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Abstract 
Background: The purpose of this study was to conduct a systematic review for understanding the availability and limitations of 
artificial intelligence (AI) approaches that could automatically identify and quantify computed tomography (CT) findings in traumatic 
brain injury (TBI).

Methods: Systematic review, in accordance with PRISMA 2020 and SPIRIT-AI extension guidelines, with a search of 4 databases 
(Medline, Embase, IEEE Xplore, and Web of Science) was performed to find AI studies that automated the clinical tasks for 
identifying and quantifying CT findings of TBI-related abnormalities.

Results: A total of 531 unique publications were reviewed, which resulted in 66 articles that met our inclusion criteria. The 
following components for identification and quantification regarding TBI were covered and automated by existing AI studies: 
identification of TBI-related abnormalities; classification of intracranial hemorrhage types; slice-, pixel-, and voxel-level localization 
of hemorrhage; measurement of midline shift; and measurement of hematoma volume. Automated identification of obliterated 
basal cisterns was not investigated in the existing AI studies. Most of the AI algorithms were based on deep neural networks that 
were trained on 2- or 3-dimensional CT imaging datasets.

Conclusion: We identified several important TBI-related CT findings that can be automatically identified and quantified with AI. 
A combination of these techniques may provide useful tools to enhance reproducibility of TBI identification and quantification by 
supporting radiologists and clinicians in their TBI assessments and reducing subjective human factors.

Abbreviations: 2D = 2-dimensional, 3D = 3-dimensional, AI = artificial intelligence, CNN = convolutional neural network, CT = 
computed tomography, EDH = epidural (extradural) hemorrhage, ICH = intracranial hemorrhage, ICP = intracranial pressure, IPH = 
intraparenchymal hemorrhage, IVH = intraventricular hemorrhage, LSTM = long short-term memory, ML = machine learning, MRI 
= magnetic resonance imaging, RNN = recurrent neural network, SAH = subarachnoid hemorrhage, SDH = subdural hemorrhage, 
SVM = support vector machine, TBI = traumatic brain injury.
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1. Introduction
Traumatic brain injury (TBI) is defined as a disruption of brain 
function by external forces to the head.[1] TBI is a major health 
concern, and concern and is associated with significant mor-
bidity and mortality. It is estimated that 69 million individuals 
suffer from TBI worldwide every year,[2] and the medical cost 
of severe TBI ranges from $600,000 to $1.8 million per patient 
lifetime.[3] computed tomography (CT) scan findings delineate 
the structural effects of TBI and neuroimaging techniques play 
a crucial role in guiding therapy for acute TBI.[4] Although 
magnetic resonance imaging (MRI) may be more sensitive in 
detecting small white-matter lessions in the later phases of TBI, 
conventional CT is the imaging modality of choice during the 
first 24 hours following injury, due to its wide availability and 
speed.[4]

There are some key CT findings that are important in estimat-
ing TBI diagnosis and prognosis, such as types of hematomas, 
its locations, extent of midline shift, and hematoma volume. 
Currently, radiologists and clinicians rely on manual reading of 
CT images to identify and quantify these neurological findings. 
However, manual assessment is not always reproducible the 
measurement can be different from reader to reader. The out-
come can even vary in every trial by the same reader. Therefore, 
TBI identification and quantification process is worth automat-
ing for reducing the human factor. It is beneficial not only to 
radiologists but also referring clinicians because more standard-
ized radiological reports are provided.

Recently, many artificial intelligence (AI) and machine learn-
ing (ML) methods have been proposed in an attempt to automate 
radiological routines related to TBI. However, no study has sys-
tematically investigated and summarized these ML studies with 
respect to the identification and quantification of a wide range 
of TBI abnormalities. The purpose of this work was to conduct 
a systematic review of ML studies that describe a methodol-
ogy for identifying and quantifying TBI-related abnormalities. 
The question we wanted to answer was whether an automated 
identification and quantification of TBI from CT scans was cur-
rently possible. Specifically, for each paper, we summarized the 
following: ML’s predictions (e.g., types of hematoma or localiza-
tions of hematoma); learning strategy (e.g., supervised learning); 
algorithm design (e.g., architecture of deep neural network); 
and algorithm performance (e.g., area under the curve). We also 
discuss the limitations of current ML methods and highlight 
the future research directions for improving the automated CT 
identification and quantification of TBI-related lesions.

