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INTRODUCTION

The failure rate in the research and development of new 
anticancer treatments has necessitated a more objective 
approach. The three pillars proposed by Pfizer1 and the 
5Rs that followed from AstraZeneca2 demonstrate the 
importance of identifying the pharmacologically relevant 
drug exposure required in patients. The impact that such 
quantitative approaches are having on the drug develop-
ment pipeline is demonstrable3 and the part that modeling 
and simulation has played in this is significant.4,5 The ap-
plication of these approaches in oncology is precedented6 
but less mature than in the broader pharmaceutical field7 
with further work required to integrate nonclinical and 
clinical modeling.8 The majority of these reviews have 
concentrated on the determination of exposure-response 
relationships.9,10 These relationships are the foundations 
of any transitional strategy and are informative for an effi-
cacious dose/exposure setting.

Successful translational strategies require the identifi-
cation of tractable end point(s) that can be bridged across 
the nonclinical and clinical space. Overall survival (OS) 

is the gold standard end point for measuring efficacy in 
the clinic,11 and progression-free survival (PFS) is an im-
portant secondary end point. However, these end points 
are challenging from a nonclinical to clinical translational 
standpoint. Tumor size is a more accessible, immediate, 
and longitudinal measure for both clinical and nonclinical 
settings with greater potential for translation.

Tumor size and growth rates are important correlates 
of both OS and PFS. Indeed, many prognostic models 
feature tumor size at baseline12 as a major risk factor. In 
the past when few treatment options were available, data 
show that the growth rate correlates negatively with sur-
vival in breast cancer,13 ovarian cancer,14 and pulmonary 
metastases.15 Indeed, the observed pretreatment growth 
rate is predictive of re-occurrence.16

Within the oncology setting there are strong drivers to 
maximize exposure (increased efficacy, reduced likelihood 
of resistance, etc.) whereas often accepting a lower tolera-
bility profile than in other settings. Optimizing the regimen 
to achieve maximal tumor reduction with acceptable safely 
is a key part of clinical development.17,18 Optimization can 
occur empirically in the clinic by comparing regimens in a 
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randomized trial or using an early responding biomarker if 
available. However, this is not always possible or appropri-
ate19 and so nonclinical data and modeling may be infor-
mative as long as the translational strategy includes both 
dose and regimen sensitivities.

The question is then what framework should be uti-
lized to enable transitional modeling of tumor growth? 
This model needs to capture both the key properties de-
scribing tumor growth in the nonclinical and clinical set-
tings and drug effects in a way that facilitates assessment 
of both dose and regimen.

The first step in the dose-efficacy chain is the predic-
tion of pharmacokinetics (PKs) from nonclinical data and 
this aspect is well precedented and can be predicted rea-
sonably accurately using both physiologically-based PK 
(PBPK) and allometry approaches.20 In addition, account-
ing for differences in free drug exposure between animal 
models and patients improves translation of efficacious 
concentrations.21

Second, relevant biological differences in patient tu-
mors that confer sensitivity/ resistance to a given treat-
ment have to be accounted for, typically by matching these 
genetic/transcriptomic characteristics in animal models.22

Third, the experimental design and analysis should aim 
to identify the fundamental parameters of tumor growth, 
response, and resistance alongside the compound-related 
effects. Phenomenological models may be sufficient pre-
dictors for the same context23 but not for translation; 
balancing biological detail with rigorous inference is 
required.

Last, a similar level of rigor should be used to charac-
terize toxicities in the nonclinical species to enable trans-
lation to the clinical setting. Care of course should be 
taken to understand the translational relevance of toxicity 
because some may be species specific and some, for exam-
ple, nausea, may not be observable in animals.

