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Background: 5-methylcytosine has a profound impact on the development and

progression of hepatocellular carcinoma. The aim of this study was to

investigate the usefulness of 5-methylcytosine in determining the prognosis,

tumor microenvironment, and applicability of precision medicine in

hepatocellular carcinoma.

Methods: We collected data of seven hepatocellular carcinoma cohorts (The

Cancer Genome Atlas, International Cancer Genome Consortium, GSE14520,

GSE6764, GSE9843, GSE63898, GSE76427). An unsupervised clustering

method was used to identify novel subtypes of hepatocellular carcinoma

based on the expression 5-methylcytosine gene signatures. The 5-

methylcytosine score was determined using the least absolute shrinkage and

selection operator method based on the differential expression of genes in the

identified subtypes. Subsequently, we investigated the association between 5-

methylcytosine-based clusters (according to the 5-methylcytosine score) and

clinical outcomes, immunophenotypes, classical molecular subtypes, and

therapeutic opportunities in hepatocellular carcinoma. Finally, we examined

the sensitivity of patients with high 5-methylcytosine score to drugs.

Results: We identified two hepatocellular carcinoma-specific, 5-

methylcytosine-based subtypes (clusters 1 and 2). Cluster 1 exhibited

significantly higher 5-methylcytosine scores versus cluster 2. The 5-

methylcytosine-based subtypes accurately predicted classical molecular

subtypes, immunophenotypes, prognosis, and therapeutic opportunities for

patients with hepatocellular carcinoma. Cluster 1 (high 5-methylcytosine score)

was characterized by lower anticancer immunity and worse prognosis versus

cluster 2 (low 5-methylcytosine score). Moreover, cluster 1 (high 5-
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methylcytosine score) exhibited low sensitivity to cancer immunotherapy, but

high sensitivity to radiotherapy and targeted therapy with lenvatinib.

Conclusion: The novel 5-methylcytosine-based subtypes (according to the 5-

methylcytosine score)may reflect the prognosis, tumormicroenvironment, and

applicability of precision medicine in patients with hepatocellular carcinoma.

KEYWORDS

5 mCmethylation, hepatocellular carcinoma (HCC), immune escape, immunotherapy,
biomarker

Introduction

In 2018, hepatocellular carcinoma (HCC) ranked third

among the leading causes of cancer-related death, accounting

for >700,000 deaths worldwide (Bray et al., 2018). Despite rapid
advancements in diagnostic and treatment strategies, 80% of

patients are diagnosed with advanced disease, thus missing the

optimal time for surgery (Kanwal and Singal 2019).

Notwithstanding the merits of molecular targeting agents and

immunotherapy, improvements in patient survival have been

modest due to the high degree of heterogeneity in the tumor

microenvironment (TME) of HCC (El-Khoueiry et al., 2017;

Llovet et al., 2018).

The TME is a complex system which includes cancer cells,

immune cells, and extracellular matrix (Chew et al., 2017). Due to

TME heterogeneity, cancer cells of patients with the same

pathological stage and grade may display distinct behaviors.

This may result in varied clinical responses to the same

treatment and impede the use of precision medicine (Burrell

et al., 2013; Prasetyanti and Medema 2017).

Molecular subtype is a competent method which showed

huge potential in addressing heterogeneity and determining the

applicability of precision treatment in patients with HCC. A

considerable amount of research has been conducted over the

past decade to develop molecular subtype systems based on RNA

sequence data. For example, classifications have been proposed

by Boyault et al. (G1–G6) (Boyault et al., 2007), Chiang et al. (five

subclasses) (Chiang et al., 2008), Hoshida et al. (S1–S3) (Hoshida

et al., 2009), Désert et al. (four subclasses) (Désert et al., 2017),

and Yang et al. (C1–C3) (Yang et al., 2020). Although the

research groups developed their molecular subtype systems

based on special criteria and algorithms, the long detection

period and non-negligible diversity of each molecular subtype

may impede their clinical application. Thus, a more rapid and

accurate molecular subtype is required to promote the use of

precision medicine.

In recent years, an increasing number of studies have

focused on genome methylation, including 5-

methylcytosine (5 mC), N6-methyladenosine, and N1-

methyladenosine. Research has illuminated that the

frequency and number of aberrant DNA methylations are

closely associated with HCC(Nishida et al., 2008). A previous

study demonstrated that 5 mC methylation plays a key role in

the occurrence and development of HCC (Hlady et al., 2019).

Villanueva et al. revealed that 5 mC methylation is closely

associated with clinical stages, progression, prognosis, and

survival rate in HCC(Villanueva et al., 2015). Moreover, in

recent years, accumulating evidence has suggested that 5 mC

shapes TME heterogeneity by affecting genomic stability,

determining the state of cancer cell differentiation, and

clarifying cell identity (Kandimalla et al., 2013; Bogdanović

and Lister 2017; Kelly and Issa 2017; Biswas and Rao 2018).

This evidence indicated that DNA methylation-based

molecular subtypes may perform well in addressing the

TME heterogeneity in HCC. Nevertheless, the high

economic burden and complexity associated with

methylation profiling are detrimental to the

clinical application of DNA methylation-based molecular

subtyping.

To address the aforementioned challenges, we developed a

5 mC-based subtyping system from the mRNA perspective. A

prognosis-associated signature (5 mC score system) was

subsequently developed and validated, which showed good

performance compared with previously established

signatures. We assessed the correlation among 5 mC

subtypes (and 5 mC scores), TME heterogeneity, immune

phenotypes, clinical characteristics, and therapeutic

opportunities in HCC. Finally, a promising agent

(irinotecan) was identified for the treatment of patients with

a high 5 mC score, that may improve the current population-

based therapeutic strategies for HCC.

Methods

Data collection and processing

We collected data from two RNA-sequencing and five

microarray cohorts for analysis. Patients without detailed

clinical information were eliminated. The RNA-sequencing

cohorts included the Liver cancer—RIKEN, JP project (LIRI-

JP) cohort (n = 231) and The Cancer Genome Atlas-Liver

Hepatocellular Carcinoma (TCGA-LIHC) cohort (n = 373).

The microarray cohorts included GSE14520 (n = 221),
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GSE6764 (n = 35), GSE9843 (n = 91), GSE63898 (n = 228), and

GSE76427 (n = 115).

Gene expression data (raw counts) and clinical data of the

LIRI-JP cohort were downloaded from the International

Cancer Genome Consortium (ICGC) portal (https://dcc.

icgc.org/projects/LIRI-JP). Raw counts were transformed

into transcripts per million (TPM) values for subsequent

analysis.

Gene expression data (raw counts), methylation data, copy

number data, clinical data, and sample information of TCGA-

LIHC cohort were downloaded from TCGA website (https://

portal.gdc.cancer.gov/repository). Raw counts were transformed

into TPM values for subsequent analysis. Mutation data of

TCGA-LIHC cohort were obtained from Broad Institute’s

GDAC Firehose (http://gdac.broadinstitute.org/). Differentially

expressed genes (DEGs) between cancer and normal tissues were

identified using the DESeq2 R package based on raw counts data

(Love, Huber, and Anders 2014). Differentially expressed

methylation sites between cancer and normal tissues were

identified using the ChAMP R package (Tian et al., 2017).

The expression data and detailed clinical information of the

GSE14520, GSE6764, GSE9843, GSE63898, and

GSE76427 cohorts were downloaded from the Gene

Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/

geo/). Raw expression data of the GSE14520, GSE6764,

GSE9843, and GSE63898 cohorts were normalized using the

robust multi-array average method in the Affy R package. Raw

expression data of the GSE76427 cohort were normalized using

the robust spline normalization method in the lumi R package.

The corresponding clinical information was obtained from the

supplementary files of the articles to which they belonged. We

merged the datasets downloaded from GEO website and

composed the GEO-meta dataset.

All datasets were combined, and batch effects were

eliminated by applying the “Combat” algorithm in the sva R

packages. The merged data were examined by t-SNE algorithm.

Detailed information on these cohorts is provided in

Supplementary Tables S1A–H.