In the next subsection, we overview the basic concept and 
some terminology commonly used in ML studies regarding 
automated TBI identification and quantification process.

1.1. Overview of AI/ML terminology

Generally, the goal of ML is to create a mathematical model 
that can be trained to produce the expected outputs when 
new, unseen input data are provided. ML types used in iden-
tified articles are roughly divided into supervised learning and 
unsupervised learning algorithms. In the supervised learning of 
medical imaging, the training dataset consists of medical images 
and paired labels that specify the ground-truth annotations cre-
ated by medical experts. Unsupervised learning processes data 
without relying on annotations and aims to find useful patterns 
embedded in the data.

From the point of view of ML, radiological routines for 
identification and quantification of TBI can be seen using 
either image-level recognition (classification or object detection 
task), pixel-level recognition (2-dimensional [2D] segmentation 
task), or voxel-level recognition (3-dimensional [3D] segmen-
tation task). An image classification task associates 1 or more 
labels with a given image. The annotation is a scalar or vector 
that represents the label, example, normal or anomalous as a 

binary-class classification problem, or multiple types of TBI 
abnormalities as a multi-class classification problem. An image 
segmentation task, which can be seen as a “pixel-wise” clas-
sification, refers to the process of assigning each pixel to 1 of 
the labels. The annotations in segmentation tasks, therefore, are 
multi-dimensionally labeled images. The object detection task 
combines classification and localization to determine which 
objects are in the image and to determine where they are by 
using bounding boxes.

Most of the recent studies on CT image recognition have 
relied heavily on deep neural network (DNN) frameworks, 
especially those using a convolutional neural network (CNN) 
architecture.[5] Other important types of DNN-based architec-
ture that are utilized in identifying TBI are recurrent neural net-
work (RNN) and long short-term memory (LSTM). Both RNN 
and LSTM have recurrent internal connections that ensure that 
sequential information, such as text or audio data, is accepted 
as input data. Several studies have used RNN or LSTM because 
a CT scan, which consists of multiple CT slices, can be used as 
sequential data.

2. Methods

2.1. Literature selection

We conducted a systematic review of ML studies that identi-
fied and quantified TBI based on CT images from the 4 major 
medical and scientific databases (Ovid Medline, Ovid Embase, 
IEEE Xplore and Web of Science) that were published before 
April 28, 2022. We used a combination of keywords related to 
CT, ML, and TBI with the Medical Subject Heading (MeSH) 
queries. See Methods, Supplemental Content 1, http://links.lww.
com/MD/H961, which illustrated systematic search strings, for 
further details. We did not limit our retrieval to papers written 
in specific languages or to those written within a specific period.

The articles were assessed by 2 researchers independently 
(AH and MJ), both of whom had had extensive experience in 
ML and medical imaging literature. The papers that were judged 
by both researchers to meet the inclusion criteria and to be eli-
gible for inclusion were sent for a second full-text appraisal to 
identify the papers that met the inclusion criteria. Any disagree-
ments between the 2 researchers were resolved by a third author 
(PNT).

We focused on ML studies that used CT imaging to ana-
lyze human patients, and we included studies that included 
at least 1 of the following findings for open (penetrating) or 
closed TBI: Glasgow Coma Scale ≤ 15; concussion; skull frac-
ture and intracranial hemorrhage (ICH). We chose papers that 
dealt with clinical variables and non-contrast CT images cap-
tured by either single-slice or multi-slice CT scanners as input 
data. We included ML studies with any of the following out-
put data: image-level or pixel-level findings of abnormalities 
on CT images; severity; risk of death, and future outcomes. We 
excluded studies that used data from non-human participants or 
patients with non-TBI caused by, for example, a stroke or brain 
tumor. We also excluded papers that did not include CT data 
or only focused on other modalities, such as MRI or electro-
encephalogram. Existing work that focused only on statistical 
analyses, treatment strategies, and pathological research were 
also excluded. The detailed inclusion and exclusion criteria are 
listed in Table 1.

