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Abstract. Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis
and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and
alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The
neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent
on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete
subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through
neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-
1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to
clarify discrepant and confusing findings reported in the past.
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INTRODUCTION

Interleukin-1 (IL-1) is a master inflammatory
cytokine that regulates all aspects of immunologi-
cal responses of the host against infection and injury
[1]. Its neuromodulatory role was first discovered
in studies investigating the mechanisms of mam-
malian sickness symptoms, such as fever, lethargy,
social withdrawal, anhedonia, hypophagia, increased
secretion of glucocorticoids, and increased slow
wave sleep [2]. Sickness symptoms are a set of
auxiliary adaptive anti-infection changes controlled
by the central nervous system (CNS) to conserve
energy, avoid further opportunities of infection, and
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shift host’s overall biology towards anti-infection
metabolism and activity [2]. Even when sickness
symptoms/behaviors are caused by immune activity
confined to the periphery, the expression of IL-1 can
be found in the brain, where it orchestrates many
of these responses [3, 4]. For example, brain IL-
1 can activate neurons of the preoptic area-raphe
pallidus circuit to induce fever [5, 6], stimulate the
paraventricular nucleus of the hypothalamus to acti-
vate the hypothalamus-pituitary-adrenal gland axis
(HPA) to induce glucocorticoids secretion [7], and
modulate the hypothalamic feeding control center
to cause hypophagia [8, 9]. These neuromodulatory
actions are also operative when there are inflam-
matory activities in the brain itself, such as those
during brain injury [10] or after bacterial or viral
infection of the CNS [4, 11, 12]. These evidences
suggest neural functions of IL-1 are designed to coor-
dinate immunological activities with physiological
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and behavioral outputs through its actions in the
CNS. Interestingly, these adaptive changes may even
occur under conditions that are not directly related
to an immune activation. For example, acute [13]
or chronic [14] psychological stress can also induce
brain IL-1 expression, which causes some of the
responses resembling sickness symptoms. Thus, neu-
romodulatory functions of IL-1 may be called upon
under a broader set of circumstances that imply the
presence of danger to produce a shared set of CNS-
controlled host defense responses.

In general, the neural responses to acute sickness
are brief and occur immediately when homeostasis is
disturbed by infection or stress, suggesting IL-1 could
serve as an additional input to neural circuits regulat-
ing the relevant physiological and behavioral systems
to transiently alter their outputs, producing the pro-
tective sickness symptoms. Further investigation of
the CNS functions of IL-1 revealed that IL-1 has neu-
roregulatory roles beyond transitory activities during
isolated inflammatory or stressful events. For exam-
ple, IL-1 levels were found to vacillate with circadian
rhythm [15] and influence normal sleep [16, 17]. In
addition, a sickness event can cause delayed and last-
ing changes in cognition and IL-1 was found to play
a critical role in the altered processes of learning and
memory [18], the consequences of which could affect
the nervous system long after the initial triggering
infectious or stressful events. For such temporally
discontinuous neuromodulatory actions of IL-1 to
occur, IL-1 cannot simply act as an additional input
to be conducted through existing neuro-circuitries,
it must be able to alter the structure of neurocir-
cuitry itself. This possibility is highlighted by the
fact that during development, a period when neuro-
circuits are built and extensively modified, induction
of IL-1 causes profound changes in the trajectory
of neurodevelopment, resulting in behavioral phe-
notypes resembling psychological disorders later in
life [19–21]. Alteration of neural networks can also
occur during adult life and this phenomenon has
been termed neuroplasticity. How IL-1 might cause
changes in neuroplasticity is the focus of this review.

BASICS OF NEUROPLASTICITY

Classical neuroplasticity was originally conceived
by Hebb who suggested coordinated activity between
the pre- and postsynaptic neurons strengthens their
connection [22]. This “fire together, wire together”
hypothesis suggests that certain types of neuronal

activities can result in changes of neuronal net-
works such that dynamic responses of neurons
are shaped by prior activation history. Since then,
a large literature has been developed to investi-
gate the molecular and structural underpinnings of
neuroplasticity and to define the ways neuronal
connectivity can be modified. Presently, neuro-
plasticity is examined from two perspectives: 1)
functional plasticity—changes in neuronal excitabil-
ity; 2) structural plasticity—anatomical changes to
neuronal circuits, such as addition or removal of cells
or synapses. Overall, neuroplasticity encodes pro-
survival information, allowing organisms to learn,
retain memories, and predict outcomes based upon
prior experiences. It is critical for the maintenance of
the learned behavior.

