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LETTER TO TH E EDITOR

Proteomics profiling of colorectal cancer progression
identifies PLOD2 as a potential therapeutic target

Dear editors,
Colorectal cancer (CRC) is the second leading cause of
cancer deaths in developed countries [1]. The malignant
transformation from small clumps to cancer takes about
10 years [2]. This study aimed to characterize proteomic
dynamics associated with CRC development and progres-
sion, and identify novel therapeutic targets for intercepting
the underlying oncogenic processes. We have optimized
pressure cycling technology (PCT) coupled with data-
independent acquisition mass spectrometry (DIA-MS) for
robust and reproducible proteomic analysis of biopsy-level
formalin-fixed paraffin-embedded (FFPE) tissues [3].
In this study, we profiled the proteomic tissue land-

scape of CRC evolving from normal colon to hyperplastic
polyps, adenomas, adenocarcinoma not otherwise speci-
fied (AC) or mucinous adenocarcinoma (MC). We identi-
fied 69,949 peptides, 6,359 protein groups, and 4,830unique
proteins (Supplementary Table S1) based on our previously
established spectral library for DIA analysis [4] from 170
FFPE tissue samples (85 patients, each with 2 biological
replicates) (Figure 1A). Pearson’s correlation coefficient
between biological replicates was 0.813, and 0.953 between
technical replicates.
We identified 928 differentially expressed proteins by

comparing protein expression in samples from different
CRC clinical stages to normal colon tissue samples (Fig-
ure 1B). Pairwise comparisons between polyps and normal
colon, adenomas and polyps, carcinoma and adenomas, as
well as MC and AC revealed distinct proteomic changes
associated with each transformation towards malignancy
(Supplementary Figure S1A). Canonical pathways analysis
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revealed that the dysregulated proteinsweremostly related
to oxidative phosphorylation. Interestingly, oxidative phos-
phorylation was enhanced in precancerous tissues (hyper-
plastic polyps and adenomas) but suppressed in CRC tis-
sues, suggesting metabolic adaptations of tumor cells in
the evolving microenvironment (Supplementary Figure
S1B). Analysis of diseases and biological functions of dif-
ferential proteins in benign lesions showed proteomic per-
turbations associated with oncogenic pathways. For exam-
ple, COPE, COPA, and COPZ1 are proteins encoded by
coatomer protein complex genes which are essential pro-
teins for tumorigenesis in CRC. PSMC3, PSMD13, PSMA7
and PSMD8 are all proteasomal proteins whose expres-
sions began to rise in polyps and peaked in adenomas (Sup-
plementary Figure S1C).
Six biologically significant protein expression patterns

associated with CRC development were selected by unsu-
pervised cluster analysis. Patterns 1, 2 and 3were formed by
upregulated proteins while patterns 4, 5 and 6were formed
by downregulated proteins (Figure 1C). Gene Ontology
analysis for enrichment of biological processes in the six
clusters (Supplementary Figure S2A) identified extracel-
lular matrix (ECM) enrichment in pattern 3. We then
checked for all ECM-related proteins in the “matrisome”,
which has been defined as the combination of core ECM
proteins (glycoproteins, collagens, and proteoglycans) and
ECM-associated proteins (ECM-affiliated proteins, ECM
regulators, and secreted factors) [5]. Among the six protein
expression patterns, we observed enrichment of ECM reg-
ulators in the upregulated patterns. Proteins within each
pattern formed protein-protein interaction networks using
Cytoscape with the GeneMania plugin (Supplementary
Figure S2B).
We then narrowed our focus on proteins that were