2.2. Protocols

This review was conducted in accordance with the 
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) 2020[6] and Standard Protocol Items: 
Recommendations for Interventional Trials (SPIRIT)-AI 
extension.[7]

http://links.lww.com/MD/H961
http://links.lww.com/MD/H961
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3. Results
A total of 759 papers were retrieved from Medline and Embase 
(n = 488), IEEE Explore (n = 24), and Web of Science (n = 247). 
After duplicates were removed and the initial screen conducted, 
66 papers remained for further review (Fig. 1). The distribution 
of the included 66 articles according to year of publication is 
shown in Figure 2. It demonstrates that the number of ML stud-
ies on identifying and quantifying TBI has risen rapidly in recent 
years. The rest of this section discusses each article focusing on 
the algorithm design and relevance to clinical practice according 
to the learning types and the ML tasks listed in Table 2. An input 
and output of these studies are shown in a data extraction sheet 
(Table S1, Supplemental Digital Content, http://links.lww.com/
MD/H962, which demonstrates details of all identified articles 
multi-class classification task) (Table S2, Supplemental Digital 
Content, http://links.lww.com/MD/H963, which demonstrates 
binary-class classification task) (Table S3, Supplemental Digital 
Content, http://links.lww.com/MD/H964, which demonstrates 
multi-class object detection task) (Table S4, Supplemental Digital 
Content, http://links.lww.com/MD/H965, which demonstrates 
multi-class 2D-segmentation task) (Table S5, Supplemental 
Digital Content, http://links.lww.com/MD/H966, which 
demonstrates binary-class 2D-segmentation task) (Table S6, 
Supplemental Digital Content, http://links.lww.com/MD/H967, 
which demonstrates multi-class 3D-segmentation task) (Table 
S7, Supplemental Digital Content, http://links.lww.com/MD/
H968, which demonstrates binary-class 3D-segmentation task).

3.1. Presence or absence of TBI-related abnormalities

The first task for clinicians when they look at CT images of a 
potential TBI patient is to identify any TBI abnormalities. From 
the ML viewpoint, this process can be seen as either a 2-class 

(binary-class) or multi-class classification problem, depending 
on the clinical purpose and situation. For classifying CT slices 
as either ICH or non-ICH, some studies[34–37] assumed a bina-
ry-class classification problem. In the algorithm proposed by 
Patel et al,[34] the CNN was used as a feature extractor for each 
CT slice, and extracted features that represented multiple slices 
were stacked and fed into the LSTM model. By introducing the 
idea of LSTM, the algorithm was expected to acquire spatial 
relations, which can be more informative for model training 
than using individual slices.

Several previous studies[32,33,38–40] also employed binary-class 
classification problems for predicting other targets related to 
TBI lesions. The algorithm proposed in by Liu et al[40] aimed to 
distinguish normal CT slices from abnormal ones, including 5 
types of hemorrhage (epidural/extradural hemorrhage [EDH], 
subdural hemorrhage [SDH], subarachnoid hemorrhage [SAH], 
intraparenchymal hemorrhage [IPH], and intraventricular hem-
orrhage [IVH]). The researchers classified vectors made up of 12 
hand-crafted features using a support vector machine (SVM) to 
detect abnormal CT slices.

Another problem setting within binary-class classification 
is the estimation of intracranial pressure (ICP), which is con-
sidered an important indicator of TBI severity, as the ICP level 
is frequently elevated in patients after brain injury due to the 
mass effect of ICH.[1] Some articles[41–43] proposed methods for 
predicting the ICP level in the form of a binary classification, 
elevated ICP (ICP > 12 mm Hg), or normal ICP (ICP ≤ 12mm 
Hg), although the choice of threshold was not well justified in 
those papers. They used SVM models trained on clinical vari-
ables and features extracted from texture patterns embedded in 
CT images.

Although all of these papers only described models that 
accepted CT images, we also identified some algorithms[38,39] 

Table 1

Inclusion and exclusion criteria.