Unsupervised clustering of 12 5mC
regulators

The 5 mC regulators can be divided into three categories:

writers, erasers, and readers. In this analysis, we collected 5 mC

regulators from previous studies (Schübeler 2015; Wu and Zhang

2017; Ginder and Williams 2018; Chen et al., 2020; Hu et al.,

2021a). Next, we selected the intersection of 5 mC regulators and

the genes we had collected from our datasets. Finally, we selected

12 5 mC regulators, which included three writers (DNA

methyltransferase three alpha [DNMT3A], DNMT3B, and

DNMT1), one eraser (thymine DNA glycosylase [TDG]), and

eight readers (methyl-CpG binding domain protein 1 [MBD1],

MBD2, MBD3, MBD4, methyl-CpG binding protein 2 [MECP2],

nth like DNA glycosylase 1 [NTHL1], single-strand-selective

monofunctional uracil-DNA glycosylase 1 [SMUG1], and

uracil DNA glycosylase [UNG]). We performed a consensus

clustering analysis of the expression profiles of the 12 5 mC

regulators using the ConsensuClusterPlus R package. To

establish the real-world applicability of this classification

system, we carried out unsupervised clustering for all cohorts

after merging (n = 1,294) (Wilkerson and Hayes 2010). We set

the parameters of the unsupervised clustering analysis as follows:

pItem = 0.8; maxK = 6; reps = 100; clusterAlg = km; and

distance = euclidean. Survival analysis for the identified

clusters was carried out utilizing the “survival” and

“survminer” R packages.

DEG identification and functional
annotation

We screened DEGs (criteria: |log fold change| >1 and

adjusted p-value <0.05) between different 5 mC subtypes using

the limma R package. To further explore the potential functions

of 5 mC cluster-related DEGs, we carried out Gene Ontology and

Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis

using the Database for Annotation, Visualization, and Integrated

Discovery (DAVID) (Huang et al., 2009).

Construction of the 5mC score system

We developed a 5 mC scoring system to evaluate the 5 mC

patterns of individual tumors. Firstly, we screened the DEGs

using univariate Cox analysis. DEGs with p-values <0.05 were

selected for further analysis. Next, we applied least absolute

shrinkage and selection operator (LASSO) Cox regression

analysis with 10-fold cross-validation in the “glmnet” R

package to screen for optimal 5 mC subtype-related gene

signatures in HCC (Friedman et al., 2010). The 5 mC score

was calculated based on the relative expression of each

screened signature and its associated Cox coefficient. The

calculation formula was as follows:

5mC score � ∑
n

i�1
(CoefipExpri)

Coefi refers to the LASSO Cox coefficient of signature i.

Expri is the expression of the gene in the signature for patient

i. Patients were divided into high and low 5 mC risk score

groups according to the median value. To further evaluate the

ability of the 5 mC score for the prediction of prognosis, we

performed univariate and multivariate Cox regression

analyses with several important clinical features using data

from TCGA, ICGC, GEO-meta cohorts, and all patients. To
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render the system clinically applicable, we used clinical

characteristics and the 5 mC score to develop a predictive

nomogram utilizing the rms R package. Calibration plots were

used to evaluate the predictive performance of the nomogram.

Decision curve analysis was carried out to estimate

the suitability of the nomogram for clinical use

according to the study conducted by Iasono et al. (Iasonos

et al., 2008).

Prediction of the classical molecular
subtypes of HCC

We analyzed the association between 5 mC subtypes and five

different transcriptome-based HCC classifications, namely those

proposed by Boyault et al. (G1–G6) (Boyault et al., 2007), Chiang

et al. (five subclasses) (Chiang et al., 2008), Hoshida et al. (S1–S3)

(Hoshida et al., 2009), Désert et al. (four subclasses) (Désert et al.,

2017), and Yang et al. (C1–C3) (Yang et al., 2020). We

downloaded the signatures of these classical molecular

subtypes and predicted the subtypes through nearest template

prediction (NTP) analyses in the GenePattern website (https://

cloud.genepattern.org/). We used receiver operating

characteristic (ROC) curves to evaluate the performance of

the 5 mC score in predicting classical molecular subtypes. A

series of immunotherapy, target therapy, and radiotherapy

signatures established by previous research were collected

(Supplementary Table S4).

Estimation of the immunological
characteristics of TME in HCC

The TME is a complex and heterogeneous system which

includes cancer cells, immune cells, extracellular matrix, and

various immunomodulators.

Initially, we collected 163 immunomodulators (four major

histocompatibility complexes, 35 immunostimulators,

35 immunoinhibitors, three interferons, 30 interleukins, and

22 other cytokines) from The Cancer Immunome Atlas

(Charoentong et al., 2017). We compared differences in

expression between the 5 mC-based subtypes and calculated

the correlation between 5 mC scores and their expression

levels. Chen et al. summarized the process of the anticancer

immune response cancer immunity cycle theory (Chen and

Mellman 2013). The cancer immunity cycle included seven

steps: release of cancer cell antigens (Step 1), cancer antigen

presentation (Step 2), priming and activation (Step 3), trafficking

of immune cells to tumors (Step 4), infiltration of immune cells

into tumors (Step 5), recognition of cancer cells by T cells (Step

6), and killing of cancer cells (Step 7). We assessed these seven

steps using the Tracking Tumor Immunophenotype (TIP)

website (http://biocc.hrbmu.edu.cn/TIP/) (Xu et al., 2018). In

recent years, numerous algorithms were developed to assess the

levels of immune cells in the TME based on bulk RNA-

sequencing data. However, different algorithms may exhibit

non-negligible diversity. To avoid the potential diversity, we

estimated the immune cell infiltration in the TME using six

independent algorithms: Cibersort; Cibersort-ABS; MCP-

counter; quanTIseq; TIMER; and xCell utilizing the TIMER 2.

0 website (http://timer.comp-genomics.org/) (Li et al., 2020).

Next, we selected the effector genes of tumor-infiltrating

immune cells identified in previous studies (Hu et al., 2021b).

Subsequently, we collected gene signatures positively correlated

with the clinical response to treatment with an anti-programmed

cell death-ligand 1 (anti-PD-L1 agent; atezolizumab)

(Mariathasan et al., 2018). Finally, we collected a series of

positive, negative, and hyperprogression gene signatures of

immune checkpoint blockade (ICB) therapy (Supplementary

Table S4).

Collection of therapy-specific signatures,
therapy targets, and other functional
pathways

Critical therapy-specific signatures, including noninflamed

TME-related oncogenic pathways, signatures related to

epidermal growth factor receptor (EGFR) targeted therapy,

and signatures related to radiotherapy, were collected from a

previous study (Hu et al., 2021a). We also collected the drug

targets of sorafenib and lenvatinib from the DrugBank database

to further analyze the potential ability of the 5 mC score and

5 mC-based subtypes to predict therapeutic opportunities for

patients with HCC. The hallmark pathways and KEGG

pathways were collected from the MsigDB database

(Liberzon et al., 2015).

Screening for potential therapeutic agents

Expression profile data for a human cancer cell lines (CCLs)

were downloaded from the Broad Institute Cancer Cell Line

Encyclopedia (CCLE) (Ghandi et al., 2019). Drug sensitivity data

for CCLs were obtained from The Cancer Therapeutics Response

Portal (CTRP) version 2.0 (https://portals.broadinstitute.org/

ctrp) and PRISM Repurposing dataset (19Q4; https://depmap.

org/portal/prism/). Both datasets provided area under the curve

(AUC) values as a measure of drug sensitivity; lower AUC values

denoted increased sensitivity to treatment. Compounds

with >20% missing AUC values were excluded. Next,

K-nearest neighbor imputation was applied to impute the

missing AUC values of the remaining compounds. The

expression profile data of the human CCLs in CTRP and

PRISM were obtained from the CCLE project and used for

further analysis.
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Statistical analysis

All statistical tests were performed using the R statistical

software (version 3.6.1, R Core Team; R Foundation for

Statistical Computing, Vienna, Austria). Comparison of a

continuous variable in two or more groups was performed

using the Wilcoxon rank-sum test or Kruskal–Wallis test. The

correlation between two continuous variables was evaluated

using Spearman’s rank-order correlation. The survival curves

for each dataset were generated by Kaplan-Meier analysis, and

statistically significant differences were determined using the log-

rank test. All survival analysis, including Kaplan-Meier and Cox

analyses, were carried out for patients with survival times and

status. Patients without survival times and status were

eliminated. The ROC curve was used to assess the specificity

and sensitivity of the 5 mC scores, and the AUC was quantified

using the pROC R package (Robin et al., 2011). All p-values were

two-sided, and p < 0.05 denoted statistically significant

differences.