Birth and death of neurons

The founder of modern neuroscience, Ramon y
Cajal, famously stated in 1928: “Once the develop-
ment was ended, the founts of growth and regenera-
tion of the axons and dendrites dried up irrevocably.
In the adult centers, the nerve paths are something
fixed, ended, and immutable. Everything may die,
nothing may be regenerated. It is for the science of
the future to change, if possible, this harsh decree
[23]”. This sentiment was held firm by neuroscien-
tists for decades. However, breaking the historical
status quo, Altman and Das showed incorporation
of centrally injected thymidine-H3 into the DNA of
proliferating cells of adult rat dentate gyrus and sug-
gested that new neurons can be generated in adult
brain [24]. Later studies substantiated this notion of
adult neurogenesis using other proliferation markers,
such as Bromodeoxyuridine (BrdU) [25, 26]. These
studies located adult neurogenesis in discrete areas
of the CNS, neurogenic niches. The best-known neu-
rogenic niches are located in the subventricular zone
and the hippocampal subgranular zone. The newly
generated neurons can migrate from the neurogenic
niches to incorporate into existing neuronal networks
[27], creating a form of structural neuroplasticity.
This neuroplastic process may be crucial for cog-
nitive and affective behaviors. Experimental studies
have shown: 1) chemical or genetic ablation of neu-
ral progenitor cells (NPC) impairs learning of normal
animals [28] and cognitive recovery in animals with
brain injury [29]; 2) preservation or enhancement of
neurogenesis ameliorates depressive-like behaviors
in animal models of stress [30, 31] and enhanced
learning in exercising animals [32]. Neurogenesis
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is now confirmed in many species including fish,
reptiles, birds, rodents, non-human primates and
humans [40]. Thus far, neurogenesis has been impli-
cated in the consolidation of new memories [33,
34], modification of cognition [35, 36], generation
of positive affect [37], and reorganization of neural
circuits after injury [38, 39]. Typically, neurogene-
sis is visualized by immunohistochemical labeling of
proliferation markers, proliferation related proteins,
immature cell markers, or by retroviral fluorescent
labeling of dividing cells [41]. Although neuroplas-
ticity is typically associated with the birth of new
neurons, it is significantly influenced by the death of
neurons as well because both addition and subtraction
of neurons to neural networks alters neural structures.
The loss of neurons via necrosis and apoptosis occur
following traumatic brain injuries [42], excitotoxic
injuries [43], substance abuse [44], and ischemia [45].
In animal models of disease and injury, presence of
dying cells correlates with the deficits in regulation
of memory and affect, implicating neuronal death in
functions dependent on neuroplasticity.

Synaptic structure

Synapses are physical spaces between neurons
that allow them to transmit chemical signals from
one cell to the next. Synaptic communication or
neurotransmission consists of pre-synaptic neuro-
transmitter production and release followed by a
neurotransmitter receptor mediated response in the
postsynaptic neuron. Synaptic plasticity is a driving
force that contributes to dynamic changes in neuro-
circuitry that underlie complex cognitive behaviors
[46, 47]. Aberrant changes to synaptic structures
can be the cause of behavioral abnormalities, such
as depression and anxiety [48, 49]. Enduring alter-
ations in synaptic structure can occur in one of three
ways: 1) creation and elimination of synapses, 2)
alteration of synaptic morphology, and 3) changes
to synaptic adhesion. Synaptogenesis, the generation
of new synapses, which often manifests as newly
formed synaptic spines, occurs on the timescale of
days to weeks, thus providing a delayed and last-
ing effect on neural networks. The importance of
proper synaptic network formation is exemplified in
neurodevelopmental disorders such as autism spec-
trum disorder and X-linked mental retardation, where
affected individuals have either vastly more [50, 51]
or less dendritic spines [52], respectively. In addition,
appropriate synaptic elimination, synaptic pruning, is
critical to sculpt efficient neural circuits. For exam-

ple, Huttenlocher et al. found experience-dependent
visual learning requires elimination of under-used
synapses [53]. Interestingly, synaptic pruning is mod-
ulated by glial cells. Recent studies have shown
microglia actively engulf synapses in both health [54]
and disease [55, 56] and was found essential for mem-
ory creation [57] and forgetting [47].