consistently upregulated along the stages of tumor pro-
gression. Among plasma membrane, nucleus, cytoplasm,
extracellular space and other locations, our data showed
that the cytoplasm and extracellular proteins stood out as
the locations with the highest expression of dysregulated
proteins (Supplementary Figure S2C). CRC progression
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was associated with substantially increased expression
of multiple enzymes (Supplementary Figure S3A). Of
note, Procollagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2
(PLOD2) was the most up-regulated protein (Figure 1D
and Supplementary Figure S3B). We further performed a
pairwise comparison between pre-cancerous and cancer-
ous samples with benign samples, and PLOD2 consistently
outstood as the top hit (Supplementary Figure S3C).
Next, we randomly selected eight samples of each tissue

type (normal colon, hyperplastic polyps, adenomas, AC,
and MC) for targeted measurement of PLOD2 using par-
allel reaction monitoring (PRM). The PRM data from the
40 samples confirmed the elevation of PLOD2 (Figure 1E).
As further verification,western blot (WB) analysiswas per-
formed on four new CRC patients and observed higher
PLOD2 expression in CRC tissues than in matched para-
tumoral normal colon (Figure 1F).We also assessed PLOD2
expression by immunohistochemistry staining (IHC) of tis-
sue microarrays (TMAs) containing 118 CRC (8th AJCC
TNM Stage II) and 79 para-tumoral normal colon tissues
(Supplementary Table S2). The IHC staining of PLOD2 in
para-tumoral normal colon tissues showed that 68 samples
had< 25% positive colon cells, eight samples had 25%-50%,
and only three samples had> 50%. In contrast, CRC tissues
showed significantly higher PLOD2 expression than para-
tumoral normal colon (Figure 1G). Remarkably, we found
that higher PLOD2 expression was associated with poorer
overall survival of CRC patients (Figure 1H, Supplemen-
tary Table S2).
Next,wemeasured the PLOD2 expression in sixCRCcell

lines and chose the two with the highest PLOD2 expres-

sion, namely HCT116 and HT-29, for generating PLOD2-
knockout (KO) congener lines using CRISPR-Cas9. Each
congenic pair of cell lines was treated with increasing con-
centrations of minoxidil, a lysyl hydroxylase inhibitor of
PLOD2. Minoxidil inhibited PLOD2 expression in both
wild-type cell lines in a time- and dose-dependentmanner,
while clonogenicity and cell proliferation were dramati-
cally suppressed when PLOD2 was inhibited by minoxi-
dil or knocked-out (Figure 1I). In addition, both minoxidil
treatment and PLOD2-KO suppressed CRC cell migration
and invasion (Figure 1J).
Extending our findings to in vivo model, we injected

HCT116 and HT-29 cell lines subcutaneously into nude
mice. We tested the effects of placebo versus minoxi-
dil treatment in vivo on tumors generated by wild-type
HCT116 and HT-29 cells, and also compared the growth
of tumors generated by PLOD2-KO HCT116 and HT-29
cells with PLOD2-high tumors. Our data showed that
both minoxidil and CRISPR-Cas9-mediated PLOD2 sup-
pression led to a significant decrease in tumor volume
(Figure 1K). A second in vivo model was patient-derived
xenografts (PDX) tumors from four CRC patients. Patient
tumors with high PLOD2 levels (PLOD2 positive tumor
cells were > 80%) were sensitive to minoxidil inhibition
while PLOD2-negative tumors were resistant (Figure 1L),
highlighting the potential clinical application of targeted
therapy against PLOD2.
To gain mechanistic insight on how PLOD2 inhibition

suppresses CRC tumors, we compared the transcriptome
and proteome of HCT116-KO and the HCT116-normal con-
trol (NC) cell lines using RNA sequencing and DIA-MS,