Results

Landscape and multi-omics analysis of
5mC regulators in HCC

The 5 mC regulators exhibited a relatively low mutation

rate in patients with HCC (Supplementary Figure S1A). Of the

372 patients with HCC in TCGA-LIHC cohort, 26 (6.99%) had

mutations in 5 mC regulators. Among them, DNMT3A had

the highest mutation frequency (2%), followed by TDG,

MBD4, MECP2, UNG, DNMT1, DNMT3B, MBD1, MBD2,

MBD3, NTHL1, and SMUG1. The copy number variation

(CNV) of the 5 mC regulators in TCGA-LIHC cohort showed

that DNMT3A, DNMT3B, and MECP2 exhibited widespread

CNV amplification. DNMT1, MBD1, MBD2, MBD3, and

NTHL1 showed CNV deletion (Supplementary Figure S1B).

We further analyzed the correlation between CNV and the

mRNA expression levels of the 5 mC regulators. We observed

that the CNV of most 5 mC regulators was significantly

positively correlated with the mRNA expression levels

(Supplementary Figure S1B). We also analyzed the

methylation status of the 5 mC regulators between HCC

and normal tissues in TCGA-LIHC cohort. According to

our results, most 5 mC regulators showed higher

methylation levels (Supplementary Figure S1C). Moreover,

the methylation showed a significant negative correlation with

the expression of DNMT1, MBD2, and MBD3

(Supplementary Figure S1C). There were significant

differences in the expression levels of 5 mC regulators

between HCC and normal tissues in TCGA-LIHC cohort.

We observed that DNMT1, DNMT3A, DNMT3B, MECP2,

MBD1, and SMUG1 were significantly upregulated, whereas

MBD4 was significantly downregulated, in HCC tissues

compared with normal tissues (Supplementary Figure S1D).

Most 5 mC regulators were significantly positively correlated

with others. However, NTHL1 showed an opposite trend

(Figure 1B). The Cox analysis showed that the majority of

5 mC regulators were adverse prognostic factors in all patients

(Figure 1B).

Identification of 5mC subtypes in HCC

The workflow of developing 5 mC clusters and 5 mC scores

in this study is illustrated in Figure 1A. As shown in Figure 1C, all

patients were classified into several clusters based on the mRNA

expression profile of 12 5 mC regulators using a consensus

clustering algorithm. The findings showed that the entire

cohort could be classified into two clusters, namely cluster 1

(n = 503) and cluster 2 (n = 791) (Supplementary Table S1B–H).

The two clusters showed significant differences in prognostic

outcomes (Figure 1D). Patients in cluster 1 showed significant

worse survival outcomes compared with those in cluster 2. In

addition, the clinicopathological characteristics and expression of

5 mC regulators showed different patterns between the two

clusters (Figure 1E). Cluster 1 included younger patients,

more females, patients with more advanced disease, and

exhibited a higher mortality rate compared with cluster 2.

Furthermore, univariate and multivariate Cox regression

analyses revealed that 5 mC cluster was an independent

prognostic factor (Figure 1F).

Construction and validation of the
prognostic 5mC score system

The workflow adopted in this part of the study is

illustrated in Figure 2A. Firstly, we identified

117 downregulated and 80 upregulated DEGs between the

two 5 mC-based clusters in all patients (Figures 2B,C;

Supplementary Table S2A). Next, a univariate Cox

proportional risk regression model with a threshold of p <
0.05 was used to identify the DEGs associated with the overall

survival of all patients. A total of 107 downregulated and

74 upregulated DEGs associated with survival were initially

identified (Figure 2C; Supplementary Table S2A). Gene

Ontology and KEGG enrichment analyses showed the

DEGs were mainly enriched in metabolism and cell cycle

(Supplementary Figure S1A, B). Thereafter, we calculated

the 5 mC risk score using the LASSO method based on the

survival information and expression profile of the survival-

related DEGs. We trained the 5 mC score system using data

from the TCGA-LIHC cohort. We also validated the system

using data from the LIRI-JP and GEO-meta (GSE14520 and

GSE76427) cohorts. The relative regression coefficients of
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survival-associated DEGs were subsequently calculated using

a LASSO analysis. Coefficients of survival-associated DEGs

were reduced to zero by forcing the sum of the absolute value

of the regression coefficients to be below a fixed value. Using

the LASSO method, a total of 25 survival-associated DEGs

were selected as the most powerful prognostic markers

(Figure 2C). Detailed information on these 25 survival-

associated DEGs and their coefficients are presented in

Supplementary Table S2A. The 5 mC score for each patient

was calculated by combining the expression levels of the

LASSO marker with the corresponding LASSO coefficients.

Patients were classified into high- and low-risk groups based

on the median value of their 5 mC scores. Kaplan–Meier

survival analysis of data obtained from TCGA-LIHC cohort

showed that patients in the high-score group were associated

with a significant worse prognosis than those in the low-score

group (Figure 2D). The univariate and multivariate Cox

regression analyses showed that the 5 mC score was an

independent predictive factor for patients in TCGA cohort

(Figure 2E). Similar results were obtained in the analysis of the

test set (LIRI-JP and GEO-meta cohorts) and all patients

(Figures 2F–H). The univariate and multivariate Cox

regression analyses also showed that the 5 mC score was an

independent predictive factor for ICGC cohort, GEO meta

cohort and all patients (Figure 2E). Our results showed that

cluster 1 had significantly higher 5 mC scores than cluster 2

(Figure 2I). The 5 mC score could effectively quantify the

5 mC-based clusters (Figure 2J). To determine the biological

FIGURE 1
The clinical relevance of 5 mC clusters in the meta cohort. (A) Overview of developing 5 mC clusters and 5 mC scores. (B) The correlation
among the expression of 5 mC regulators and the prognostic value. In the left panel, each point represents the correlation of the 5 mC scores and the
scores of each step in the cancer immunity cycle. The points are color-coded based on the correlation. The red color indicates a positive correlation,
whereas the blue color represents a negative correlation. The light color represents a low correlation and progressively darker colors represent
a higher correlation. The black box represents a significant correlation (p < 0.05). In the right panel, 5 mC regulators were significantly correlatedwith
patient survival and are colored in dark blue. The length of each line represents the range of the hazard ratio for each 5 mC regulator. (C) Consensus
matrices of the meta cohort for k = 2–5. (D) Survival analysis of 5 mC clusters 1 and 2. (E) Association between 5 mC clusters, clinicopathologic
characteristics, and 5 mC regulator expression. (F) Outcomes of univariate and multivariate Cox analyses of 5 mC clusters. The light blue color
represents the outcome of univariate Cox analysis outcomes. The dark blue represents the outcomes of multivariate Cox analysis. The length of the
line represents the range of the hazard ratio. ns, not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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meaning of the m5C score, we identified 61 upregulated

differentially-expressed genes (DEGs) and

77 downregulated DEGs between the high and low 5 mC

score groups (Supplementary Table S2C). Gene ontology

and KEGG enrichment analyses showed the DEGs were

mainly enriched in the metabolic process (Supplementary

Figure S1C, D).

Previous studies identified several population-based

prognostic signatures for patients with HCC, including

those identified by Yan et al. (4 gene signatures) (Yan

FIGURE 2
Developing the 5 mC gene signature, 5 mC score and exploring the clinical practice in the meta cohort. (A) The flow chart of the 5 mC score
algorithm. (B) The volcano plot of the differentially-expressed genes (DEGs) between 5 mC subtypes. (C) Screening outcomes of 5 mC gene
signatures using the LASSO algorithm. (D) Kaplan-Meier survival analysis of patients in the TCGA cohort. (E) Independent prognostic analysis of 5 mC
scores in the TCGA, ICGC, GEO-meta cohorts, and all patients. (F–H) Kaplan-Meier survival analysis of patients in the ICGC and GEO-meta
cohorts, and all patients. (I)Comparison of 5 mC scores between 5 mC clusters. (J) The distribution of 5 mC score level between clusters 1 and 2. (K)
The c-index of 5 mC scores compared with other signatures. (L) Nomogram of 5 mC scores for clinical practice. *p < 0.05, **p < 0.01, ***p < 0.001.
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et al., 2019), Li et al. (3 gene signatures) (Li et al., 2017), and

Huo et al. (10 gene signatures) (Huo et al., 2021). We analyzed

the time-dependent c-index for 5 mC scores and these

population-based signatures for all patients. The results

revealed that 5 mC scores exhibited higher levels of the

c-index than the three aforementioned population-based

signatures in all patients (Figure 2K).