The morphology of synapses, especially spine
morphology, can be visualized and analyzed. Den-
dritic spines can be classified as stubby, mushroom,
thin, and filipodia. Each type of spine is suggestive
of the maturity of a dendritic spine. Typically, mush-
room spines are stable excitatory synapses whereas
thin spines or filipodia are immature and unstable
[58, 59]. Abnormal amount of certain type(s) of
spine morphology have been observed in humans
with neurodevelopmental disease, schizophrenia, and
Alzheimer’s disease [60, 61]. Another parameter
of synaptic structure is synaptic adhesion. Synap-
tic adhesion proteins contribute to the formation
and maintenance of synapses [62]. Perturbations
of neuronal adhesion are associated with impaired
[63, 64] or exaggerated synaptic growth [65] which
have been found in brains of patients with mental
health diseases like addiction [66] and schizophrenia
[67]. Synapses can be visualized by immunolabel-
ing of synaptic proteins, by viral or genetic neuronal
expression of reporter fluorescent proteins, and by
electron microscopy. Synaptic adhesion has been
studied in cultured cells expressing synaptic adhesion
molecules.

Neuronal excitability

From the functional perspective, neuroplasticity is
measured by the altered relationship between presy-
naptic inputs and postsynaptic responses — amplified
or diminished excitability. Classic examples of func-
tional plasticity are long term potentiation (LTP) and
long term depression (LTD). During LTP the post-
synaptic response is enhanced by a prior tetanus
stimulus, a high frequency stimulation. Following
the tetanus stimulation, influx of high levels of cal-
cium is induced in the postsynaptic neuron to activate
downstream signaling and change the postsynaptic
receptor composition, especially AMPA receptors
(AMPAR) and NMDA receptors (NMDAR), result-
ing in increased excitability of the postsynaptic
membrane. During LTD, on the other hand, the post-
synaptic response is suppressed after a low frequency
stimulus conditions the postsynaptic neuron to hypo-
respond to input stimulation. Influx of low levels



20 D.P. Nemeth and N. Quan / Modulation of Neural Networks by IL-1

of calcium following the low frequency stimulation
causes phosphatases in the postsynaptic neuron to
inhibit pathways that recruit AMPAR, thus caus-
ing decreased postsynaptic responses [68]. LTP and
LTD play crucial roles in the generation of lasting
memory, in cognitive function, and in mood disorder
[69]. Beyond LTP and LTD, changes in resting mem-
brane potential, ion channels, surface receptors, and
rate of neurotransmitter clearance can also influence
neuronal excitability. These influencers of excitabil-
ity are clinically significant. Treatment for bipolar
disorder alters resting neuronal membrane potential
[70]; mutations in ion channels are known to con-
tribute to the etiology of epilepsy [71]; alterations
of AMPA/NMDA receptor ratio influences mem-
ory [72]; and abnormal neurotransmitter clearance
is implicated in both depression [73] and excito-
toxic injury [74]. Traditionally, LTP and LTD are
measured using electrophysiological recordings in a
slice preparation or in vivo. Other electrophysiolog-
ical methods, such as whole cell patch clamp, are
used to measure neuronal excitability. Additionally,
imaging techniques have been employed to visualize
neuronal calcium influx in vitro and in vivo [75].

INTERLEUKIN-1 AND NEUROPLASTICITY

Several lines of research suggest IL-1 modulates
neuroplasticity. Under physiological conditions, IL-
1 levels are known to oscillate throughout the day
[15]. Deletion of IL-1 receptor decreases sleep while
central administration of IL-1, at low picogram lev-
els, increases slow wave sleep in rodents [76, 77].
IL-1 has been found to be induced by learning pro-
cesses [78] and is critical for spatial [79], but not
associative learning [80], suggesting specific neural
circuits are susceptible to modulation by IL-1. Fur-
thermore, blockade of IL-1 signaling has been shown
to impair memory consolidation [78, 81]. Therefore,
these findings support a role for IL-1 in regulat-
ing physiological neuroplasticity in the generation
of memory. In contrast, in models of severe stress
[14, 82], brain injury [83, 84], or IL-1 overexpression
[85], IL-1 was found to impair memory. These condi-
tions are associated with significantly induced brain
IL-1 expression, suggesting IL-1 at pathological lev-
els might exert opposite effects on memory versus its
physiological effects. At nanogram levels, central IL-
1 elicits robust neuroinflammatory responses, such as
leukocyte infiltration, microglial activation, and addi-
tional cytokine production [86]. Interestingly, mental

Fig. 1. Schematic of concentration dependent IL-1 signaling
within the CNS.

health diseases like chronic fatigue [87, 88], depres-
sion [89, 90], anxiety [91, 92], and panic disorder
[93] have all been linked with elevated brain IL-1.
However, in these diseases overt neuroinflammatory
responses are often not found, but above normal IL-
1 levels are present [90]. Thus, a spectrum of IL-1
activities may exist depending on its concentration.
We propose that very low IL-1 concentrations reg-
ulate normal physiological functions whereas very
high IL-1 concentrations cause overt neuroinflam-
mation. In between, chronically elevated IL-1 above
physiological levels may alter neuronal plasticity and
is important for the pathogenesis of psychopathology
(See Fig. 1). In this review, we will dissect the diverse
modalities by which IL-1 regulates neuroplasticity.