CLINICAL EVIDENCE THAT 
SCHEDULE MATTERS

Paclitaxel was originally approved on a 175 mg/m2 every 
three week (q3w) regimen. However, it has been shown 
that in combination with q3w carboplatin, a more dose 
dense and intense regimen of 80 mg/m2 every week (q.w.) 
provides a PFS and OS advantage in ovarian cancer.24 
What is most compelling about this observation is that 
it is not simply about dosing more paclitaxel in a cycle. 
A study looking at doses up to 250 mg/m2 q3w, albeit in 
breast cancer rather than ovarian cancer,25 showed no in-
crease in PFS. These data suggest that 175 mg/m2 is near 
the plateau of the dose response curve and so lower more 
frequent dosing results in a greater net effect. A more 

recent meta-analysis of clinical data concludes that the 
weekly schedule does indeed have comparable or better 
efficacy with reduced toxicity.26

Radio-oncologists have investigated the optimal way to 
deliver radiation over many years from which a quantitative 
theoretical framework emerged. In ref. 27, Furneaux and 
colleagues demonstrated that the potential regrowth rate of 
brain cancers, as measured by ex vivo cell cycle time, was 
predictive of survival. Proving this point, a study in head 
and neck squamous cell carcinomas (HNSCC)28 showed 
similarly reduced survival in patients with increased re-
growth rate. This study also demonstrated that modifying 
the radiation delivery to be more dose dense by hypofrac-
tionation increased the survival time in these patients.

Increasing dose density of chemotherapy improved 
outcomes in patients with breast cancer, as reported by 
Citron et al.29 The fact that sequential polychemotherapy 
was as effective as concurrent administration is suggestive 
of additive or independent drug action for the treatments. 
A second metanalysis30 of the efficacy of a range of chemo-
therapies in breast cancer demonstrated that adjusting the 
regimen to deliver the same total dose in a shorter period, 
or even increasing the dose, resulted in better outcomes.

Tannock published a number of reviews on the impor-
tance of treatment regimen31–33 and that response to treat-
ment is a function of treatment effect and regrowth of the 
cancer between treatment. Skipper (e.g., ref. 34) explicitly 
modeled these as two exponential processes such that the 
dose effect lost due to regrowth is explicit:

log (TumourReduction) = Ksn − (log2∕DT) (n − 1) II
.

The first term, the dose-response Ks for n doses, is 
clearly important and there is a significant body of liter-
ature demonstrating how small reductions in dose can 
lead to suboptimal outcomes. The second term can be 
interpreted as the dose effect lost due to tumor regrowth 
of doubling time (DT) between treatment intervals of II. 
It is important to understand the relationship between 
dose intensity (dose per time, e.g., Ks/II), dose density (ad-
ministrations per time, II), and clinical outcome. These 
relationships will vary across treatment mechanisms and 
cancer types due to differences in the exposure-response 
relationship. Total dose, although well-correlated with 
outcome, will suffer from immortal time bias because 
it depends on the time a patient remains on treatment, 
whereas dose intensity, per cycle, is prespecified and will 
define the treatment effect that has to work against re-
growth in each round of treatment. There are many re-
ports citing a strong, positive relationship between dose 
intensity and OS35 in metastatic breast cancer,36 in early 
breast cancer and aggressive lymphomas,37 and ovarian 
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cancer.38 Many of the reductions in dose intensity are of 
the order of 15%–30% of the recommended dose and yet 
a significant reduction in OS is observed in many cancers, 
suggesting a steep dose-response relationship that is also 
observed in animal models.39

IMPORTANT PROPERTIES OF 
PREDICTIVE MODELS

Translational models need to describe existing data but 
also predict to a new context. Therefore, the model must 
reflect how the system differs in that new context. That a 
complex model is required to do this is a hypothesis, not 
a fact.40 In reality, overly complex models can be poorly 
performing because of the low signal to noise ratio41 and 
challenges in estimation of parameter values. To enable 
informed translation, one needs to assert which param-
eters are altered and which remain constant between ani-
mals and humans. To achieve this, parameters need to be 
well-estimated and simulations of new contexts should 
be uniquely sensitive to parameter values. Thus, a mathe-
matical model should have uniquely identifiable parame-
ters both from a structural identifiability42 and a statistical 
inference perspective.