F IGURE 1 Proteomics profiling of colorectal cancer progression and validation of PLOD2 as a potential therapeutic target. (A)
Schematic diagram of the experimental design of this study. (B) Summary heatmap of expression of all dysregulated proteins in each group
(hyperplastic polyps, adenomas, adenocarcinoma not otherwise specified and mucinous adenocarcinoma compared with the normal colon
group, and enriched functional pathways of the differentially expressed proteins. (C) Unsupervised clustering of proteome dynamics revealed
six protein patterns in CRC progression. Each line indicates the relative abundance of each protein and is color-coded by cluster membership.
“n” denotes the number of proteins per cluster. (D) Protein localization statistics of dysregulated enzymes in CRC compared with the normal
colon group showing differential PLOD2 expression to be the most significant. (E) Expression of PLOD2 by PRM-MS. Data are mean ± SEM,
*: P < 0.05, **: P < 0.01. (F) Western blot of PLOD2 in CRC tumor and paired normal colon tissue of four new patients. (G) Representative IHC
stained PLOD2 expression in CRC and normal colon tissues from TMA and the corresponding percent of PLOD2 positive colon or tumor
cells. Scale bar represents 100 μm. (H) Kaplan–Meier curves of overall survival (OS) of CRC patients based on TMA PLOD2 expression scores
(low, n = 27; Intermediate, n = 37 and high, n = 54, P = 0.0097, two-sided log-rank test. (I) Western blot analysis of PLOD2 in CRC cell lines
(SW620, SW480, LoVo, HCT116, HT-29, RKO). WB of PLOD2 in HT-29, HCT116, their congenic knockout derivative cell lines, and
minoxidil-treated groups with different concentrations (0.5 mmol/L, 1 mmol/L) or duration (24h, 48h, 96h). Colony formation and cell
proliferation assays for HT-29, HCT116, their KO cell lines and 1 mmol/L minoxidil-treated groups (n = 3 biological replicates). (J) Cell
migration and invasion assays of HT-29, HCT116, their KO cell lines and 1 mmol/L minoxidil-treated groups (n = 3 biologically independent
experiments). (Left panel, representative images of transwell chambers, 50 × and 200 ×; right panel, average counts of five random
microscopic fields at a magnification of 200 × . Data are mean ± SEM, ***: P < 0.001). (K) Subcutaneous mouse models and corresponding
dissected subcutaneous tumors. For both HT-29 and HCT116, three groups (-NC + PBS, -NC +minoxidil and -KO + PBS) were
intraperitoneally injected every other day for a total of 10 injections (n = 5∼6 mice per group). Scale bar represents 1 cm. (L) Growth curves of
PDX models treated by minoxidil on the indicated days (n = 5 mice per group). Circles and triangles denote the mean volume of tumors
(mean ± SEM). Immunohistochemical staining of PLOD2 in PDX tumors is labeled on the top. Scale bar represents 100 μm. P-values were
calculated using the two-tailed Student’s t-test. NS, not significant
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respectively (Supplementary Table S3). We identified 1236
up- and 955 down-regulated transcripts, and 227 up- and
127 down-regulated proteins (Supplementary Figure S4A).
The data indicated that PLOD2 contributed to tumor
growth, resistance to cell necrosis, and was closely related
to the development of colorectal cancer (Supplementary
Figure S4B). PLOD2was also involved in protein synthesis,
metabolism, and mRNA translation (Supplementary Fig-
ure S4C). Selected protein networks prioritized by these
analyses are shown in Supplementary Figure S4D and E.
An overview of the patients’ basic pathological character-
istics is shown in Supplementary Table S4.
Compared to previous studies [6, 7], our study sys-

tematically tracked a plethora of protein changes in
CRC tissues as the disease progressed through increasing
degrees of malignancy. Therapeutic interventions directed
at cancer-derived ECM and their regulatory factors may
be clinically effective [8]. PLOD family proteins catalyze
post-translational modifications of collagen by convert-
ing lysine to hydroxylysine, which promotes stable inter-
actions and deposition of collagen [9]. PLOD2 could be
induced in L1CAM-overexpressing CRC cell lines and pro-
moted L1CAM-mediated CRC progression by inducing
ezrin signaling and the SMAD2/3 pathway [10]. Our data
collectively constitute plausible evidence for suggesting
further research on PLOD2 as a promising therapeutic tar-
get in CRC tumors in the emerging practice of precision
oncology.
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