Essential to understanding how IL-1 influences
neuroplasticity, it is important to understand how
IL-1 mediates intracellular signaling and how IL-1
receptors are distributed in the brain. IL-1 exists in
two isoforms, IL-1� and IL-1�. They both bind to
a single receptor, the type 1 Interleukin-1 Receptor
(IL-1R1) to mediate signaling. IL-1/IL-1R1 com-
plex recruits IL-1R1 accessory proteins (IL-1RAcP).
IL-1RAcP also exists in two isoforms, IL-1RAcP
and IL-1RAcPb. IL-1RAcP is known to recruit the
adaptor protein, MyD88, which initiates activation
of pathways such as NFκB and p38-MAPK. IL-
1RAcPb prevents the recruitment of MyD88 and
IL-1R1/IL-1AcPb complex signals through pathways
such as AKT [94] or Src [95]. Interestingly, IL-
1RAcPb is expressed specifically in neurons [96]
and is up to 1000 times more sensitive to IL-1
than IL-1RAcP [95]. Therefore, IL-1 could stimu-
late neurons and non-neuronal cells very differently
via different downstream signaling pathways and
elicit dramatically different sensitivities on these cell
types. Originally, IL-1R1 expression was thought
to be ubiquitously expressed throughout the CNS
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[97]. However, using advanced genetic reporter we
showed that IL-1R1 expression is restricted to spe-
cific endothelial cells, ventricular cells, astrocytes,
and neurons in discrete subpopulations of the CNS
[86, 98]. Restricted neuronal IL-1R1 expression sug-
gests direct neuronal modulation by IL-1 is limited
to select neuronal circuits. In this review, we will uti-
lize this new information to analyze the direct versus
indirect mechanisms by which IL-1 alters neuroplas-
ticity.

IL-1 and neurogenesis

In non-neuronal cells, IL-1 can induce the prolif-
eration of bone marrow derived mesenchymal stem
cells [99, 100]. In neural tissue, on the contrary, in
vitro data shows IL-1 is a potent inhibitor of NPC
proliferation [101–104] suggesting the action of IL-
1 is anti-neurogenic. Indeed, CNS IL-1 induction by
bacterial [105, 106] and viral [11] infection, stress
[107, 108], radiation [109, 110] and neurodegenera-
tion [111] is correlated with decreases in brain NPCs.
Furthermore, direct stimulation with IL-1 in the hip-
pocampal neurogenic niche decreases neurogenesis
[85, 86, 112]. The potent anti-neurogenic actions
of IL-1 can be inhibited with IL-1R antagonist (IL-
1Ra) [11, 111, 113], abrogated by IL-1R1 knockout
[86, 114], or suppressed by voluntary exercise which
reduced IL-1 expression [115, 116]. Surprisingly,
neurogenesis is inhibited in transgenic mice that over-
expresses IL-1Ra [117], but not in IL-1R1 knockout
mice [86]. It is possible that the anti-neurogenic effect
of transgenic overexpression IL-1Ra is due to mech-
anisms independent of IL-1R1.

Two mechanisms have been proposed to explain
IL-1-mediated inhibition of neurogenesis: 1) inhibi-
tion of NPC proliferation, and 2) alteration of the cell
fate of NPCs. The first mechanism is supported by the
following evidences: 1) IL-1 was found to decrease
incorporation of thymidine analogues in NPC [11,
86, 107]; 2) IL-1 activates signaling pathways asso-
ciated with cell cycle arrest [118, 119]; and 3) IL-1
decreases the number of immature neurons [85, 86,
112]. The second mechanism is supported by: 1)
In vitro stimulation of NPCs with IL-1� and IL-1�
caused an increase in the amount of astroglia-like
cells and a decrease of differentiated neurons [120,
121]; 2) In vivo, in a disease model of West Nile Virus,
an increase in proliferating astrocytes and a decrease
in neurogenesis were found in an IL-1R1 dependent
manner [11].

Recently we have found IL-1R1 expression in
dentate granule neurons near the hippocampal sub-
granular zone, but not in the adjacent NPCs,
suggesting the anti-neurogenic effect of IL-1 must be
indirect [86]. Indeed, conditional knockout of NPC
MyD88 did not attenuate IL-1-induced suppression
of neurogenesis [85]. Furthermore, Liu et al. showed
that IL-1 induced anti-neurogenesis can be mediated
indirectly via endothelial and myeloid IL-1R1 [86].