To improve the clinical application of 5 mC scores, we

constructed a nomogram which incorporated the 5 mC score

and disease stage (Figure 2L). Calibration plots showed that the

nomogram could accurately predict survival at different time

points (Supplementary Figure S2E). Decision curve analysis also

showed that a comprehensive signature can provide better

clinical benefit to patients in terms of prediction versus only

FIGURE 3
The 5 mC clusters and 5 mC score correlated with immune phenotypes inmeta cohort. (A) The ssGSEA score heatmap of seven steps in cancer
immunity cycles. (B–E) The differences in infiltration levels of immune cells between 5 mC clusters in the MCP-counter, TIMER, CIBERSORT-ABS,
and quanTIseq algorithms. (F) The correlations between the 5 mC score and steps in cancer immunity cycles. Each point reports the correlation
resulting from correlating 5 mC scores and ssGSEA scores of each step in the cancer immunity cycle. The points are color-coded based on
correlation. The red color indicates a positive correlation, whereas the blue color represents a negative correlation. The light color represents a low
correlation and the progressively darker color represents a higher correlation. The black box represents a significant correlation (p < 0.05). (G) The
upper panel indicates that the logFC of the main type of immune cells between clusters 1 and 2. The bottom panel indicates that the correlation
between the main type of immune cell and 5 mC scores. The darker red colors represent a higher logFC or a more positive correlation. The darker
blue colors represent a lower logFC or amore negative correlation. The points are color-coded by the logFC (upper) or correlation (bottom). The red
color indicates a positive logFC (upper) or correlation (bottom). The blue color represents a negative logFC (upper) or correlation (bottom). The light
color represents a low absolute value of logFC (upper) or a correlation (bottom). In contrast, progressively darker colors represent a higher absolute
value of logFC (upper) or a correlation (bottom). The black box represents a significant correlation (p < 0.05). *p < 0.05, **p < 0.01, ***p < 0.001.
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the 5 mC score or only the disease stage (Supplementary Figure

S2F–H).

Association between clusters (according
to the 5mC score) and the TME in all
cohorts

Most immunomodulators were upregulated in cluster 1

(Supplementary Table S3A). The expression of most

immunomodulators was positively correlated with the

5 mC score (Supplementary Table S3B). The expression of

C-C motif chemokine ligand 20 (CCL20), C-C motif

chemokine receptor 6 (CCR6), and CCR10, which induce

the recruitment of regulatory T (Treg) cells into the TME, was

upregulated in cluster 1 and significant positively correlated

with the 5 mC score. C-X-C motif chemokine ligand 14

(CXCL14), which can induce infiltration of

M2 macrophages in the TME, showed significant negative

correlation with the 5 mC score.

Cancer immunity cycles are directly determined by the

comprehensive performance of immunomodulators. Thus, we

analyzed the activities of the cancer immunity cycle using the

TIP website. We observed that many steps in the cycle, such as

Step 1 (release of cancer cell antigen) and Step 4 (CD8+ T, T

helper 22 [Th22], natural killer, and Th17 cell recruitment)

(Figures 3A and Supplementary Figure S3A), were

significantly activated in cluster 1. Eosinophil recruitment

(Step 4), infiltration of immune cells into the tumor (Step

5) and recognition of cancer cells by T cells (Step 6) were

significantly limited in cluster 1 (Figures 3A and

Supplementary Figure S3A). Consequently, the activated

steps of the cancer immunity cycle and immunomodulators

may suggest higher infiltration of tumor-infiltrating immune

cells in the TME in cluster 1. Thus, we used seven independent

algorithms to assess the infiltration level of tumor-infiltrating

immune cells in the TME. Most algorithms showed that, in

cluster 1, there were high levels of infiltration of CD8+ T,

myeloid dendritic, and Treg cells (Figures 3B–E,G;

Supplementary Table S3B–D) compared with cluster 2. In

contrast, endothelial cells showed significantly lower levels of

infiltration in cluster 1 compared with cluster 2. These results

implied that cluster 1 may be characterized by high levels of

anti-tumor characteristics (CD8+ T cells, release of cancer cell

antigen [Step 1], CD8+ T cell recruitment [Step 4] and natural

killer cell recruitment [Step 4]), as well as high levels of

immunosuppressive features (myeloid dendritic cells, Treg

cells, infiltration of immune cells into the tumor [Step 5], and

recognition of cancer cells by T cells [Step 6]).

Consistently, the 5 mC score showed a significant positive

correlation with the infiltration of CD8+ T and Treg cells

(Figure 3G). In addition, the 5 mC score showed a significant

negative correlation with the infiltration of immune cells into the

tumor (Step 5) and the infiltration of macrophages M1 and

macrophages M2 (Figure 3F).

In summary, cluster 1 and a high 5 mC score predicted a

“CD8 T cell-hot” and immune-counterbalanced type tumor

(with coexisting immunoactivation and immunosuppression).

Clustering (according to the 5mC score)
effectively predicted patient response to
immunotherapy

The role of clustering (according to the 5 mC score) in

mediating the clinical response to treatment with immune

checkpoint inhibitors was indirectly confirmed. In this study,

we observed that most immune checkpoints, positive ICB

response-related genes, and enrichment scores of positive

ICB response-related pathway signatures were significant

upregulated in cluster 1 (Figures 4A–C). Moreover, we

observed that patients in cluster 1 had higher expression

levels of negative ICB response-related gene signatures and

ICB hyperprogression gene signatures (Figures 4E,G). The

positive, negative, and hyperprogression ICB gene signatures

showed a significant higher frequency of genomic changes

(Figures 4D,F,H).

Next, we analyzed the associations between the 5 mC score

and ICB response signatures. The 5 mC score showed significant

positive correlations with most immune checkpoints, positive

ICB response-related genes, and enrichment scores of positive

ICB response-related pathway signatures (Figures 4I–K).

However, it also exhibited a significant positive correlation

with numerous negative and hyperprogression ICB gene

signatures (Figures 4L, M).

These outcomes suggested that patients in cluster1 and those

with high 5 mC scores may have worse clinical response to ICB

immunotherapy. To validate this inference, we assessed the

clinical response of all patients to ICB immunotherapy.

Initially, we performed subclass mapping using another cohort

of patients with melanoma (n = 47) who received

immunotherapy. The submap outcome indicated that

remarkable no response inclination for patients in cluster1

(Figure 4N). In cluster 2, there was no clear observation

regarding response to ICB. Patients with a high 5 mC score

were not sensitive to treatment with programmed cell death 1

(PD1) (Figure 4N).

Next, we used the TIDE algorithm to evaluate potential

response to immunotherapy for each patient. Higher TIDE

scores indicated less responsiveness to ICB immunotherapy.