 Inclusion Exclusion 

Study participants •Patients with at least one of the following open 
(penetrating) and closed traumatic brain injury 
(TBI)-related findings:

 o Glasgow Coma Scale ≦ 15
 o Skull fracture
 o Brain contusion
 o Concussion
 o Diffuse axonal injury
 o Epidural/Extradural hematoma
 o Intracerebral/Intraparenchymal hematoma
 o Subdural hematoma
 o Subarachnoid hemorrhage
 o Midline shift
 o Increased intracranial pressure

•Patients with non-TBI findings caused by
 o Stroke
 o Brain tumor
 o Toxic injury
 o Anoxic injury
 o Drug abuse
 o Aneurysm
 o Cerebral edema
 o Encephalitis
 o Heart attack
 o Hydrocephalus
 o Hypoxia/anoxia
 o Meningitis
•Animal subjects

Input data •Non contrast CT images captured by either sin-
gle-slice or multi-slice CT scanners

•Clinical records attached to CT images
•Clinical variables

•MRI
•Electroencephalogram
•Positron emission tomography
•Single photon emission CT
•Ultrasound imaging

Output data •Image-level findings of abnormalities on CT images
•Pixel-level findings of abnormalities on CT images
•Severity
•Future outcome
•Risk of death

•Rules to decide if neuroimaging is required

Methodology •Machine learning (ML) approach for image recognition •Statistical analysis
•Treatment strategies
•Pathological research

Publication type •Peer reviewed journals
•Conference proceedings

•Articles without full text

CT = computed tomography, ML = machine learning, MRI = magnetic resonance imaging, TBI = traumatic brain injury.

http://links.lww.com/MD/H962
http://links.lww.com/MD/H962
http://links.lww.com/MD/H963
http://links.lww.com/MD/H964
http://links.lww.com/MD/H965
http://links.lww.com/MD/H966
http://links.lww.com/MD/H967
http://links.lww.com/MD/H968
http://links.lww.com/MD/H968
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that allowed clinical records attached to CT images to be used 
as input and predicted whether the corresponding CT images 
were normal (non-TBI) or abnormal (TBI) using natural lan-
guage processing techniques.

3.2. Classification of ICH types

From the ML perspective, the multi-class classification task is 
the best strategy for automating categorization of ICH types. 
The 14 articles we identified that categorized different types 
of ICH were divided into 2 groups: 1 using publicly available 
datasets (n = 10), and the other using private clinical datasets 
(n = 4).

The publicly available CT imaging datasets containing TBI 
abnormalities that are currently available are CQ500,[68] the 
RSNA dataset,[69] and the Physio Net ICH dataset[70] (Table 3). 
The RSNA dataset was used in a competition,[71] and its first prize 
winner described their proposed model in.[8] They developed a 

primary CNN model followed by a 2-sequences CNN-based 
architecture to classify ICH, EDH, IPH, IVH, SAH, and SDH. 
Recent work[9,16] also aimed to build a CNN-based model using 
the RSNA dataset. The models that were developed by Sage 
and Badura in[16] consisted of a feature-extractable CNN-based 
architecture (ResNet-50) followed by a classifier (SVM or ran-
dom forest). Several studies using the CQ500 proposed differ-
ent types of ML models to classify TBI abnormalities, such as 
hemorrhages observed in various parts of a brain, fractures, or 
midline shift.[17–20]

Compared with the RSNA and CQ500 datasets, which 
contain hundreds of 1000s of CT scans, private or inter-
nal datasets were used in other studies on brain hematoma 
classification,[10–12,21–23] and most of these datasets were rel-
atively small (150–2000 scans). The models used in these 
studies were trained with sophisticated ML pipelines, but 
there may have been limitations in the reproducibility and 
extendibility of the models, considering the wide variety of 
TBI abnormalities.

3.3. Localization of ICH

The identification of where a brain hematoma is located is 
important for determining a TBI treatment strategy in clinical 
practice. We identified 2 ML papers[24,25] which focuses on the 
object detection task, 1 of the most important ML tasks. The 
first study involved an object detection task for localizing brain 
hemorrhages,[25] where the model allowed for not only the pre-
diction but also the localization of several types of hematoma 
(IPH, EDH, SDH, and SAH) by providing bounding boxes. 
Recent improvements in object detection were employed in by 
Ertuğrul and Akıl,[24] which who achieved accurate TBI local-
ization by training YOLO-v4[72] architecture using the CQ500 
dataset extension,[73] which contains additional bounding box 
annotations on the CQ500 dataset.
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3.4. Pixel-level identification of hematoma

