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Abstract
Background: Being able to predict with confidence the early onset of type 2
diabetes from a suite of signs and symptoms (features) displayed by potential
sufferers is desirable to commence treatment promptly. Late or inconclusive
diagnosis can result in more serious health consequences for sufferers and
higher costs for health care services in the long run.
Methods: A novel integrated methodology is proposed involving correlation,
statistical analysis, machine learning, multi‐K‐fold cross‐validation, and
confusion matrices to provide a reliable classification of diabetes‐positive
and ‐negative individuals from a substantial suite of features. The method
also identifies the relative influence of each feature on the diabetes diagnosis
and highlights the most important ones. Ten statistical and machine learning
methods are utilized to conduct the analysis.
Results: A published data set involving 520 individuals (Sylthet Diabetes
Hospital, Bangladesh) is modeled revealing that a support vector classifier
generates the most accurate early‐onset type 2 diabetes status predictions
with just 11 misclassifications (2.1% error). Polydipsia and polyuria are
among the most influential features, whereas obesity and age are assigned
low weights by the prediction models.
Conclusion: The proposed methodology can rapidly predict early‐onset type
2 diabetes with high confidence while providing valuable insight into the key
influential features involved in such predictions.
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Highlights

• New integrated method combines statistical analysis and machine learning.
• Multi‐K‐fold validation reveals high‐performing machine learning model
setups.

• Statistical analysis of a suite of signs and symptoms identifies prediction
challenges.

• Relative feature influences on prediction models contrast with correlations.
• Annotated confusion matrices provide detailed insight into misclassifications.
• Support vector classifier predicts early‐onset type 2 diabetes with 2.1% errors.
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1 | INTRODUCTION

Type 2 diabetes is a metabolic disease condition that
renders individuals unable to produce sufficient insulin
via pancreatic processes, and/or causes their bodies to
become in some way resistant to insulin, rendering it
less effective in regulating the body's energy supply.1

Various blood‐test criteria are used to diagnose diabetes.
Glycated hemoglobin (HbA1c) ≥ 6.5% (48mmol/mol)
and fasting (8 h without calorie intake) plasma glucose
(FPG) levels of ≥126mg/dl (7.0 mmol/L) are commonly
used diagnostics. In some cases, an oral glucose
tolerance test (OGTT) may also be conducted but this
can be quite time‐consuming. It involves taking initial
blood samples, then having the patient drink a specified
volume of glucose‐containing liquid (∼75 g). Additional
blood samples are then taken from the patient at
intervals up to about 3 h. The blood samples are tested
to determine how quickly the glucose levels return to
their initial levels. The HbA1c blood test is considered to
be more specific for diagnosing early‐onset diabetes and
a slightly lower threshold has been recently recom-
mended for that purpose of 6.03%.2

Type 2 diabetes is a global problem that is on the rise.
About 537 million adults (aged 20–79 years) were living
with diabetes in 2021, with that number expected to
increase to about 643 million by 2030.3 Alarmingly, about
one‐in‐two people living with diabetes remain
undiagnosed and therefore are not being treated or taking
prudent steps to mitigate its long‐term health impacts.
This is because early‐onset diabetes conditions can extend
over many years and cause life‐threatening complications
before detection in some cases.4 Early detection, treat-
ments, and lifestyle changes have been shown to reduce
risks of cardiovascular morbidity and mortality.5 Many
blame a deteriorating diet and/or decrease in physical
activity associated with modern, sedentary, urban lifestyles
for the rapid increase in cases of type 2 diabetes,
particularly in low‐ and middle‐income countries.6

Blood testing (FPG, OGTT, HbA1c) offers the most
definitive and reliable way to establish whether an
individual is suffering from type 2 diabetes, or not.
However, screening all individuals showing certain symp-
toms of type 2 diabetes using blood testing methods is
both time‐consuming and costly. It also requires substan-
tial investment in testing infrastructure and analytical staff
distributed at a local level. In most high populations
countries, especially developing countries with limited
healthcare resources and budgets distributed unevenly
across the nation, extensive routine blood test screening of
large sectors of the population for type 2 diabetes is
neither logistically nor financially feasible. Therefore,
accurate techniques that exploit machine learning (ML)
to consider assessments of groups of symptoms potentially
related to type 2 diabetes displayed by individuals offer a
quick, meaningful, and relatively cheap method to identify
likely early‐onset type 2 diabetes sufferers. A ML

assessment that an individual is likely suffering from type
2 diabetes enables clinicians to promptly recommend
dietary and/or other lifestyle changes. Such machine‐
learning assessments can also be used to determine/filter
which individuals require urgent blood‐test assessment for
early‐onset type 2 diabetes, and which do not.