We observed that patients in cluster 1 showed significantly

higher TIDE scores than those in cluster 2 (Figure 4O). The high

5 mC score group showed an increasing trend in the TIDE score

compared with low 5mC score group, though the difference was not

statistically significant (Figure 4P). These findings demonstrated that

patients in cluster 1 or patients with a high 5 mC score were
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FIGURE 4
5mC cluster 1 and a high 5 mC score were correlated with a worse ICB response in the meta cohort. (A) Differences in the level of immune
checkpoint expression between 5 mC clusters. (B) Differences in the enrichment scores of positive ICB response-related signatures between 5 mC
clusters. (C) Differences in the level of positive ICB response-related gene signature expression between 5 mC clusters. (D) Differences in copy
number alterations of positive ICB response-related gene signatures between 5 mC clusters. (E) Differences in the level of ICB
hyperprogression-related gene signature expression between 5 mC clusters. (F) Differences in copy number alterations of ICB hyperprogression-
related gene signatures between 5 mC clusters. (G) Differences in the level of negative ICB response-related gene signature expression between
5 mC clusters. (H) Differences in copy number alteration of negative ICB response-related gene signatures between 5 mC clusters. (I) Correlation
between the level of immune checkpoint expression and 5 mC scores. (J) Correlation between the enrichment scores of positive ICB response-
related signatures and 5 mC scores. (K) Correlation between the level of positive ICB response-related gene signature expression and 5 mC scores.
(L)Correlation between the level of negative ICB response-related gene signature expression and 5 mC scores. (M)Correlation between the level of
ICB hyperprogression-related gene signature expression and 5 mC scores. For (I)-(M), each point represents the correlation between 5 mC scores
and the expression of each gene. The points are color-coded by correlation. The red color indicates a positive correlation, whereas the blue color
represents a negative correlation. The light color represents a low correlation and progressively darker colors represent a higher correlation. The
black box represents a significant correlation (p < 0.05). (N) The subclass mapping analysis showed a significant difference in response to anti-PD-
1 therapy among 5 mC clusters and score groups. Each cell is color-coded by p value according to the color legend. (O) The TIDE analysis indicated
that patients in cluster 1 had a worse response to ICB treatment (p < 0.05). (P) The TIDE analysis predicted that patients in cluster 1 and patients with
higher scores had a significantly lower proportion of responders to ICB treatment. *p < 0.05, **p < 0.01, ***p < 0.001, PMOM
Progesterone−mediated_oocyte_maturation.
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FIGURE 5
5mC scores accurately predicted classical molecular subtypes and therapeutic opportunities in the meta cohort. (A) The association between
5 mC scores and classic molecular subtypes. (B) ROC curves showed the accuracy of the 5 mC score in predicting classic molecular subtypes. (C)
Difference in the enrichment scores of several therapeutic signatures, such as targeted therapy and radiotherapy, between the high and low score
groups. (D)Comparison of the level of lenvatinib and sorafenib target expression between the high and low score groups. (E) A Venn diagram of
compounds from the CTRP and PRISM datasets. (F) The workflow of identifying potential therapeutic agents. (G) Spearman correlation between
5 mC scores and drug response predicted by PRISM datasets. The point size was negatively correlated with the p value. (H) Comparison of drug
response predicted by PRISM datasets between the high and low score groups. (I) Spearman correlation between 5 mC scores and drug response
predicted by CTRP datasets. Point size was negatively correlated with the p value. (J) Comparison of drug response predicted by CTRP datasets
between the high and low score groups. (K) Identification of most promising therapeutic agents for patients with high PPS scores according to the
evidence from multiple sources. *p < 0.05, **p < 0.01, ***p < 0.001.
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potentially insensitive to ICB immunotherapy. These results

confirmed the value of 5 mC-based clustering and the 5 mC score.

5mC score predicted classical molecular
subtypes and therapeutic opportunities
for patients with HCC

We analyzed the association between 5 mC score (5 mC-

based clusters) and five classical molecular subtype classifications

(Figure 5A). We observed that 5 mC scores were higher in

G2 and G5 proposed by Boyault et al., polysomy suggested by

Chiang et al., PERIPORTAL and PERIVENOUS established by

Désert et al., S3 suggested by Hoshida et al., and C1 proposed by

Yang et al. (Supplementary Figures S4A–E). The ROC curves

showed that the 5 mC score predicted classical molecular

subtypes established by Désert et al. and Yang et al. with high

accuracy (Figure 5B).

Next, we analyzed the association of therapeutic opportunities

with high and low 5 mC scores. Our results showed that patients in

the high 5 mC score group had significantly higher levels of cell

cycle andDNA replication, but significantly lower levels of hypoxia

and EGFR ligands (Figure 5C). These findings indicated that

patients in the high 5 mC score group may be more sensitive to

radiotherapy, while those in the low 5 mC score group may be

more sensitive to EGFR targeted therapy. Furthermore, we

observed that patients in the high-score group had significantly

higher levels of the WNT−β-catenin network, but significantly

lower levels of vascular endothelial growth factor A, compared

with those in the low-score group (Figure 5C). This evidence

indicated the potential involvement of different

immunosuppressive mechanisms in the high and low 5 mC

score groups. Therefore, targeting these oncogenic pathways

may offer promising therapeutic opportunities for patients with

HCC. Next, we compared the expression levels of the targets of

lenvatinib and sorafenib between the high- and low-score groups.

We observed that seven targets of sorafenib (BRAF, FLT3, RAF1,

RET, VEGFR1, VEGFR2, and VEGFR3) had significantly different

expression in patients with highm5C risk scores (Figure 5D). Most

of the targets of sorafenib, except BRAF andRAF1, had lower levels

of expression in the high-risk score group (tratio = 5:7). This

finding indicated that patients with higher risk scores may be

insensitive to sorafenib compared with low-risk patients. We

observed that eight targets of lenvatinib (FGFR2, FGFR3,

FGFR4, PDGFRA, RET, VEGFR1, VEGFR2, and VEGFR3) had

significantly different levels of expression in patients with high

m5C risk scores (Figure 5D). Most of the targets of

lenvatinib, except FGFR2, FGFR3, and FGFR4, also had a

lower level of expression level in the high-risk scores group

(ratio = 5:8). Thus, patients with high-risk scores may be less

sensitive to sorafenib and lenvatinib compared with low-risk

patients.

Estimation of drug response in patients
with HCC

The CTRP and PRISM datasets contain the gene

expression profiles and drug sensitivity profiles of hundreds

of CCLs. In this study, we used these two datasets to construct

a prediction model of drug response. The two datasets shared

168 compounds. After removing duplication, there were

1752 compounds in total (Figure 5E). We excluded

compounds with NAs in more than 20% of the samples

and cell lines derived from hematopoietic and lymphoid

tissue. Finally, 680 CCLs for 354 compounds in the CTRP

dataset and 480 CCLs for 1,285 compounds in the PRISM

dataset were used for subsequent analyses. The specific

screening process is shown in Figure 5F.

Differential drug response analysis was performed between

the high 5 mC score group (upper decile) and low 5 mC score

group (lower decile) to identify the compounds which showed

low estimated AUC values in patients with high 5 mC score.

Next, Spearman correlation analysis based on the AUC value and

5 mC score was performed to select compounds with negative

correlation coefficients (Spearman’s r: < −0.3 for CTRP

or < −0.4 for PRISM). These analyses yielded five CTRP-

derived compounds (GSK461364, methotrexate, BI−2536,

paclitaxel, and SB−743921) (Figures 5G,H) and four PRISM-

derived compounds (everolimus, temsirolimus, irinotecan, and

ispinesib) (Figures 5I,J). All these compounds had lower

estimated AUC values in the high 5 mC score group versus

the low 5 mC score group and a negative correlation with the

5 mC score. Patients with high 5 mC scores showed higher

sensitivity to the nine candidate compounds identified versus

those with low 5 mC scores. To further support these results,

multiple perspective analyses were subsequently conducted to

investigate the therapeutic potential of these compounds in HCC.

Firstly, we used cMap analysis to identify compounds which

induced gene expression patterns that were oppositional to the

HCC-specific expression patterns (i.e., gene expression increased

in tumor tissues, but decreased by treatment with certain

compounds). The outcomes of the cMap analysis showed

scores of irinotecan <−95 (Figure 5K). This suggested that

irinotecan has a potential therapeutic effect in HCC.

Secondly, the fold-change in the expression of target genes of

candidate drugs between tumor tissues and normal tissues was

calculated. A higher fold change value indicated greater potential

for a candidate agent in the treatment of HCC.

Thirdly, a comprehensive search was performed in PubMed

and DrugTarget to obtain experimental and clinical evidence

related to these candidate compounds in the treatment of HCC.

The results are presented in Figure 5K. Irinotecan, for which

robust in vitro and in silico evidence was available, was

considered to hold the most promising therapeutic potential

for HCC patients with high 5 mC scores.
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Discussion

In recent years, the cumulative evidence has demonstrated

an essential role of posttranscriptional mRNA modification in

tumor initiation and progression, as well as the prognosis of

patients (Wang et al., 2013; Gu et al., 2015; Bauer et al., 2016;

Gu L et al., 2020; Gu H et al., 2020; Blanco et al., 2021; Chu

et al., 2022). As an ancient and highly conserved RNA

modification in all domains of life, the process,

distribution, and function of 5 mC in mRNAs have

emerged as a new layer of epigenetic regulation (Hu et al.,

2021a); however, 5 mC remains partially understood, but few

studies have focused on how 5 mC sculpts the TME in HCC.

Here, we developed a 5 mC-based clustering system through a

comprehensive analysis of a large cohort of patients with

HCC. This clustering system can accurately predict

prognosis, immune phenotypes, immunotherapy response,

classical molecular subtypes, and therapeutic opportunities.

Furthermore, we constructed and validated a 5 mC score

system to classify patients into these clusters.