Structural uncertainty is important as well because 
this can lead to significant misprediction.43 A model that 
works at a more macroscopic scale has fewer equations 
and parameters associated with it and so will present with 
less structural and parameter uncertainty: fewer plausible 
permutations of the processes it describes are possible. 
The challenge to the translational scientist is to balance 
parameter identifiability while ensuring that the mathe-
matical model has enough complexity to allow cross spe-
cies predictions. Careful consideration of the implications 
of structural model assumptions should be made and the 
translational scientist should design experiments that test 
these assumptions. The greatest value is obtained from 
external validation efforts, such as utilizing parameter es-
timates from in vitro systems to predict in vivo effects or 
to predicting experimental results outside of experimental 
designs already studied. It is from these efforts that robust 
translational knowledge is gained, and structural model 
limitations revealed. In doing so, issues with a model 
can be recognized and the domain of applicability of the 
model can be understood.

A balance of model complexity and identifiability has 
been achieved in the study of PKs. Compartmental mod-
els are data descriptive models that are appropriate for 
the purposes of prediction and comparison within a fixed 
context. PBPK models have had an impact in drug devel-
opment because they answer key questions of PK transla-
tion and they achieve this by reflecting the key parameters 

associated with observed PK variability. These key param-
eters have been well-characterized in the literature and 
our knowledge of mammalian physiology leaves little un-
certainty about the structure a PBPK model should take. 
Complexity has still been controlled by describing organs 
as well-mixed subsystems. Qualification with nonclin-
ical PK data is an important step in the model-building 
process, and may highlight additional processes, such as 
solubility limited oral absorption, saturable metabolic 
clearance, and target mediated drug-disposition and dis-
tribution. Without these, the predictive value of a PBPK 
model might be limited. However, there are nonclinical 
systems to investigate these processes (e.g., characterizing 
drug metabolism as an enzymatic mediated reaction with 
associated maximal rate of metabolism [Vmax] and kinetic 
metabolite [Km], measuring target binding affinity and 
expression etc.). Similarly, there are nonclinical systems 
and experimental approaches, some of which we outline 
below, that allow insight into an anticancer medication’s 
mechanism of action.

THE KEY PARAMETERS AND 
PROCESSES FOR A TRANSLATABLE 
TUMOR MODEL

We now ask what parameters and processes are required 
in an optimal model of tumor growth and treatment re-
sponse? It will be shown that besides the PK/pharmaco-
dynamic (PD) relationship, which is dependent on the 
particular treatment, the key parameters are the prolifer-
ating fraction, the cell cycle time, and the treatment inde-
pendent cell death occurring in the tumor.

A great deal of effort has been made into quantifying 
the relationship between regimen and tumor response to 
radiotherapy. This has culminated in the framework of the 
5Rs of radiotherapy.44 It can be extended to chemotherapy 
and potentially targeted treatments.33 Below, the 5Rs are 
listed alongside their systemic treatment equivalents:

1.	 Radio-sensitivity/ resistance (half-maximal effective 
concentration [EC50] and maximum effect [Emax])

2.	 Redistribution in cell cycle -  or between sensitive 
and tolerant phenotypes (Emax due to maximal 
achievable kill and time)

3.	 Re-oxygenation (as the tumor shrinks) will increase 
proliferating fraction (Emax) and its effects on,

4.	 Repopulation, the regrowth of the tumor (tumor 
growth rate and time)

5.	 Repair - persistence of PDs (time).

Sensitivity to treatment will be both a function of the 
potency of the drug and, as discussed below, the duration 
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of exposure. Redistribution in the cell cycle, whereby the 
system re-equilibrates after treatment, is important when 
delivering successive doses very rapidly, as is the case in 
radiotherapy.

Repopulation and re-oxygenation are fundamental to 
the net efficacy of repeated cycles of treatment. The lit-
erature suggests that the key parameters are the growing 
fraction (GF), the cell cycle time Tc, and cell loss fac-
tor φ.45 The GF is defined as the ratio of proliferating to 
total tumor mass. Through radio labeling experiments it 
has been found that GF is ~50% in animal models46 and 
in the clinic.47 These estimates compare well to more 
recent imaging and biomarker based measurements in 
non-small cell lung cancer (NSCLC) and breast can-
cer,48,49 as well as xenografted models. Tc has been es-
timated in the range of 12–48 h in animal models50 and 
the clinic.47 This is comparable to the DT of in vitro cell 
cultures.