The pixel-level identification of various kinds of intracra-
nial abnormalities is an important application of CT imag-
ing in an acute setting. Although several attempts have been 
made to design an original CNN-based architecture,[49–53] 
the most common architecture used in this problem setting 
was U-net.[26,27,45,46,54,55,58] These studies employed the original 
U-net[74] or various kinds of U-net modifications. For instance, 
the authors in[54] collected 82 CT scans of subjects with ICH and 
achieved a Dice coefficient of 0.31 with the U-Net model. Their 
dataset was made publicly available; this is the only public data-
set that contains pixel-level annotations of ICH, and it is known 
as the Physio Net ICH dataset.[70]

3.5. Measurement of midline shift

One important quantitative CT finding among TBI patients is 
the amount of midline shift or herniation, because the extent 

of midline displacement is a factor in predicting mortality.[1,75] 
Manually measuring the change in midline shift may also 
introduce inter- and intra-observer reliability concerns. We 
identified 2 ML studies to automatically measure the extent 
of midline shift to reduce the human factor. The authors in 
Nag et al[62] constructed a U-net model to predict the deformed 
boundaries between the left and right hemispheres followed 
by an estimation of midline shift. The authors validated their 
algorithm with private CT datasets and confirmed that the 
midline shift could be estimated with an average distance error 
of 1.29 ± 0.60mm. Another study that aimed to measure the 
midline shift in TBI patients was demonstrated by Wei et al,[63] 
where the proposed CNN-based model estimated the extent of 
midline shift with average distance errors of 1.1 ± 70.72 mm 
and 4.15 ± 3.97 mm on CQ500 and the internal dataset, respec-
tively. Another recent study[64] utilized CNN-based architecture 
to predict several imaging landmarks to predict the extent of 
midline. We noted that no ML approaches existed that identi-
fied cerebellar tonsillar herniation.

Table 2

Summary of reviewed articles.

Learning type # Class 

AI Task

Classification Object detection 2D segmentation 3D segmentation 

Supervised Multi-class •Multiple TBI types[8–23] •Multiple TBI types[24,25] •Multiple hematoma types[10,26,27] •Multiple hematoma types[28–31]

Binary-class •Any hematoma[32,33]

•ICH[34–37]

•Normal/abnormal[38–40]

•ICP level (high/low)[41–43]

•Hematoma expansion[44]

•Any hematoma [45–48]

•ICH[49–55]

•SDH[56,57]

•Normal/abnormal[58]

•ICH[59]

•SDH[60]

•Normal/Abnormal[61]

Others •Midline delineation[62–64] •Cisterns[59]

•Midline[59]

Unsupervised Binary-
class

•Normal/abnormal[65–67]

2D = 2-dimensional, 3D = 3-dimensional, ICH = intracranial hemorrhage, ICP = intracranial pressure, SDH = subdural hemorrhage, TBI = traumatic brain injury.

Table 3

Publicly available dataset of CT images with TBI abnormalities.

 RSNA[69] CQ500[68] 
PhysioNet ICH 

dataset[70] 

# CT slices (images) 674,257 (train)
78,545 (test)

171,390 2814

# CT scans or 
patients

19,530 scans (train)
2214 scans (test)

491 scans 82 patients

Annotated TBI lesions
(H: hemorrhage or 

hematoma)

•Epidural H
•Intraparenchymal H
•Intraventricular H
•Subarachnoid H
•Subdural H
•Any hemorrhage

•Epidural H
•Intraparenchymal H
•Intraventricular H
•Subarachnoid H
•Subdural H
•Any fractures
•Calvarial fractures
•Midline Shift
•Mass effect

•Epidural H
•Intraparenchymal H
•Intraventricular H
•Subarachnoid H
•Subdural H

Annotation level Per slice Per scan (some slices have bounding boxes) Per pixel
# Annotators 60 3 2
Data source and 

period
Stanford University (1999–2014),

Universidade Federal de São Paulo (2018), and 
Thomas Jefferson University Hospital (N/A)

Centre for Advanced Research in Imaging, 
Neurosciences and Genomics (2017)

Al Hilla Teaching 
Hospital, Iraq 

(2018)
CT scanner N/A GE BrightSpeed, GE Discovery CT750 HD, GE 

LightSpeed, GE Optima CT660, Philips MX 
16-slice, Philips Access-32 CT

Siemens/ SOMATOM 
Definition AS

Slice thickness
(mm)

3–5 5 5

ICH = intracranial hemorrhage, TBI = traumatic brain injury.
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These algorithms would be a useful tool to support radiologi-
cal reading and provide a standardized approach across special-
ties and institutions in assessing midline shift.

