforced filament formation
(Fig. 8b and Supplementary Figs. 8 and 9).

To explain the opposite effects of the Y45C mutation for
muscular dystrophy and the L59R mutation for dilated
cardiomyopathy, we noted the locations of the two residues.
Both Tyr45 and Leu59 residues are in the d position in the heptad
repeat (Fig. 2a). The crystal structure further revealed that Tyr45
makes an awkward interaction (with Ile46 at the e position) and
Leu59 is ideally positioned in the coiled-coil (Fig. 8c, d). The
Y45C mutation is likely to stabilize the coiled-coil interaction in
coil 1a with the small and hydrophobic residue by relieving the
awkward interaction. This appears to inhibit the interaction with
the coil 2. However, the potential disulfide bond formation
between the cysteine residues might not be important in the Y45C
mutant (Supplementary Fig. 6b). In contrast, the L59R mutation
would destabilize the coiled-coil interaction through the non-
homologous change, which would augment the interaction with
the coil 2 region as shown in Fig. 8a. The reinforced filament
formation would also deteriorate dynamic remodeling or correct
mesh formation in cells for the robust nuclear envelope. Thus,
our findings suggest that the stronger or weaker interactions may
be responsible for pathological states, since both cases could cause
adverse effects in the formation of robust nuclear structures.

Discussion
There are many different models for lamin and vimentin, some of
which are based on the EM images of refolded proteins or their
paracrystalline forms at a low resolution13,18,24,41,42. However, to

understand the physiological structure of IF proteins, we now
need to focus on the structures representing the native state and
high-resolution structures. In this study, we determined the
crystal structure of a fragment of lamin containing all the linker
segments, directly displaying the A11 interaction between two
coiled-coil dimers. This structure was long enough to extend and
to connect the previous lamin structures determined by Strelkov
et al.18,26,28, visualizing most structural features of the full-length
lamin. A cross-linking study with MS/MS analysis further dis-
covered an interaction, called an eA22 interaction, which acts
presumably synergistically with the A11 interaction. By com-
bining the two interactions, we built a complete assembly model
at a molecular level, which agrees well with the in situ cryo-ET
structure representing the native lamin filament recently provided
by Turgay el al.16.

Typical IF proteins, such as vimentin, form thicker filament
structures than lamins43,44. The α-helical rod domain of vimentin
has a 42 residue-long gap sequence corresponding to the central
compartment of coil 1b of lamin, with substantial length differ-
ences in the N- and C- terminal unstructured regions (Fig. 3a and
Supplementary Figs. 3 and 4). The central rod domain of
vimentin is shorter by ~6 nm than that of lamin due to the gap 42
residues. However, the gap 42 residues seemed not to affect the
A11 and eA22 interactions because the central compartment of
coil 1b was not directly involved in the filament formation of
lamin. Thus, it is likely that the overall structures of the α-helical
rod domain of typical IF proteins would be shared with those of
lamins45. Additional interactions, which are present only in
typical IF proteins, but not in lamin, would be required to form
the final 10-nm-thick filament, which consists of four to six
lamin-like filaments with a shortened interval.
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In conclusion, we discovered two essential interactions for
lamin assembly by the crystal structures and biochemical studies.
These interactions could provide a key to understanding the
nuclear function and the assembly mechanisms for IF proteins at
the molecular level.