If exponential growth is assumed, then the potential 
DT of a tumor is Tpot = Tc/GF. In most cases, the observed 
tumor DT is much greater than this.45 Hypothetically, 
this disconnect between potential and actual DT can 
be accounted for by intrinsic cell death. The ratio of 
death to proliferation is defined as the cell loss factor 
φ  =  1  −  Tpot  /  DT.45 Values of φ  ~  50% have been es-
timated in transplantable animal tumors,50 whereas 
it was φ ~90%–95% in human tumors51 where tumors 
grow comparably more slowly. Unfortunately, there are 
no studies demonstrating a relationship between φ and 
biomarkers of cell death, such as cleaved Caspase-3. Cell 
death is perhaps greater in clinical tumors because (i) 
they are much larger and so more hypoxic than xeno-
grafts, (ii) tumor immunity is present in patients, and 
(iii) differing selection pressure has occurred in the pa-
tient than xenografts growing in an alien environment. 
This difference could be important because it has been 
observed that cell loss plays a role in the response to 
single high doses of radiation52 due to the relative ease 
of tipping the balance between proliferation and death. 
The fact that the above parameters are comparable sug-
gests animal models are not that misleading but require 
a model-based interpretation.

Skipper et al.53 first noted that, under a broad range of 
experimental conditions, a given dose of chemotherapy 
kills a fixed proportion of proliferating cells. This principle 
of log cell kill (KS) has guided the investigation of chemo-
therapy as well as radiotherapy (surviving fraction [SF]). It 
has been reported that proliferating cells have a tendency 
to be more sensitive to chemotherapies in vitro than cells 
at rest.39 Consistent with this, many chemotherapies act 
primarily on cells that are replicating their DNA, and so 
the fraction of cells in S-phase might be an important 
determinant. Skipper and co-workers54 further proposed 

that the effect of a dose of chemotherapy was determined 
by the proliferating fraction, the rate of proliferation (cell 
cycle time), the drug concentration, and duration of drug 
exposure. They demonstrated this principle both in vitro 
and in vivo. Importantly, parameters intrinsic to the dis-
ease were brought together with drug-specific PKs and 
PDs.

In a review of data in a number of experimental 
systems, Valeriote and van Putten55 showed that cell 
cycle specific agents had a plateau in survival curves. 
Conceptually, these observations are an explanation of 
the clinical observations of the superiority of increased 
dose density. Applying the drug effect to proliferating 
cells, and relating to cell cycle time, is an explanation of 
Emax that limits the effect of high dose intermittent ther-
apy. Van Peperzeel56 demonstrated similar phenomena 
with radiotherapy of pulmonary lesions. Consistently, 
slower growing tumors (with presumably lower GF) 
were more resistant to radiation, and this relationship 
was preserved across species.

The intrinsic growth rate reduces with tumor size and 
time46,56,57 and explains the successful application of the 
Gompertzian growth model. The converse of these obser-
vations is the impact of growth acceleration when tumors 
are shrunk significantly and grow at a rate closer to their 
Tpot. In-depth investigations in nonclinical models46,58 
point to a reduction in the GF as well as φ increasing with 
tumor size. The balance of these two changes could ac-
count for the reduced growth rate and also the plateauing 
Gompertzian growth seen in larger nonclinical tumors 
when cell death balances proliferation.59

Tannock describes post-treatment acceleration as a 
form of treatment resistance32 where there will be a point 
reached where regrowth between treatments balances the 
treatment effect, resulting in a plateau of tumor size. The 
impact of acceleration in the response of animal models to 
chemotherapy can be seen in such reports as ref. 60 where 
the growth delay is much smaller than the reduced sur-
viving fraction would predict and suggests an increased 
growth rate of 2–10-fold for tumors whose volume has 
been significantly reduced by treatment.

The Norton-Simon principle61 attempts to encode 
these relationships mathematically by applying the log-
cell kill concept in vivo by stating the kill is proportional 
to the growth rate61 as a surrogate of the proliferating 
fraction. This model states that the drug effect (Emax) will 
be limited in larger, slower growing tumors and that the 
dose should be adjusted as treatment proceeds to account 
for the changing treatment effect and repopulation rate. 
Predictions made by this framework have been validated 
by clinical trials.62 Further, it was noted above that a large 
tumor pretreatment confers a poor prognosis—this is a 
baseline risk but could also be due to the fact the tumor 
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may shrink less readily under treatment due to a reduced 
GF.