3.6. Measurement of hematoma volume

Another important quantitative CT description is the hematoma 
volume because it is a powerful prognostic predictor in mod-
erate and severe TBI.[75] Estimating hematoma volume manu-
ally, however, is less reliable in an irregular shaped hematoma. 
Furthermore, lack of reproducibility still exists in the manual 
measurement process.

Some articles aim to estimate hematoma volume by stacking 
the prediction of 2D-segmented hematoma.[46,47,56] Although 
these 2D-segmentation methods are technically possible, 
3D-hematoma recognition has recently attracted consider-
able attention as it enables end-to-end hematoma volume 
predictions. Furthermore, whereas a 2D-segmentation model 
is trained on each CT slice independently, a 3D-segmentation 
model accepts several CT slices as 3D volumetric data and 
is expected to learn the useful information in neighboring 
slices. Although using conventional texture-based imaging 
features is a feasible approach,[61] most recent studies relied 
on the CNN, which can easily deal with multi-dimensional 
images.

The authors of Monteiro et al[28] relied on Deep Medic,[76] a 
3D-CNN architecture, for the 3D-segmentation of IPH, EDH, 
edema, and IVH. Phaphuangwittayakul et al The authors 
in[29] developed a 3D-segmentation model and trained it with 
the Physio Net dataset to detect EDH, SDH, and IPH. Some 
modifications of U-net were also implemented in other stud-
ies that focused on voxel-wise hematoma segmentations.[59,60] 
Jain et al,[59] the authors reported that the median volume 
difference between the 3D U-net prediction and the expert 
reference segmentations of ICH volume was 0.07 ml. They 
also attempted the delineation and volume estimation of the 
cisterns using the same 3D-architecture and found that the 
median volume difference was 0.01mL with a correlation 
coefficient of 0.94 between the proposed scheme and expert 
ground truth.

3.7. Unsupervised approach

We found several unsupervised approaches that did 
not require any training samples. A recent work led by 
Kärkkäinen et al[65] on segmenting ICH regions from CT 
images employed a clustering technique, which is a strategy 
commonly used in unsupervised methodologies. The pro-
posed algorithm, based on the expectation-maximization 
process, adaptively determined the number of representa-
tive clusters, which are groups of pixels that have similar 
intensity values and are likely to be brain abnormalities. 
We noted that the clustering process does not require any 
ground truth, which implies that there is no need to prepare 
many annotations in advance.

Furthermore, there were 2 research articles proposing meth-
ods that used conventional image processing techniques in an 
unsupervised manner.[66,67] These studies focused on rule-based 
image processing that is applicable to ICH segmentation by tak-
ing full advantage of domain knowledge in clinical practice.

4. Discussion
In this section, we first discuss the difference between similar 
reviews focusing on TBI and our systematic review. Next, we 
discuss the limitations of existing ML studies and the possibil-
ity of fully automated TBI identification and quantification. We 
then outline the limitations of our systematic review and high-
light future research directions.

4.1. Related work

A limitation of prior TBI -related reviews was the incomplete 
coverage of all components of CT findings and ML tasks (clas-
sification, object detection, and 2D- and 3D-segmentation. A 
literature review conducted by Vidhya et al[77] was limited to 
computer-aided systems that detected ICH and midline shift. 
Further, their review of midline shift considered only classifica-
tion, and not segmentation tasks. A short review by Brossard et 
al[78] focused on recent ML developments in the automated deter-
mination of TBI lesions, but this was not a systematic review 
and many important papers were not included. Most notably, 
existing studies on 3D segmentation tasks that are applicable 
to TBI were not included, even though 3D recognition is a key 
factor in calculating the hematoma volume.