Methods
Plasmid construction. For overexpression of lamin proteins, amplified DNA
fragments coding for residues 1–300 (wild-type and A146C mutant), 1–125,
175–300, 250–400, and 406–567 of lamin A/C were inserted into the pProEx-HTa
vector (Thermo Fisher Scientific, MA, USA). The used oligonucleotide primer
sequences are shown in Supplementary Table 3. The resulting plasmids encoded
the His tag and the tobacco etch virus (TEV) protease cleavage site at the
N-terminus of the lamin proteins. To prevent overlapping of the peptides from the
lamin 300 and 250–400 fragments digested by chymotrypsin for mass spectrometry
analysis, we constructed a 286–400 fragment. The arginine 388 residue was
replaced with cysteine, which enabled cross-linking of a lysine residue in the lamin
300 fragment through the primary amine and sulfhydryl reactive spacer of sulfo-
succinimidyl 4-(N-maleimidophenyl)butyrate (Sulfo-SMPB; Sigma Aldrich, USA).
For immunofluorescence staining, amplified DNA fragments encoding wild type
and the Y45C and L59R mutants of full-length lamin A/C were inserted into the
pcDNA3.1(+) vector (Thermo Fisher Scientific, MA, USA).

Purification of the recombinant proteins. To obtain the selenomethionyl-labelled
protein for crystallization, the Escherichia coli strain B834 (DE3; Novagen, USA)
harbouring the plasmid encoding the lamin A/C fragment (residues 1–300) was
cultured in M9 medium supplemented with L-(+)-selenomethionine. The protein
expression was induced by 0.5 mM IPTG at 30 °C. The cells were harvested by
centrifugation and resuspended in lysis buffer containing 20 mM Tris-HCl (pH
8.0) and 150 mM NaCl. The cells were disrupted using sonication and the cell
debris was removed using centrifugation. The supernatant was loaded onto Ni-
NTA affinity agarose resin (Qiagen, The Netherlands), pre-incubated with lysis
buffer. The target protein was eluted with lysis buffer supplemented with 250 mM
imidazole. The eluate was treated with TEV protease to cleave the His tag, and then
was loaded onto a HiTrap Q column (GE Healthcare, USA). A linear gradient of

increasing NaCl concentration was applied to the HiTrap Q column. The fractions
which contained the protein were applied onto a size exclusion chromatography
column (HiLoad Superdex 200 26/600 column; GE Healthcare), pre-equilibrated
with lysis buffer. The purified protein containing lysis buffer was concentrated to 7
mg/mL and frozen at −70 °C.

For biochemical assays, each plasmid encoding the lamin A/C fragments was
transformed into E. coli BL21 (DE3; Novagen, USA) and cultured in LB or TB
medium. The same procedure was used to purify the proteins. For the His-tagged
proteins, the TEV protease treatment was not applied.

Crystallization and structure determination. The selenomethionine-labelled
lamin protein (7 mg/mL) whose His-tag was cleaved off was crystallized in a
precipitation solution containing 0.1 M Tris-HCl (pH 8.5), 0.9 M lithium chloride,
and 7% (w/v) PEG 8000 using the hanging-drop vapour diffusion method at 14 °C.
Crystals with a size of ~300 μm were used for structure determination. The crystals
were dipped in a cryoprotectant solution containing 3.75% (v/v) diethylene glycol,
3.75% (v/v) ethylene glycol, 3.75% (v/v) (±)-2-methyl-2,4-pentanediol, 3.75% (v/v)
1,2-propanediol, 3.75% (v/v) dimethyl sulfoxide, and 3.75 mM 3-(1-pyridino)-1-
propane sulfonate and flash-frozen in a nitrogen stream at −173 °C. A single-
wavelength anomalous diffraction (SAD) dataset was collected at Pohang Accel-
erator Laboratory Beamline 5C using Pilatus 3 6M Detector46 and processed with
the HKL2000 package47,48. The crystals belong to space group P21212 with unit-cell
dimensions of a= 231.3 Å, b= 85.0 Å, and c= 92.4 Å. Heavy atom searching was
performed using SHELXC/D of the CCP4i package49,50. The lamin 300 fragment
contained three Met residues in the sequence. However, two Se-Met were identified
per protomer in the SAD date by SHELXD. Eight Se-Met sites were identified
because the asymmetric unit contained four protomers. Phase calculation and
density modification were performed using Phaser of the PHENIX51,52. The pro-
grammes COOT and PHENIX were used for model building and refinement52–54.
The final structure was refined at a 3.2 Å resolution (Rfactor and Rfree of 20.7% and
26.1%, respectively; Supplementary Table 1)55.