MODELING HETEROGENEITY 
OF DRUG SENSITIVITY AND 
REPOPULATION

The importance of biological variability within pa-
tients63,64 and by anatomic site65 point to the need to an-
ticipate its impact on the optimal regimen. A National 
Cancer Institute (NCI) data review suggests the breadth 
of response in relevant animal models is predictive of 
clinical response.66 There also is a great deal of concern 
that nonclinical experiments are not reproducible in part 
because heterogeneity in drug response has been con-
trolled out.67 Additionally, when considering translation 
of heterogeneity, data should be gathered from a range 
of disease-relevant animal models and cell lines, and not 
only from responding drug-sensitive systems. Controlling 
variability where possible and understanding heteroge-
neity in nonclinical studies in these ways will facilitate a 
more informed translation.

In a series of studies, Inaba et al. investigated the re-
sponse rate to chemotherapies in a collection of mouse xe-
nografted models at the maximum tolerated dose (MTD) 
and clinically relevant drug exposures.68–73 The responses 
were lower at the clinically relevant doses than at mouse 
MTDs. What is surprising is by how much response re-
duced and, when considering a wide range of tumor types, 
how much more reflective of the heterogeneity of efficacy 
in the clinic they were.

Similar work was carried out with topoisomerase 1 
inhibitors in multiple xenografted models for colorectal, 
rhabdomyosarcomas, and neuroblastomas by Houghton 
and colleagues.74–79 Again, variation in response seen 
across models was used to identify the minimum drug 
exposure to control most models. This drug exposure was 
shown to be comparable to that achieved in several clin-
ical investigations where responses were observed. This 
approach explained the lack of activity for some camp-
tothecin derivatives because the required drug exposure 
was intolerable in patients. It was also concluded that 
dose dense therapy was most optimal—echoing clinical 
findings.

Each animal model can be considered as a separate 
representation of clinical disease and the data used to es-
timate the potential interpatient variability. Certainly, the 
use of heterogeneity in experimental results and conclu-
sions would lead us to believe the most negative data as 
least as much as the most positive, if not more. As demon-
strated by the work of Houghton et al., overall response 
rate (ORR) and PFS are not about average patient drug 

cover—it is the proportion of patients covered. This could 
never be assessed in a single animal model.

Consider again the analogy of PBPK modeling: its suc-
cess lies in its ability to predict between patient variability 
in drug exposure using knowledge of variability of under-
lying physiological parameters. Patient derived xenograft 
(PDX) “n  =  1 mouse trials” could be used to inform on 
variability and heterogeneity. Although interest in the 
development of these types of studies has been primarily 
for signal searching and patient selection, parameterizing 
mathematical models using these data would be another 
application.

Therefore, a translational model should be able to cap-
ture both the heterogeneity of response across models and 
variability in response within models for maximal utility. 
Nonlinear mixed effects are a familiar tool for many re-
searchers and thus a model structure is required that will 
work within this statistical framework.

MODELS CURRENTLY IN THE 
LITERATURE

There are a plethora of models in the literature, many 
with macroscopic behaviour,23 similar to the Gompertzian 
like growth, but the question remains whether these can 
make valid predictions.80,81 Gompertzian growth mod-
els have been the most commonly applied, starting with 
Laird59 and continuing with Norton and Simons,82 be-
cause of their ability to model growth retardation with an 
exponentially reducing rate of growth. One issue is that it 
predicts a plateau in tumor size that is rarely observed in 
individuals. Burton83showed that a ratio of 7–8 between 
the two Gompertzian parameters (the initial exponential 
rate and the rate at which this decays) is predicted by con-
sidering diffusion limited growth and that this was the 
case for reported parameter sets at the time. Brunton and 
Wheldon84 show that the two Gompertzian parameters 
are again highly correlated for a wide range of nonclinical 
tumors, something conjectured elsewhere,85 and formal-
ized by Vaghi et al.86 Remarkably, the ratio is consistently 
between 8 and 10 pointing to an underlying mechanism of 
diffusion limited growth.