4.2. Limitations of ML studies and possibility of fully 
automated TBI identification and quantification

Most of the important components for identification and 
quantification of TBI-related abnormalities are covered 
by existing ML studies. Because ML algorithms are good 
at solving specific tasks, just 1 algorithm is not enough to 
cover a wide variety of TBI abnormalities and complications. 
However, as we demonstrated in this systematic review, each 
algorithm has a strong ability to automatically identify and 
quantify important CT findings caused by TBI. This suggests 
that a combination of existing ML algorithms can be a good 
supporting tool to alleviate the increased workload of radiol-
ogists and clinicians. Furthermore, the outcome predicted by 
ML is always the same as long as the input CT image is the 
same, indicating that the automated identification and quan-
tification of TBI also contribute to the improvement of repro-
ducibility, which is 1 of the inevitable problems in manual 
assessment.

As a limitation of current ML studies, 1 of the CT findings 
regarding TBI that were not completely covered was diffuse 
axonal injury. This is mainly due to the limited sensitivity of 
CT imaging compared to MRI. Another important CT find-
ings that current ML studies did not investigate was identi-
fication of conditions in basal cisterns (normal, compressed 
or absent), which is a key component to estimate TBI prog-
nosis.[79–81] This is possibly because the conditions are sub-
jective interpretations and difficult to define to be used as a 
ML training dataset. However, the algorithm proposed in by 
Jain et al[59] enabled the delineation and volume estimation of 
the cisterns by using the 3D-segmentation, and this approach 
can be an initial approach to fill this gap. Therefore, a com-
bination of ML algorithms identified in this work can be use-
ful tools to enhance reproducibility and support radiologists 
and clinicians in their TBI identification and quantification 
process.

4.3. Recommendations

To maximize benefits that ML techniques provide to patients 
with TBI, it is important to develop ML algorithms that are gen-
eralizable to a wide range of TBI abnormalities and easily appli-
cable to medical settings without imposing heavy burdens on 
clinicians. In this sub-section, we discuss several factors which 
prevent the development of generalizable and easily applicable 
ML models. Future research directions are proposed for over-
coming these limitations from a ML perspective.

4.3.1. Large-scale segmentation dataset. Most of the studies 
we identified used private data that could only be accessed 
internally, especially for segmentation tasks. This makes it 
difficult to benchmark the segmentation algorithms using 
the same training and test dataset. Currently, the only public 
dataset for segmentation tasks is the Physio Net ICH dataset, 
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which contains CT scans of 82 TBI patients with pixel-level 
annotations. However, there is a risk of overfitting if we use this 
small-sized data for training recent CNN-based segmentation 
models, which contain millions of learning parameters.[5] Joint 
effort to coordinate creation of large-scale publicly available 
datasets for TBI segmentation tasks is in high demand to 
construct more generalizable segmentation models.

4.3.2. Improved learning strategy. The most used learning 
strategy for scoring TBI was supervised learning (n = 60 out of 
66 articles), which generally requires a large number of training 
samples to achieve the expected performance. Unlike non-
medical images that can be annotated by anyone, only clinicians 
with a strong background in brain trauma can annotate TBI 
lesions. Furthermore, because a CT scan comprises a 3D 
volumetric dataset, a heavy workload is inevitable in preparing 
enough annotations for the supervised ML models. To develop 
ML models that are smoothly applicable to medical settings, it 
is important to consider ways to reduce the annotation cost and 
workload required for constructing datasets. The study[48] is the 
only attempt that dealt with annotations in supervised learning 
for hematoma classification. The authors utilized an active 
learning framework, in which the algorithm “actively” chooses 
training samples that are likely to improve training performance 
and interactively asks human experts to annotate them, which 
allows for a reduction in the workload of human annotators 
without compromising accuracy.

There are learning techniques that alleviate annotation work-
load, such as semi-supervised learning[5] and self-supervised 
learning.[82] These approaches could be helpful in building ML 
models efficiently and accelerating the speed of technology 
translation from bench to bedside.

4.4. Limitations

We devised our search string to consider ML papers related only 
on CT images thereby excluding other imaging modalities, most 
notably MRI. As the included studies had different objectives, 
used different datasets, and reported different performance met-
rics, we were not able to statistically compare their performance 
as a meta-analysis.

5. Conclusion
A systematic review of published ML-based studies describing 
the identification and quantification of CT findings caused by 
TBI demonstrated that many TBI-related abnormalities could be 
automatically identified and quantified by AI studies at high res-
olutions. Combination of these studies can lead to useful tools 
to enhance reproducibility by reducing subjective human factors 
and to support radiologists and clinicians by providing guidance 
in their TBI identification and quantification assessment.
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