Although associations between 5 mC and the TME have been

previously observed in some contexts (Jiang 2020; Cong et al.,

2021), the mechanisms through which 5 mC influences the TME

in HCC have not been elucidated. For this purpose, we used

seven independent algorithms to assess the infiltration of

immune cells in the TME. We observed that patients in

cluster 1 exhibited some antitumor characteristics, such as

high levels of CD8+ T cell and myeloid dendritic cells, high

expression levels of major histocompatibility complex molecules,

and the presence of immunostimulators. These may contribute to

better survival outcomes for patients in cluster 1. However, our

findings showed that patients in cluster 1 had significant worse

survival outcome than those in cluster 2. We also observed that

patients in cluster 1 exhibited some immunosuppressive

characteristics, such as more infiltration of Treg cells and

higher expression levels of immune checkpoints than those in

cluster 2. These immunoinhibitory factors may contribute to

immune escape and lead to worse survival.

Currently, the association between 5 mC and

immunotherapy is poorly characterized. In this study, we

used two algorithms (TIDE and submap) to assess the

response of patients to immunotherapy. We found that

patients in cluster 1 and those with high 5 mC scores were

non-responsive to immunotherapy. For patients in cluster two

or those with low 5 mC scores, there was no clear observation

regarding response to immunotherapy. In this study, we

analyzed the potential mechanisms through which 5 mC

reflects the efficacy of immunotherapy. We observed that

patients in cluster 1 had significantly higher levels of

immune checkpoints, immunotherapy-positive genes, and

predicted signatures. The 5 mC score also showed a

significant positive correlation with immune checkpoints

and immunotherapy signatures. These results suggested

that patients in cluster 1 or those with high 5 mC scores

may demonstrate better response to immunotherapy.

However, patients in cluster 1 exhibited significantly higher

expression levels of immunotherapy-negative genes and

higher frequency of genomic alterations. A similar trend

was observed for the hyperprogression-related genes. The

5 mC score also showed a significant correlation with the

expression levels of immunotherapy-negative genes and

hyperprogression genes. These findings may explain the

low responsiveness to immunotherapy noted in patients in

cluster 1 or those with high 5 mC scores.

Several molecular subtypes have been proposed over the past

few years, such as those established by Boyault et al., Chiang et al.,

Hoshida et al., Désert et al. and Yang et al. However, their clinical

application may be limited by several factors, such as the

complexity of the sequencing method, high economic burden,

and long detection period. In this study, we developed a 5 mC-

based classification and a 5 mC score system. The present

findings showed that the 5 mC score accurately predicted the

classifications proposed by Désert et al. (AUC = 0.805) and Yang

et al. (AUC = 0.748). More importantly, the 5 mC score predicted

the clinical response to several treatment options, including

targeted therapy, radiotherapy, and ICB immunotherapy. A

high 5 mC score represented sensitivity to radiotherapy and

targeted therapy with lenvatinib. Furthermore, we observed

significant differences in immune inhibitory oncogenic

pathways between patients in the high and low 5 mC score

groups. Thus, targeting these pathways may offer

promising treatment options for patients in different 5 mC

score groups.

Through a machine learning approach, we identified

irinotecan as a potentially promising drug for the treatment

of HCC patients with high 5 mC scores. Irinotecan, a

topoisomerase I inhibitor, has been widely used as a first-

line chemotherapeutic agent in multiple anticancer therapies

(Xu et al., 2017). Research has demonstrated that SN38 is the

active metabolite of irinotecan in the hepatobiliary tree (Kim

et al., 2017), and SN38 led to inhibition of HCC growth in vitro

(Xu et al., 2017). Unfortunately, the objective response rates

recorded following monotherapy with irinotecan were only

0–7% (O’Reilly et al., 2001; Boige et al., 2006). Recent evidence

demonstrated that combination of dasatinib and irinotecan/

SN38 was able to enhance the anti-HCC efficacy of the

treatment (Xu et al., 2017). Therefore, this evidence may

provide new directions for the clinical treatment of patients

with HCC.
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SUPPLEMENTARY FIGURE S1
Molecular features of 5 mC regulators in the TCGA cohort. (A) Mutation
landscape of 5 mC regulators. (B) The left panel shows the copy number
variation frequency of 5 mC regulators. The red nodes represent copy
number amplification, while the blue nodes represent copy number
deletion. The node size was positively correlated with frequency. The
right panel shows the correlation between copy number variation and
the level of 5 mC regulator expression. The darker red colors represent a
higher correlation and the node sizewas negatively correlated with the P
value. (C) The left panel showed the methylation of 5 mC regulators.
The red nodes represent higher methylation levels in cancer tissues
compared with healthy tissues. The blue nodes represent lower
methylation levels in cancer tissues compared with healthy tissues. The
right panel shows that the correlation between methylation and level of
5 mC regulator expression. The red color indicates a positive correlation,
while the blue color indicates a negative correlation. The node size was
negatively correlated with the P value. (D) The difference in the level of
5 mC regulator expression between cancer and healthy tissues.

SUPPLEMENTARY FIGURE S2
The the clinical practice value of 5 mC scores. (A) The GO enrichment
analysis of DEGs between the 5 mC clusters. (B) The KEGG enrichment
analysis of DEGs between 5 mC clusters. (C) The GO enrichment
analysis of DEGs between the high and low 5 mC score groups. (D) The
KEGG enrichment analysis of DEGs between the high and low 5 mC
score groups. (E) Calibration curve analysis of 5 mC scores. (F–H) The
1-, 3-, and 5-years decision curve analysis of 5 mC scores.

SUPPLEMENTARY FIGURE S3
Infiltration of immune cells using different algorithms. (A) Difference in
cancer immunity cycles between clusters 1 and 2. (B–D) Difference in
immune cells in clusters 1 and 2 assessed by CIBERSOT, EPIC, and xCell.
*P < 0.05, **P < 0.01, ***P < 0.001.

SUPPLEMENTARY FIGURE S4
Association between 5 mC scores and classic molecular subtypes. (A)
Boyault, (B) Chiang, (C) Desert, (D) Hoshida, and (E) Yang. ns, not
significant, *P < 0.05, **P < 0.01, ***P < 0.001.

References

Bauer, T., Trump, S., Ishaque, N., Thürmann, L., Gu, L., Bauer, M., et al. (2016).
Environment-induced epigenetic reprogramming in genomic regulatory elements
in smoking mothers and their children. Mol. Syst. Biol. 12 (3), 861. doi:10.15252/
msb.20156520

Biswas, S., and Rao, C. M. (2018). Epigenetic tools (The Writers, the Readers and
the Erasers) and their implications in cancer therapy. Eur. J. Pharmacol. 837, 8–24.
doi:10.1016/j.ejphar.2018.08.021

Blanco, M. A., Sykes, D. B., Gu, L., Wu, M., Petroni, R., Karnik, R., et al. (2021).
Chromatin-state barriers enforce an irreversible mammalian cell fate decision. Cell.
Rep. 37 (6), 109967. doi:10.1016/j.celrep.2021.109967

Bogdanović, O., and Lister, R. (2017). DNA methylation and the preservation of
cell identity. Curr. Opin. Genet. Dev. 46, 9–14. doi:10.1016/j.gde.2017.06.007

Boige, V., Taïeb, J., Hebbar, M., Malka, D., Debaere, T., Hannoun, L., et al.
(2006). Irinotecan as first-line chemotherapy in patients with advanced
hepatocellular carcinoma: A multicenter phase II study with dose
adjustment according to baseline serum bilirubin level. Eur. J. Cancer 42
(4), 456–459. doi:10.1016/j.ejca.2005.09.034

Boyault, S., Rickman, D. S., de Reyniès, A., Balabaud, C., Rebouissou, S.,
Jeannot, E., et al. (2007). Transcriptome classification of HCC is related to gene
alterations and to new therapeutic targets. Hepatology 45 (1), 42–52. doi:10.
1002/hep.21467

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A.
(2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 68 (6),
394–424. doi:10.3322/caac.21492

Burrell, R. A., McGranahan, N., Bartek, J., and Swanton, C. (2013). The causes
and consequences of genetic heterogeneity in cancer evolution. Nature 501 (7467),
338–345. doi:10.1038/nature12625

Charoentong, P., Finotello, F., Angelova, M., Mayer, C., Efremova, M., Rieder, D.,
et al. (2017). Pan-cancer immunogenomic analyses reveal genotype-
immunophenotype relationships and predictors of response to checkpoint
blockade. Cell. Rep. 18 (1), 248–262. doi:10.1016/j.celrep.2016.12.019