Other models have approached a size dependent 
growth rate from a physical point of view. The semi-
nal work by Greenspan87,88 considered tumor spher-
oids grown in vitro and solid tumors growing in vivo. 
It was assumed that oxygen and nutrients required for 
successful cellular proliferation were delivered exter-
nal to a spherical mass. This results in the prediction 
of a proliferating region near the surface of the tumor. 
This was mathematically expressed as partial differ-
ential equations that can be challenging to deal with 
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numerically, including parameter estimation. Conger 
and Ziskin89 took a simplifying step and assumed that 
this proliferating region was of a constant depth. This 
allowed the diffusion limited model to be expressed as 
ordinary differential equations (ODEs) with the inclu-
sion of a necrotic core compartment that develops in the 
extremely hypoxic region near the core. For very small, 
fully oxygenated tumors, the growth rate is exponential; 
as the tumor grows this constant depth proliferating 
shell becomes a decreasing fraction of the whole tumor 
mass, resulting in growth retardation. They note that 
for large tumors the tumor radius will increase linearly 
with time, a phenomenon first reported and modeled by 
Mayneord in the 1930s90 and later Jumbe et al.91

Generally, nonclinical tumor modeling suffers from is-
sues of empiricism.92,93 Few models consider effects propor-
tional to proliferating fraction or other phenotype that might 
be sensitive to treatment mechanism. The limitations of 
such models have been discussed elsewhere.81 For example, 
in the widely used Simeoni et al. model,93 drug effect is inde-
pendent of the exponential or linear phase of tumor growth.

There are also a number of reviews of pharmacom-
etric applications6,7,9 where the models have most of the 
required phenomenological components (growth law, 
drug effect, and sometimes resistance) but they are de-
scriptive, often with emphasis on the correlation between 
initial tumor response and OS. Few explicitly stated the 
questions that needed to be addressed, especially with re-
spect to translation. Many lack the explicit dependence of 
tumor response on regimen. In contrast to PK modeling, 
where most practitioners will use the same model struc-
tures, antitumor data have had a whole range of different 
models applied that are not directly comparable.6

One issue with the application of a descriptive mathe-
matical model to data is that it may give a biased estimate 
of drug effect, thus compromising translational potential.94 
To consistently derive translationally unbiased exposure-
response relationships, a modeling framework needs to 
incorporate important pathophysiological parameters. 
Few if any current models exhibit the key processes and 
can be readily parameterized with cell cycle time, GF, and 
cell loss. This limits computational exploration of regimen 
optimization: in fact, optimization is rarely discussed ex-
cept in a few cases.95

Parsimonious models considering cellular proliferation, 
proliferating, and nonproliferating compartments and cell 
death have been reported.96 These reports also considered 
the impact of the chemotherapy regimen. The transition 
rates in this model were constant and therefore the steady 
state GF is size independent. Kozusko and co-workers97 
reasoned that the observed growth retardation is due to 
GF reducing with tumor size (in line with experimental 
data) and so modified the framework of Gyllenberg and 

Webb with tumor size-dependent transition rates between 
proliferating and nonproliferating states. By comparing 
this general framework to specific growth laws, they were 
able to express Logistic and Gompertzian growth with ex-
plicit proliferating fractions.98

A PROTOTYPE SOLUTION

A prototype model is described that encodes the funda-
mental processes of size-dependent GF cell cycle time 
Tc, and cell loss factor φ, while minimizing complexity. 
The Conger model,89 approaches modeling the GF from 
a physical point of view. It assumes that the proliferating 
fraction is a layer of constant depth near the surface of 
the tumor. Conceptually, ignoring a necrotic fraction, this 
model for the tumor volume (V) can be written as a single 
ODE:

Where r is the radius of the tumor assuming a spherical 
geometry, Rdiff is the depth of the proliferating compart-
ment (fraction GF) into the tumor, and β, μP, and μQ are 
the rates of proliferation, cell death in the proliferating 
(P) and quiescent (Q) compartments, respectively. This is 
a mathematical form proposed by Tannock,57 however, it 
is more useful to write this using framework proposed by 
Kozusko and Bourdeau98:

where

and

is the growing fraction when tumor size plateaus.
The GF alters explicitly a function of the rate of tumor 

growth. Notice the first term of the last factor for GF is 
related to cell death in the quiescent compartment and the 
second is transfer of mass across the boundary between P 
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and Q. This factor is always negative and so the GF will re-
duce with increasing tumor size, and this decrease will be 
approximately exponential for small GF. Interestingly, the 
rate of change of GF is also independent of total tumor vol-
ume. These are very similar behaviors to the Gompertzian 
model. In fact, this model, when there is cell death in the 
quiescent compartment, will plateau with a non-zero GF. 
The tumor volume this occurs at will be dependent upon 
the initial GF.