SEC-MALS. Molecular mass was determined with analytical size exclusion chro-
matography coupled with multi-angle light scattering (SEC-MALS). The protein
samples (wild-type and A146C mutant of the lamin 300 fragment; 2.5 mg/ml) were
applied to a Superdex 200 Increase 5/150 GL column (GE healthcare), pre-
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equilibrated with a buffer containing 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, 2
mM tris(2-carboxyethyl) phosphine (TCEP) or a non-reducing buffer containing
Tris-HCl (pH 8.0) and 150 mM NaCl. The mass-averaged molecular weights were
calculated using Debye analysis with ASTRA 6 software (WYATT, USA).

Pull-down assays. For Fig. 4b, we conducted a pull-down assay using immobilized
lamin 300 A146C mutant protein. The lamin 300 A146C mutant protein was
coupled to CNBr-activated Sepharose resin (GE Healthcare) and/or blocked with
excessive 0.1 M Tris-HCl (pH 8.0) buffer containing 150 mM NaCl. Four purified
lamin fragments (residues 1–125, 175–300, 250–400, and 406–567; 66 μM) were
incubated with the lamin-coupled resin or Tris-blocked resin (for control), which
were pre-equilibrated with a 20 mM Tris-HCl (pH 8.0) buffer containing 150 mM
NaCl. After washing with the buffer, the resin was analysed using SDS-PAGE.

For Fig. 4c, His-tagged lamin proteins were immobilized on the Ni-NTA resin
as bait. BSA or His-tag cleaved lamin proteins as a prey were incubated on the His-
lamin immobilized resin pre-equilibrated in a 20 mM Tris-HCl (pH 8.0) buffer
containing 150 mM NaCl (or 50 mM NaCl) at room temperature for 30 min. After
washing with the buffer supplemented with 20 mM imidazole, the resin was
analysed using SDS-PAGE.

Cross-linking reaction and MS/MS analysis. Purified lamin 286–400 R388C
protein was incubated with 2 mM DTT and changed to a 20 mM 4-(2-hydro-
xyethyl)-1-piperazineethanesulfonic acid (HEPES) (pH 7.5) buffer containing
50 mM NaCl, and 1 mM EDTA using a HiPrep 26/10 desalting column (GE
Healthcare). Sulfo-SMPB (100 mM stock solution) was added in 0, 2.5, 25, 125, and

250 μM to a mixture containing 20 μM lamin 300 and coil 2 (286–400) R388C
proteins for 1 h, and the reactions were stopped by a solution containing 40 mM
Tris-HCl pH 7.5 and 40 mM L-cysteine. The reaction mixture was subjected to
SDS-PAGE, and the protein bands of coil 2 R388C (14 kDa), lamin 300 (38 kDa),
and their cross-linked structure (52 kDa) were further analysed by the MS/MS
spectrometry.