Chen, D. S., and Mellman, I. (2013). Oncology meets immunology: The cancer-
immunity cycle. Immunity 39 (1), 1–10. doi:10.1016/j.immuni.2013.07.012

Chen, Y. T., Shen, J. Y., Chen, D. P., Wu, C. F., Guo, R., Zhang, P. P., et al. (2020).
Identification of cross-talk between m(6)A and 5mC regulators associated with
onco-immunogenic features and prognosis across 33 cancer types. J. Hematol.
Oncol. 13 (1), 22. doi:10.1186/s13045-020-00854-w

Chew, V., Lai, L., Pan, L., Lim, C. J., Li, J., Ong, R., et al. (2017). Delineation of an
immunosuppressive gradient in hepatocellular carcinoma using high-dimensional
proteomic and transcriptomic analyses. Proc. Natl. Acad. Sci. U. S. A. 114 (29),
E5900-E5909–e5909. doi:10.1073/pnas.1706559114

Frontiers in Genetics frontiersin.org14

Luan et al. 10.3389/fgene.2022.984033

https://www.frontiersin.org/articles/10.3389/fgene.2022.984033/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.984033/full#supplementary-material
https://doi.org/10.15252/msb.20156520
https://doi.org/10.15252/msb.20156520
https://doi.org/10.1016/j.ejphar.2018.08.021
https://doi.org/10.1016/j.celrep.2021.109967
https://doi.org/10.1016/j.gde.2017.06.007
https://doi.org/10.1016/j.ejca.2005.09.034
https://doi.org/10.1002/hep.21467
https://doi.org/10.1002/hep.21467
https://doi.org/10.3322/caac.21492
https://doi.org/10.1038/nature12625
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.immuni.2013.07.012
https://doi.org/10.1186/s13045-020-00854-w
https://doi.org/10.1073/pnas.1706559114
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.984033


Chiang, D. Y., Villanueva, A., Hoshida, Y., Peix, J., Newell, P., Minguez, B.,
et al. (2008). Focal gains of VEGFA and molecular classification of
hepatocellular carcinoma. Cancer Res. 68 (16), 6779–6788. doi:10.1158/
0008-5472.can-08-0742

Chu, Z., Gu, L., Hu, Y., Zhang, X., Li, M., Chen, J., et al. (2022). STAG2 regulates
interferon signaling in melanoma via enhancer loop reprogramming. Nat.
Commun. 13 (1), 1859. doi:10.1038/s41467-022-29541-9

Cong, B., Zhang, Q., and Cao, X. (2021). The function and regulation of TET2 in
innate immunity and inflammation. Protein Cell. 12 (3), 165–173. doi:10.1007/
s13238-020-00796-6

Désert, R., Rohart, F., Canal, F., Sicard, M., Desille, M., Renaud, S., et al. (2017).
Human hepatocellular carcinomas with a periportal phenotype have the lowest
potential for early recurrence after curative resection.Hepatology 66 (5), 1502–1518.
doi:10.1002/hep.29254

El-Khoueiry, A. B., Sangro, B., Yau, T., Crocenzi, T. S., Kudo, M., Hsu, C., et al. (2017).
Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An
open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 389
(10088), 2492–2502. doi:10.1016/s0140-6736(17)31046-2

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for
generalized linear models via coordinate descent. J. Stat. Softw. 33 (1), 1–22. doi:10.
18637/jss.v033.i01

Ghandi, M., Huang, F. W., Jané-Valbuena, J., Kryukov, G. V., Lo, C. C., McDonald, E.
R., 3rd, et al. (2019).Next-generation characterization of the cancer cell line Encyclopedia.
Nature 569 (7757), 503–508. doi:10.1038/s41586-019-1186-3

Ginder, G. D., and Williams, D. C., Jr. (2018). Readers of DNA methylation, the
MBD family as potential therapeutic targets. Pharmacol. Ther. 184, 98–111. doi:10.
1016/j.pharmthera.2017.11.002

Gu, H, H., Guo, Y., Gu, L., Wei, A., Xie, S., Ye, Z., et al. (2020). Deep learning for
identifying corneal diseases from ocular surface slit-lamp photographs. Sci. Rep. 10
(1), 17851. doi:10.1038/s41598-020-75027-3

Gu, L., Frommel, S. C., Oakes, C. C., Simon, R., Grupp, K., Gerig, C. Y., et al.
(2015). BAZ2A (TIP5) is involved in epigenetic alterations in prostate cancer and its
overexpression predicts disease recurrence. Nat. Genet. 47 (1), 22–30. doi:10.1038/
ng.3165

Gu, L, L., Wang, L., Chen, H., Hong, J., Shen, Z., Dhall, A., et al. (2020). CG14906
(mettl4) mediates m(6)A methylation of U2 snRNA in Drosophila. Cell. Discov. 6,
44. doi:10.1038/s41421-020-0178-7

Hlady, R. A., Zhao, X., Pan, X., Yang, J. D., Ahmed, F., Antwi, S. O., et al. (2019).
Genome-wide discovery and validation of diagnostic DNA methylation-based
biomarkers for hepatocellular cancer detection in circulating cell free DNA.
Theranostics 9 (24), 7239–7250. doi:10.7150/thno.35573

Hoshida, Y., Nijman, S. M., Kobayashi, M., Chan, J. A., Brunet, J. P., Chiang, D.
Y., et al. (2009). Integrative transcriptome analysis reveals common molecular
subclasses of human hepatocellular carcinoma. Cancer Res. 69 (18), 7385–7392.
doi:10.1158/0008-5472.can-09-1089

Hu, J., Othmane, B., Yu, A., Li, H., Cai, Z., Chen, X., et al. (2021a). 5mC regulator-
mediated molecular subtypes depict the hallmarks of the tumor microenvironment
and guide precisionmedicine in bladder cancer. BMCMed. 19 (1), 289. doi:10.1186/
s12916-021-02163-6

Hu, J., Yu, A., Othmane, B., Qiu, D., Li, H., Li, C., et al. (2021b). Siglec15 shapes a
non-inflamed tumor microenvironment and predicts the molecular subtype in
bladder cancer. Theranostics 11 (7), 3089–3108. doi:10.7150/thno.53649

Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009). Systematic and
integrative analysis of large gene lists using DAVID bioinformatics resources. Nat.
Protoc. 4 (1), 44–57. doi:10.1038/nprot.2008.211

Huo, J., Wu, L., and Zang, Y. (2021). Identification and validation of a novel
immune-related signature associated with macrophages and CD8 T cell infiltration
predicting overall survival for hepatocellular carcinoma. BMC Med. Genomics 14
(1), 232. doi:10.1186/s12920-021-01081-z

Iasonos, A., Schrag, D., Raj, G. V., and Panageas, K. S. (2008). How to build and
interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26 (8), 1364–1370.
doi:10.1200/jco.2007.12.9791

Jiang, S. (2020). Tet2 at the interface between cancer and immunity. Commun.
Biol. 3 (1), 667. doi:10.1038/s42003-020-01391-5

Kandimalla, R., van Tilborg, A. A., and Zwarthoff, E. C. (2013). DNA
methylation-based biomarkers in bladder cancer. Nat. Rev. Urol. 10 (6),
327–335. doi:10.1038/nrurol.2013.89

Kanwal, F., and Singal, A. G. (2019). Surveillance for hepatocellular carcinoma:
Current best practice and future direction. Gastroenterology 157 (1), 54–64. doi:10.
1053/j.gastro.2019.02.049

Kelly, A. D., and Issa, J. J. (2017). The promise of epigenetic therapy:
Reprogramming the cancer epigenome. Curr. Opin. Genet. Dev. 42, 68–77.
doi:10.1016/j.gde.2017.03.015

Kim, D. W., Talati, C., and Kim, R. (2017). Hepatocellular carcinoma (HCC):
Beyond sorafenib-chemotherapy. J. Gastrointest. Oncol. 8 (2), 256–265. doi:10.
21037/jgo.2016.09.07

Li, B., Feng, W., Luo, O., Xu, T., Cao, Y., Wu, H., et al. (2017). Development and
validation of a three-gene prognostic signature for patients with hepatocellular
carcinoma. Sci. Rep. 7 (1), 5517. doi:10.1038/s41598-017-04811-5