In this model, there is cell death in both compartments. 
The relationship between these rates, the GF, and the cell 
loss factor φ, are as follows:

The data in the literature do not define to what extent 
the total cell loss factor should be apportioned to the pro-
liferating (GF) and quiescent (1-GF) compartments. The 
increase in cell loss factor for larger tumors, and the ten-
dency to plateau, suggests at least some cell death should 
be occurring in the quiescent compartment. The death in 
the proliferating compartment will only be distinguish-
able from proliferation if data are available for antipro-
liferative treatment. If only control data are available, 
then only β − μP can be identified. Besides this, a previous 
analysis99 of this type of model demonstrates parameter 

identifiability. For an initial proportion, α, of cell loss fac-
tor in the proliferating compartment, with the remaining 
in the quiescent compartment, the rates of death in the 
proliferating and quiescent compartments required to ac-
count for the total cell loss factor are:

The parameter m is now redefined to include an an-
tiproliferative (saturable defined by maximum unbound 
systemic concentration [Imax] and half-maximal inhibi-
tory concentration [IC50]) and cytotoxic (linear defined by 
Kkill) drug (Cp) effects to illustrate how drug effects might 
be implemented and so the behavior of this model under 
treatment can be demonstrated.

The results of the control growth and response to a range 
of doses of a cytotoxic treatment are now demonstrated. In 
Figure  1, all parameters are kept constant except for the 
initial condition of the GF. Despite growing more rapidly 
and having a greater proportional repopulation between 

� =
�PGF0 + �Q

(

1 −GF0
)

�GF0

�P = ���

�Q = �� (1 − �) ⋅
GF0

1 −GF0

m = �

(

1 −
ImaxCp

IC50 + Cp

)

− �P − KkillCp + �Q

F I G U R E  1   Increased growth fraction (GF) leads to more rapid control growth and greater cytotoxic drug effect per dose as measured 
by tumor size reduction. All parameters constant (β = 1/24, ϕ = 50%, α = 1, Kkill = 0.015) except for initial condition of GF0 with 40% on the 
left and 80% initial growing fraction on the right. CLF, cell loss factor
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cycles of treatment the tumor with the larger GF responds 
much more to each dose, resulting in tumor shrinkage at 
the top dose. Figure 2 shows the impact of cell loss for sin-
gle and repeat dose. The impact is twofold—the greater 

background cell death results in a slightly stronger effect on 
tumor volume, even for the first dose. Second, the reduced 
rate of repopulation means there is an increased accrued 
effect. In addition, note in this case the increasing drug 

F I G U R E  2   Increasing cell loss factor (50% vs. 90%) reduces control growth and increases the net drug effect. All other parameters are 
kept constant (β = 1/24, GF0 = 0.5, α = 1, Kkill = 0.015) except for cell loss factor. CLF, cell loss factor

F I G U R E  3   The effect of accelerated regrowth on long-term response to treatment. Here, the increased regrowth rate for small tumors 
balances the treatment effect and a plateauing similar to that for drug resistance is observed. All parameters are kept constant (β = 1/24, 
GF0 = 0.5, α = 0.3, Kkill = 0.015) except for cell loss factor (CLF)
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effect as the tumor shrinks and the GF increases. Figure 3 
shows the impact of accelerated regrowth. For both values 
of cell loss factor, the highest dose achieves a pseudo-steady 
state of volume reduction and regrowth. For the 90% cell 
loss factor scenario, significant shrinkage is achieved over 
the first few cycles, down to ~ 10% of the initial volume. 
Depending on the timing of measurement this would have 
been a partial responder who would then have been judged 
to be progressing. Finally, Figure 4 demonstrates the prin-
ciple of fractionated dosing with increased dose density. In 
Figure 4, dose levels are taken from the paclitaxel treatment 
regimen discussed above: it can be seen that more frequent 
dosing at a lower strength maintains a greater response. 
Note also in all simulations that growth acceleration sig-
nificantly reduces the resulting growth delay.