IL-1 and neuronal cell death

Historically, IL-1 was first found to alter neu-
ral networks by distorting neuronal connectivity via
neuronal death, especially in brain injury and neu-
rodegenerative diseases. Under these conditions, the
expression of IL-1 coincides with loss of neurons.
In in vitro studies, high levels of IL-1 can directly
induce neuronal apoptosis [118, 122–124]. However,
in these studies, neurons were cultured in the pres-
ence of glial cells and it is possible that IL-1 promoted
neuronal death indirectly through glial cells. Indeed,
Thornton et al. found the neurotoxic effect of IL-1
was abrogated when glial cells were removed from
the culture [124, 125]. Consistently, IL-1 was found
to stimulate glial production of both reactive oxygen
and nitrogen species (ROS and NOS) which are harm-
ful to neurons [124, 126]. In contrast, other studies
found IL-1 can stimulate glial cells to produce nerve
growth factor that is potentially neuroprotective [127,
128]. These in vitro results suggest IL-1 is capable
to produce opposite effects on neuronal survival via
glial cells.

Surprisingly, intracerebral administration of IL-
1 in vivo does not affect neuronal survival [86,
129–131], suggesting IL-1 alone does not cause neu-
ronal death even in the presence of glial cells in vivo.
However, blockade of IL-1 signaling by genetic dele-
tion of IL-1R1 or over-expression of IL-1Ra reduced
neuronal damage in animal models of stroke [84] and
epilepsy [132], suggesting that the neurotoxic effect
of IL-1 will manifest if other injurious factors are
present. Indeed, when IL-1 was administered during
CNS injury [133], stroke [134], or co-administered
with excitotoxins [130, 135], neuronal apoptosis was
exacerbated.

One mechanism for the exacerbation of neuronal
death could be IL-1-mediated leukocyte infiltration
into the CNS. In experimental models of neurode-
generation, such as epilepsy [136], ischemia [137],
and experimental autoimmune encephalomyelitis
(EAE) [138], IL-1 recruits leukocytes to the brain
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and is crucial for disease progression. Blockade of
recruitment of leukocytes reduces neuronal death in
these conditions. A second mechanism by which
IL-1 exacerbates neuronal death is the induction
of inflammatory factors such as ROS, NOS, and
prostaglandins. Multiple studies found glial ROS
and NOS induced by IL-1 cause neuronal death
[124–126]. Interestingly, IL-1-induced endothelial
prostaglandin E2 production is neurotoxic whereas
IL-1 induced prostacyclin produced from neurons
is neuroprotective [139]. The third mechanism is
IL-1 could make neurons vulnerable by reducing
neuronal viability. The maintenance of neuronal sur-
vival is associated with the presence of neurotrophic
factors, such as brain derived neurotrophic factor
(BDNF). BDNF is known to promote neuronal sur-
vival and a decrease of BDNF levels can make
neurons more susceptible to injury [140]. IL-1 has
been shown to impair the production of BDNF
mRNA in vivo [141] and BDNF protein in vitro.
IL-1 also interferes with BDNF-mediated signaling
in cortical neurons, which results in decreased neu-
ronal survival [123]. In addition, IL-1 can induce
upregulation of neuronal excitatory neurotransmitter
receptors thus conferring an increased sensitivity to
excitotoxin [142]. Therefore, both the immunological
(leukocyte recruitment and induction of inflamma-
tory factors) and the neurological (enhancement of
neuronal vulnerability) effects of IL-1 may converge
to account for IL-1 mediated exacerbation of neu-
ronal death during tissue injury. We have diagrammed
these interactions in Fig. 2. The neurotoxic effects of
IL-1 are most likely mediated by the canonical IL-
1R1 signaling pathway. Blockade of NFκB and p38
abrogated neuronal death in models of injury [143,
144]. Recently a new IL-1R-mediated pathway has
been discovered. In this pathway IL-1R1 is associ-
ated with IL-1RAcPb, not IL-1RAcP. Current studies
indicate the IL-1R1/IL-1RAcPb signaling is neuro-
protective because deletion of IL-1RAcPb enhanced
neuronal death after excitotoxic [145] or immunolog-
ical challenges [96]. IL-1RAcPb is neuronal specific;
therefore, the IL-1-mediated neuroprotective effects
would occur only in IL-1R1 and IL-1AcPb express-
ing neurons. We recently found IL-1R1 expression
is limited to discrete subpopulations of neurons, sug-
gesting the neuroprotective effects of IL-1 signaling
in neurons is not universal. The balance between the
canonical IL-1R1/IL-1RAcP and the alternative IL-
1R1/IL-1RAcPb signaling could determine whether
IL-1 exerts a neurotoxic or neuroprotective effect.
Indeed during aging, where neurons are more suscep-

tible to injury, increased IL-1RAcP/IL-1RAcPb ratio
is correlated with increased inflammatory signaling
and neuronal death [145].