The corresponding protein bands were excised from the SDS-polyacrylamide
gel and were digested in gel by chymotrypsin (Promega, USA) with a low specificity
towards the C-termini of tyrosine, phenylalanine, tryptophan, and leucine
according to the manufacturer’s manual. The digested peptides were extracted from
the gel slices, as previously described48, and analysed on a nLC-Velos Pro mass
instrument equipped with a PicoFritTM column, 100 mm, packed with 5 μm
Biobasic® C18 and an EASY-ColumnTM, 2 cm, packed with 5 μm C18 (Thermo
Fisher Scientific). The LC condition operated at 0.3 μLmin−1 was a 45-min linear
gradient from 5 to 40% ACN in a 0.1% formic acid buffer solution, followed by a
10 min column wash with 80% ACN and a 20 min reequilibration to the initial
buffer condition. Full mass (MS1) scan was performed in range of m/z 300–2000 in
a positive ion mode. Data-dependent MS2 scans of the seven most intense ions
were performed from the full scan with scan options of 1.5m/z isolation width,
25% normalized collision energy, and 30 s dynamic exclusion duration. The
acquisitioned MS2 data were primarily analysed by a SEQUEST search with a
maximum miscleavage of 2, precursor mass tolerance 1.5 Da, fragment mass
tolerance 1.0 Da, dynamic modification of lysine either blocked with a cysteine-
conjugate cross-linker (Cys~K, +m/z 362.4) or cross-linked with a Cys388-Leu389
dipeptide (CL~K, +m/z 475.5) of the coil 2 R388C fragment, and static
modification of the Cys388 residue blocked with a Tris-conjugate cross-linker
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(Tris~C, m/z 362.4) in the coil 2 fragment band (14 kDa). After filtering out the
peptide-to-spectrum matches (PSM) with a peptide probability above 90%, the
tandem mass spectra of the cross-linked peptides were manually assigned to the
fragment ions generated from the collision-induced dissociation of the precursor
ion. We report the results of the PSM in Supplementary Data 1. The manually
assigned tandem mass spectra of Tris-crosslinker conjugate Cys388-Leu389
dipeptide and target Lys171 cross-linked with the Cys388-Leu389 dipeptide are
shown with extracted ion chromatograms in Supplementary Figs. 10 and 11.

Isothermal titration calorimetry. ITC experiments were carried out using an
Auto-iTC200 Microcalorimeter (GE healthcare) at Korea Basic Science Institute
(Ochang, Korea). His-tagged wild-type or L59R mutant of lamin 300 fragment
(20 μM; 0.7 mg/ml) was prepared in the sample cell (370 μL) and his-tagged
250–400 fragment (160 μM; 3mg/ml) was loaded into the injectable syringe. All
samples were prepared in PBS. Titration measurements of 19 injections (2 μL) with
150 s spacing were performed at 25 °C while the syringe was stirred at 750 rpm.
The data were analyzed using the MicroCal OriginTM software.

Immunofluorescence staining. A human fibrosarcoma cell line (HT1080) and
human neuroblastoma cell line (SH-SY-5Y) obtained from ATCC were maintained
in liquid medium (DMEM) containing 10% (v/v) FBS, 1% (v/v) antibiotics at 37 °C.
HT1080 or SH-SY-5Y cells were seeded on a cover glass and transfected with the
plasmid coding wild type, Y45C or L59R mutant of full-length lamin A/C using
jetPEI (Polyplus Transfection). After fixing with 1% (w/v) paraformaldehyde (PFA)
for 1 h at 4 °C, cells were permeabilized with 0.1% (v/v) Triton X-100 including 2.5
U/ml benzonase (Calbiochem; 71206–3) or mock for 5 min and incubated with a
blocking buffer containing PBS and anti-human antibodies (1:400) for 1 h. After
washing with PBS twice, the cells were incubated with anti-lamin A/C (sc-376248;
Santa Cruz Biotechnology) and anti-emerin (sc-15378; Santa Cruz Biotechnology)
primary antibodies (1:200) in the blocking buffer overnight, followed by secondary
antibodies (anti-mouse Ab-FITC and anti-rabbit Ab-rhodamine; 1:400) in the
blocking buffer for 7 h and mounted. The nucleus was stained with DAPI. The
immunofluorescence signal was detected using fluorescence microscopy (Logos).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Coordinates and structure factors have been deposited in the Protein Data Bank under
accession code 6JLB. The mass spectrometry data have been deposited at the
ProteomeXchange Consortium via the PRIDE56 partner repository with the dataset
identifier PXD013144 and PXD01429. The source data underlying Figs. 3c, d, 4b, c, 5a, b,
and 8a and Supplementary Figs. 6b and 9a are provided as a Source Data file. Other data
are available from the corresponding author upon reasonable request.
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