Li, T., Fu, J., Zeng, Z., Cohen, D., Li, J., Chen, Q., et al. (2020). TIMER2.0 for
analysis of tumor-infiltrating immune cells. Nucleic Acids Res. 48 (W1), W509-
W514–w514. doi:10.1093/nar/gkaa407

Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P., and
Tamayo, P. (2015). TheMolecular Signatures Database (MSigDB) hallmark gene set
collection. Cell. Syst. 1 (6), 417–425. doi:10.1016/j.cels.2015.12.004

Llovet, Josep M., Montal, Robert, Sia, Daniela, and Finn, Richard S. (2018).
Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev.
Clin. Oncol. 15 (10), 599–616. doi:10.1038/s41571-018-0073-4

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550.
doi:10.1186/s13059-014-0550-8

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al.
(2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to
exclusion of T cells. Nature 554 (7693), 544–548. doi:10.1038/nature25501

Nishida, N., Nagasaka, T., Nishimura, T., Ikai, I., Boland, C. R., and Goel, A.
(2008). Aberrant methylation of multiple tumor suppressor genes in aging liver,
chronic hepatitis, and hepatocellular carcinoma.Hepatology 47 (3), 908–918. doi:10.
1002/hep.22110

O’Reilly, E. M., Stuart, K. E., Sanz-Altamira, P. M., Schwartz, G. K., Steger, C. M.,
Raeburn, L., et al. (2001). A phase II study of irinotecan in patients with advanced
hepatocellular carcinoma. Cancer 91 (1), 101–105. doi:10.1002/1097-
0142(20010101)91:1<101::aid-cncr13>3.0.co;2-k
Prasetyanti, P. R., and Medema, J. P. (2017). Intra-tumor heterogeneity from

a cancer stem cell perspective.Mol. Cancer 16 (1), 41. doi:10.1186/s12943-017-
0600-4

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J. C., et al.
(2011). pROC: an open-source package for R and S+ to analyze and compare ROC
curves. BMC Bioinforma. 12, 77. doi:10.1186/1471-2105-12-77

Schübeler, D. (2015). Function and information content of DNA methylation.
Nature 517 (7534), 321–326. doi:10.1038/nature14192

Tian, Y., Morris, T. J., Webster, A. P., Yang, Z., Beck, S., Feber, A., et al. (2017).
ChAMP: Updated methylation analysis pipeline for illumina BeadChips.
Bioinformatics 33 (24), 3982–3984. doi:10.1093/bioinformatics/btx513

Villanueva, A., Portela, A., Sayols, S., Battiston, C., Hoshida, Y., Méndez-
González, J., et al. (2015). DNA methylation-based prognosis and epidrivers in
hepatocellular carcinoma. Hepatology 61 (6), 1945–1956. doi:10.1002/hep.
27732

Wang, Q., Gu, L., Adey, A., Radlwimmer, B., Wang, W., Hovestadt, V., et al.
(2013). Tagmentation-based whole-genome bisulfite sequencing. Nat. Protoc. 8
(10), 2022–2032. doi:10.1038/nprot.2013.118

Wilkerson, M. D., and Hayes, D. N. (2010). ConsensusClusterPlus: A class
discovery tool with confidence assessments and item tracking. Bioinformatics 26
(12), 1572–1573. doi:10.1093/bioinformatics/btq170

Wu, X., and Zhang, Y. (2017). TET-Mediated active DNAdemethylation:Mechanism,
function and beyond. Nat. Rev. Genet. 18 (9), 517–534. doi:10.1038/nrg.2017.33

Xu, L., Deng, C., Pang, B., Zhang, X., Liu, W., Liao, G., et al. (2018). Tip: A web
server for resolving tumor immunophenotype profiling. Cancer Res. 78 (23),
6575–6580. doi:10.1158/0008-5472.can-18-0689

Xu, L., Zhu, Y., Shao, J., Chen, M., Yan, H., Li, G., et al. (2017). Dasatinib
synergises with irinotecan to suppress hepatocellular carcinoma via inhibiting
the protein synthesis of PLK1. Br. J. Cancer 116 (8), 1027–1036. doi:10.1038/
bjc.2017.55

Yan, Y., Lu, Y., Mao, K., Zhang, M., Liu, H., Zhou, Q., et al. (2019). Identification
and validation of a prognostic four-genes signature for hepatocellular carcinoma:
Integrated ceRNA network analysis. Hepatol. Int. 13 (5), 618–630. doi:10.1007/
s12072-019-09962-3

Yang, C., Huang, X., Liu, Z., Qin, W., and Wang, C. (2020). Metabolism-
associated molecular classification of hepatocellular carcinoma. Mol. Oncol. 14
(4), 896–913. doi:10.1002/1878-0261.12639

Frontiers in Genetics frontiersin.org15

Luan et al. 10.3389/fgene.2022.984033

https://doi.org/10.1158/0008-5472.can-08-0742
https://doi.org/10.1158/0008-5472.can-08-0742
https://doi.org/10.1038/s41467-022-29541-9
https://doi.org/10.1007/s13238-020-00796-6
https://doi.org/10.1007/s13238-020-00796-6
https://doi.org/10.1002/hep.29254
https://doi.org/10.1016/s0140-6736(17)31046-2
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1038/s41586-019-1186-3
https://doi.org/10.1016/j.pharmthera.2017.11.002
https://doi.org/10.1016/j.pharmthera.2017.11.002
https://doi.org/10.1038/s41598-020-75027-3
https://doi.org/10.1038/ng.3165
https://doi.org/10.1038/ng.3165
https://doi.org/10.1038/s41421-020-0178-7
https://doi.org/10.7150/thno.35573
https://doi.org/10.1158/0008-5472.can-09-1089
https://doi.org/10.1186/s12916-021-02163-6
https://doi.org/10.1186/s12916-021-02163-6
https://doi.org/10.7150/thno.53649
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1186/s12920-021-01081-z
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1038/s42003-020-01391-5
https://doi.org/10.1038/nrurol.2013.89
https://doi.org/10.1053/j.gastro.2019.02.049
https://doi.org/10.1053/j.gastro.2019.02.049
https://doi.org/10.1016/j.gde.2017.03.015
https://doi.org/10.21037/jgo.2016.09.07
https://doi.org/10.21037/jgo.2016.09.07
https://doi.org/10.1038/s41598-017-04811-5
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1016/j.cels.2015.12.004
https://doi.org/10.1038/s41571-018-0073-4
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/nature25501
https://doi.org/10.1002/hep.22110
https://doi.org/10.1002/hep.22110
https://doi.org/10.1002/1097-0142(20010101)91:1<101::aid-cncr13>3.0.co;2-k
https://doi.org/10.1002/1097-0142(20010101)91:1<101::aid-cncr13>3.0.co;2-k
https://doi.org/10.1186/s12943-017-0600-4
https://doi.org/10.1186/s12943-017-0600-4
https://doi.org/10.1186/1471-2105-12-77
https://doi.org/10.1038/nature14192
https://doi.org/10.1093/bioinformatics/btx513
https://doi.org/10.1002/hep.27732
https://doi.org/10.1002/hep.27732
https://doi.org/10.1038/nprot.2013.118
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1038/nrg.2017.33
https://doi.org/10.1158/0008-5472.can-18-0689
https://doi.org/10.1038/bjc.2017.55
https://doi.org/10.1038/bjc.2017.55
https://doi.org/10.1007/s12072-019-09962-3
https://doi.org/10.1007/s12072-019-09962-3
https://doi.org/10.1002/1878-0261.12639
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.984033

	Role of 5-methylcytosine in determining the prognosis, tumor microenvironment, and applicability of precision medicine in p ...
	Introduction
	Methods
	Data collection and processing
	Unsupervised clustering of 12 5 mC regulators
	DEG identification and functional annotation
	Construction of the 5 mC score system
	Prediction of the classical molecular subtypes of HCC
	Estimation of the immunological characteristics of TME in HCC
	Collection of therapy-specific signatures, therapy targets, and other functional pathways
	Screening for potential therapeutic agents
	Statistical analysis

	Results
	Landscape and multi-omics analysis of 5 mC regulators in HCC
	Identification of 5 mC subtypes in HCC
	Construction and validation of the prognostic 5 mC score system
	Association between clusters (according to the 5 mC score) and the TME in all cohorts
	Clustering (according to the 5 mC score) effectively predicted patient response to immunotherapy
	5 mC score predicted classical molecular subtypes and therapeutic opportunities for patients with HCC
	Estimation of drug response in patients with HCC

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