Synaptic changes and IL-1

IL-1 has been shown to impact three aspects of
synaptic structure: 1) neurotransmitter receptor com-
position, 2) spine density, and 3) synaptic adhesion. In
vitro, IL-1 was shown to induce an increase expres-
sion of NMDARs [146] and reduced expression of
AMPARs [147]. These IL-1 induced changes were
confirmed in an in vivo model of hyperammonemia.
Furthermore, these IL-1-induced changes in neuro-
transmitter receptor composition can be abrogated ex
vivo in hippocampal slices by treatment with IL-1Ra
[148]. Only three studies have investigated the effect
of IL-1 on the density of synapses. In one study, IL-
1 applied to cultured primary hippocampal neurons
at a high concentration (3 ng/mL for 24 hrs) caused
a decrease in postsynaptic densities measured by
PSD95 immunolabeling [149]. In another, low levels
(0.05 ng/mL for 30 mins) of IL-1� did not alter synap-
tic density [146]. In the third study, IL-1R1 deletion
resulted in an increase of postsynaptic markers, sug-
gesting endogenous IL-1 acts to reduce the amount
of postsynaptic sites [150]. In terms of synaptic adhe-
sion, Yoshida et al. found IL-1RAcP and IL-1RAcPb
can couple, trans-synaptically, with protein tyrosine
phosphatase receptor type delta (PTPRδ) to serve as
synaptic adhesion molecules thus guiding synaptic
formation [151]. In a cell culture system, expres-
sion of IL-1RAcP increased the protein expression
of presynaptic markers, Bassoon and VGLUT1 and
knockdown of IL-1RAcP reduced synapse formation.
Interestingly, these two isoforms of IL-1RAcP appear
to play distinct roles in synaptogenesis: whereas IL-
1RAcP is important for presynaptic differentiation,
IL-1RAcPb is important for postsynaptic differen-
tiation [152]. Related to IL-1RAcP, Interleukin-1
Receptor Accessory Protein-Like 1 (IL-1RAPL1) is
known to be critical in the formation of synapses.
IL-1RAPL1 shares key features of the extracellu-
lar domains, transmembrane domain and signaling
domain with IL-1RAcPb and is known to mediate
synaptogenesis modulated by IL-1 [153]. Similar to
IL-1RAcPb, IL-1RAPL1 also contains an extended
intracellular C-terminus domain that prevents the
activation of NFκB [154]. Mutations or genetic dele-
tions in IL-1RAPL1 cause learning disabilities and
autism-like syndromes in humans and mice in asso-
ciation with abnormal synaptic morphology [153,
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Fig. 2. Neurological and immunological IL-1 effects converge to influence neuronal survival. IL-1R1 can directly influence neuronal
viability via decreasing neurotrophic factors, increasing membrane-bound neurotransmitter receptor and increasing inflammatory signaling.
The decreased neuronal viability is coupled with increased release of neurotoxic inflammatory factors from non-neuronal cells, such as
leukocytes, astrocytes and endothelia.

155]. Neurons with IL-1RAPL1 knockdown or neu-
rons from IL-1RAPL1 knockout mice have decreased
dendritic arborization, decreased spine density, and
decreased excitatory synapses [151, 156]. IL-1AcP
knockout mice show decreased in synaptic spines
within the cortex and hippocampus [152], however,
it is unknown whether deletion of IL-1RAcPb could
cause similar effects and whether IL-1 is involved in
the regulation of synaptic adhesion.

LTP/LTD and IL-1

Influence of IL-1 on functional synaptic plasticity,
such as LTP and LTD, has also been studied. Katsuki
et al. were the first to show IL-1 can inhibit LTP in
the CA3 neurons of the hippocampus [157]. Since
this seminal finding, others studies have also shown
IL-1 can inhibit LTP in the neurons of the CA1 [158,

159], CA3, and dentate gyrus of the hippocampus
[160–163].

On the contrary, others suggest that IL-1 is critical
for induction of LTP and its maintenance. When LTP
was induced with electrical stimulation of hippocam-
pal slices or in vivo, an increase in IL-1 was observed
[164, 165]. Likewise, the act of learning was found
to induce IL-1 production in the hippocampus sug-
gesting learning associated neuronal activation can
drive IL-1 expression. The level of IL-1 induction
was correlated to the reduction of errors in a memory
test suggesting IL-1 aids in the learning process [78,
164]. In addition, when IL-1R1 signaling was phar-
macologically blocked by IL-1Ra, LTP maintenance
was reduced and learning was impaired [165, 166].
In line with these findings, Avital et al. found LTP in
dentate gyrus or CA1 neurons was not inducible in IL-
1R1 KO mice [81]. IL-1 may also modulate LTD. In
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one study, application of IL-1 reduced basal neuronal
responsiveness, preventing subsequent induction of
LTD [167].