DISCUSSION

Mathematical modeling is a key component of drug re-
search and development. Importantly, there is a need 
to have a translational model of tumor response kinet-
ics. It has been argued that such a model should occupy 
a sweet-spot, containing necessary mechanisms to be 
translatable: purely descriptive models will have uncer-
tainty of how they apply to a new context, more mecha-
nistic models will suffer from structural and parameter 
uncertainty. A model does not need to be complex; it 
needs to be mechanistically informed. The processes and 
parameters that support a translatable approach have 
been reviewed, namely growing fraction, cell cycle time, 
and intrinsic cell loss.

A prototype translatable model that reproduces the ob-
servations in the literature has been presented. This model 
comprises two ODEs with five parameters: the initial con-
ditions, rate of proliferation and cell death, in the prolifer-
ating and quiescent compartments. Such a level of model 
complexity is appropriate for the application of nonlinear 

mixed effects to quantify between tumor variability. One 
of the uncertainties associated with this model is how to 
apportion cell loss between the two compartments. This 
will impact the rate of growth retardation and the volume 
at which the tumor starts to plateau. A greater uncertainty 
is the geometry of the proliferating fraction. Here, it has 
been assumed to be determined by diffusion-limited oxy-
gen delivery from the outside of the tumor, in line with the 
works of Conger and Ziskin as well as Greenspan. There is 
evidence that this geometry is appropriate. When investi-
gating the differences in drug washout kinetics in healthy 
and cancerous tissue in animals, Baish et al.100 demon-
strated a strong relationship with vascular architecture 
and that tumor drug kinetics behaved as a concave (blood 
vessels outside, distributing in) geometry.

Key to the success of any modeling approach is good 
experimental data for calibration purposes. Such data 
should be as informative as possible and investigate the ef-
fects of treatment over a wide dose range in animal cancer 
models. Of course, multiple scheduling options should be 
considered as well to validate the model’s ability to cap-
ture schedule dependence of antitumor activity.

There are several aspects of tumor growth modeling 
that have not been discussed here. For example, build-
ing PD biomarkers into the model to understand how 
target engagement is predictive of efficacy. In radiother-
apy, DNA damage repair is an important determinant of 
the frequency of dosing. For systemic therapies, “repair” 
might be that of directly induced DNA damage, but more 
broadly the persistence of the PD effect in normal and 
malignant tissue. Similarly, a cell cycle model could be 
incorporated into a tumor growth model. This may give 
further insight into the mechanism of action of treat-
ment, including combination treatment.101 In some cases, 
a delay between drug action and cell kill might have to 
be accounted for. The role of the immune system in an-
imal models and patients has also not been considered. 
The aim here was to expose the wealth of knowledge for 

F I G U R E  4   The effect of dose density: 
under this parameterization overall 
dose dense regimen at a lower dose level 
is more effective (β = 1/24, ϕ = 50%, 
GF0 = 0.5, α = 1, Kkill = 0.007)
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tumor targeting approaches. There are modeling studies 
of tumor-immune interactions reported in the literature 
giving confidence that these aspects can be more system-
atically incorporated.102

One clear gap is making predictions of potential pa-
tient heterogeneity and how this might impact optimal 
treatment regimens. One aspect that certainly requires 
greater attention is drug resistance.95,103 This requires us 
to model mathematically, and so experimentally, such 
sources of variability. To achieve this there is the oppor-
tunity to parameterize models either using different xeno-
grafted models, or to harness data from “n = 1” PDX trials 
that attempt to model clinical heterogeneity.

Mathematical modeling has had a significant impact 
on the discovery and development of treatments for can-
cers. Here, an opportunity to increase the quantitative 
translation of information rich nonclinical studies to clin-
ical treatment regimen has been discussed. Such infor-
mation can inform the optimization of dose and schedule 
in the clinic. Models of tumor growth and response that 
capture the key differences between animal models and 
patients are vital to this endeavor.
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