Several confounding factors need to be considered
when assessing the role of IL-1 in LTP and LTD.
Firstly, most electrophysiology studies are done in
acute slices that are known to induce the expression
of endogenous IL-1 in the injured slices. This injury
associated increase in IL-1 may mask the effect of
physiological levels of IL-1 in the slice. To reduce this
potential artifact, two methods have been employed:
1) lower the incubation and recording temperatures
and 2) increase the pre-test incubation duration. Ross
et al. studied LTP in slice preparation at room tem-
perature because injury related IL-1 release is higher
at physiological temperature [166]. Schneider et al.
incubated the slice for more than 5 hours before LTP
recording to allow for injury-induced IL-1 to dimin-
ish [165]. Therefore, results from in vitro studies done
at different temperatures or incubation preparations
may be divergent. Secondly, the use of IL-1Ra to ver-
ify the effect of IL-1 could be confounded by the
off-target effects. This unexpected possibility was
suggested by Loscher et al. after showing applica-
tion of IL-1Ra impaired LTP in synaptosomes from
IL-1R1 deficient mice [168].

Most recent analysis suggests that IL-1 may
modulate LTP in a synapse-specific manner. In
hippocampal neurocircuitry, dentate gyrus granule
neurons project to CA3 neurons via mossy fibers
and CA3 neurons project to CA1 neurons via Schaf-
fer collaterals. IL-1 has been shown to inhibit
Schaffer/CA1 LTP, but not dentate/CA3 LTP [159].
Our studies have revealed that neuronal IL-1R1
expression is restricted to dentate granule cells in hip-
pocampus. Therefore, the effects seen by Hoshino et
al. in the CA1 cells are most likely indirect because
CA3 and CA1 neurons do not express IL-1R1. The
same conclusion may apply to most of the aforemen-
tioned studies because LTP is recorded in neurons in
brain regions that do not express neuronal IL-1R1.
Indirect mechanisms of modulation of LTP by IL-1
have been examined in previous literature. For exam-
ple, IL-1-induced ROS has been found to mediate
LTP impairment, which is rescued with antioxidant
treatments [163].

Neuronal excitability and IL-1

The influence of IL-1 on neuronal excitability has
been studied extensively; but the reported results are
discrepant and confusing. Numerous studies have

shown IL-1 suppresses neuronal excitability. IL-1
has been found to hyperpolarize neurons in the
amygdala [169], anterior hypothalamus [170], dor-
sal motor nucleus [171], and hippocampus [81, 167],
suggesting IL-1 can reduce the excitability of neu-
rons. In support, IL-1 has been found to enhance the
hyperpolarizing chloride [172, 173] and potassium
currents [94] and inhibit the depolarizing sodium
[174–176] and calcium currents [173, 176–179]. In
addition, IL-1 has been shown to reduce the release
of the excitatory neurotransmitter glutamate [163,
178, 180] and enhance the release and signaling of
the inhibitory neurotransmitter gamma-aminobutyric
acid (GABA) [172, 173, 181–183]. These findings
are consistent with studies that show IL-1 can reduce
excitatory postsynaptic potentials [169]. Finally, IL-
1 suppressed spreading depolarization in a model of
cortical ischemia-reperfusion [184]. Taken together
this set of evidences suggests IL-1 is inhibitory for
neuronal excitability.

Conversely, evidences exist to support that IL-1 can
enhance neuronal excitability. IL-1 has been shown to
induce depolarization in neurons in the hypothalamus
[170, 185], subfornical organ [186], and trigeminal
ganglion [187]. IL-1 has been shown to suppress
the inhibitory chloride [188] and potassium currents
[189, 190] and increase excitatory sodium currents
[187]. In addition, IL-1 was found to increase neu-
ronal intracellular calcium [142, 191, 192]. In models
of three different diseases IL-1 was also found to
increase neuronal excitability. In epilepsy, IL-1 sup-
pressed GABA induced inhibitory currents [193]; in
a prion disease model, IL-1 depolarized CA1 neu-
rons [194]; and in multiple sclerosis, elevated IL-1
cerebrospinal fluid (CSF) level was correlated with
an increased response to transcranial magnetic stim-
ulation, suggesting the neurons are hyperexcitable
[195]. The increased neuronal activity can be blocked
by IL-1Ra suggesting IL-1R1 signaling mediates
the neuronal excitability increase in these diseases
[195–197]. Taken together this evidence suggest IL-1
is excitatory.

Beyond the apparent contradictory evidences
reviewed above, Zhu et al. found that under basal con-
ditions, IL-1 increased glutamate and GABA release,
but suppressed neurotransmission once neurons were
activated [198]. This suggests IL-1 modulates neu-
ronal activity depending on state of activation.

Here we propose three possible explanations for
the discrepancy in the literature. Firstly, IL-1 signal-
ing may differentially influence neuronal excitability
due to concentration-dependent activities of IL-1.
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Fig. 3. Nonconventional IL-1R1 mediated neuroplasticity. IL-1 may exert its effect indirectly via non-neuronal IL-1R1 or via IL-1R1 on
outlying neurons. IL-1 may mediate its effect directly on neurons with IL-1R1, however, IL-1R1 signaling may initiate various responses
depending on whether IL-1R1 is expressed pre- or postsynaptically.

Multiple studies found the kinetics of IL-1 signal-
ing on neuronal excitability acts as a U-shaped curve,
such that low and high concentrations of IL-1 exert
opposite effects on neuronal excitability. This is
demonstrated by two studies showing low concentra-
tions of IL-1 and high concentrations of IL-1 causes
opposite effects on neuronal excitability [177, 186].
In addition, neuronal IL-1R1 has been shown to have
higher sensitivity to IL-1 compared to non-neuronal
IL-1R1 [86, 199]. Therefore, different levels of IL-
1 present during recording could engage different
biochemical and cellular targets. Secondly, the pres-
ence or absence of non-neuronal IL-1R1 signaling
could confound the interpretation of IL-1-mediated
changes in neuronal excitability. For example, IL-1
induced hyperpolarization of dorsal motor neurons

was found to be dependent on prostaglandin syn-
thesis [171] and hyperpolarization of hypothalamic
[170] or amygdala neurons [181] was shown to be
dependent on MyD88 signaling. These signaling cas-
cades are typically observed downstream of IL-1R1
activation in non-neuronal cells such as endothelia
and astrocytes, suggesting non-neuronal cells near
the recorded neurons could be the main driver of
the observed IL-1 effects in these studies. Thirdly,
previous studies were hindered by the lack of iden-
tification of IL-1R1 on the recorded neurons. Even
assuming non-neuronal IL-1R1 does not participate
in the IL-1 induced fast electrophysiological effects,
the recorded effects on a neuron without IL-1R could
still be resulted from changes occurred in a nearby
neuron that does have IL-1R. This notion is sup-
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ported a previous data that showed in certain brain
regions, such as the striatum, neuronal activity was
not altered by IL-1 [200]. We have observed in our
IL-1R1 reporter mice, neuronal IL-1R1 is absent in
the striatum (unpublished data). Future studies need
to clarify the role of IL-1 on modulating neuronal
excitability by identifying the precise cellular IL-1R
involved in the studied effects.

Influence of IL-1 on neuronal excitability could
impact neuroplasticity. Recent literature describes a
new paradigm of non-Hebbian neuroplasticity where
the alteration of neuronal excitability can influence
how apt a circuit is to undergo plasticity, which is
termed intrinsic plasticity. For example, quick cal-
cium influx in hippocampal CA1 neurons can elicit
place cell formation without repeated wiring of the
circuit to produce rather instant spatial memory [201].
Whether IL-1 can alter intrinsic neuroplasticity has
yet to be determined.

SUMMARY/CONCLUSION

In this review, we analyzed the role of IL-1 in mod-
ulating neuroplasticity from the current literature.
While the significance of IL-1-mediated changes in
neuroplasticity is becoming increasingly clear in neu-
rophysiology, neuropathology, and the pathogenesis
of psychological and psychiatric disorders, how IL-1
causes these changes are complex and multi-faceted.
Indirect pathways utilizing non-neuronal IL-1R1,
which have been somewhat discounted in the past,
could play predominant roles in shaping neuroplas-
ticity. The direct influence of IL-1 on neuroplasticity
through neuronal IL-1R1 is also more intricate than
previously thought, due to restricted and discrete
expression of neuronal IL-1R1 in subpopulations of
neurons. How presynaptic IL-1R1 and postsynaptic
IL-1R1 differentially modify neuroplasticity remains
to be determined. In addition, different levels of IL-
1 produced under physiological, psychopathological,
and inflammatory conditions could modulate neuro-
plasticity through different modalities by engaging
different IL-1R1 expressing cell types or different IL-
1R1 expressing neurons. These conceptualizations
are diagramed in Fig. 3.
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