Attempts to diagnose the early onset of diabetes tend
to use groups of signs and symptoms commonly
associated with the disease. In particular, excessive thirst
and/or dry mouth conditions, frequent urination, lack of
energy/tiredness, slow healing wounds, recurrent skin
infections, blurred vision, and tingling/partial numbness
in hands and/or feet are symptoms that tend to be
associated with early‐onset type 2 diabetes.3 There is,
therefore, a substantial ongoing research effort to develop
reliable early‐onset type 2 diabetes prediction models
using suits of signs and symptoms exhibited by potential
sufferers as predictors.7 This effort involves applying many
distinct statistical,8 multivariate logistic regression
(LGR),9 and machine and deep learning methods to
datasets recording multiple signs and symptoms displayed
by many hundreds of type 2 diabetes‐positive and ‐
negative individuals.10,11 Those datasets are used to train
and validate models for deployment in the prediction of
early‐onset type 2 diabetes, in individuals previously
unseen by the models, based on the signs and symptoms
they display, rather than clinical tests.

In this study, a published data set involving 520
individuals is evaluated.12,13 Each individual has 16
criteria recorded relating to the signs and symptoms
they display, and negative or positive status with respect
to type 2 diabetes. Some of the data set individuals have
recently tested positive for type 2 diabetes, others
display some signs or symptoms commonly associated
with diabetes but remain diabetes‐negative. This study
applies a novel integrated methodology combining
correlation, statistical analysis, and ML to characterize
the data set in detail. The primary objectives of the study
are to: (1) Demonstrate the early‐onset type 2 diabetes
classification performances of three statistical and seven
distinct ML models, and identify the model providing
the most reliable binary (diabetes‐negative/‐positive)
predictions with minimum misclassifications; (2) apply
multi‐K‐fold cross‐validation analysis and annotated
confusion matrices to establish optimal configurations
of the prediction models; and (3) identify the key type 2
diabetes signs and symptoms and their relative influ-
ences on the solutions derived by the high‐performing
classification models for this data set.

2 | MATERIALS AND METHODS

2.1 | Sylhet Diabetic Hospital data set

The data set evaluated was collected at the Sylhet
Diabetic Hospital (Sylhet, Bangladesh) and previously
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assessed using four ML models.12 It has subsequently
been placed in the public domain as a University of
California, School of Information and Computer Science
data set.13 The data set is referred to here as the Sylhet‐
520 data set.

The Sylhet‐520 data set involves 16 criteria (inde-
pendent variables) recorded for 520 individuals (328
males and 192 females), combined with a binary
classification (dependent variable) of those patients
based on blood tests into diabetes‐positive and ‐negative
categories (Table 1). The individuals included are those
who were recently diagnosed with type 2 diabetes plus
others experiencing some of the signs or symptoms but,
at the time of the assessment, they tested negative for
type 2 diabetes.

The individuals included in the data set can be
further categorized according to gender, age, and type 2
diabetes blood test results (Table 2).

Fifteen of the independent variables (variables #2 to
#16) are assessed in binary terms: variables #3 to #16 in
“yes” or “no” answers; variable #2 distinguishes gender as
male or female. Independent variable #1 is distinct in that
it involves five age categories (Table 1). Variables #3 to #16
represent a spectrum of signs and symptoms (criteria)
potentially associated with early‐onset type 2 diabetes.

The 16 criteria applied to the Sylhet‐520 data set
individuals were selected by the clinical staff at the
Sylhet Diabetic Hospital, based on multiple years of
experience in dealing with many cases of type 2 diabetes
and early‐onset type 2 diabetes. These criteria clearly

TABLE 1 Early‐onset diabetes signs and symptoms displayed by individuals (criteria normalized to scale −1 to +1)

Criteria (I) # Criteria description

ML
variable
type

“Yes” answer
normalized
value assigned

“No” answer
normalized value
assigned

1 Age 20–35 years I Yes (−1.0) N/A

1 Age 36–45 years I Yes (−0.5) N/A

1 Age 46–55 years I Yes (0.0) N/A

1 Age 56–65 years I Yes (+0.5) N/A

1 Age >65 years I Yes (+1.0) N/A

2 Gender I Male (−1.0) N/A

2 Gender I Female (+1.0) N/A

3 Polyuria I Yes (−1.0) No (+1.0)

4 Polydipsia I Yes (−1.0) No (+1.0)

5 Sudden weight loss I Yes (−1.0) No (+1.0)

6 Weakness I Yes (−1.0) No (+1.0)

7 Polyphagia I Yes (−1.0) No (+1.0)

8 Genital thrush I Yes (−1.0) No (+1.0)

9 Visual blurring I Yes (−1.0) No (+1.0)

10 Itching I Yes (−1.0) No (+1.0)

11 Irritability I Yes (−1.0) No (+1.0)

12 Delayed healing I Yes (−1.0) No (+1.0)

13 Partial paresis I Yes (−1.0) No (+1.0)

14 Muscle stiffness I Yes (−1.0) No (+1.0)

15 Alopecia I Yes (−1.0) No (+1.0)

16 Obesity I Yes (−1.0) No (+1.0)

Dependent
variable

Class (type 2 diabetes‐ positive) D Yes (−1.0) N/A

Class (type 2 diabetes‐ negative) D Yes (+1.0) N/A

Note: “I” refers to independent variables; “D” refers to a binary dependent variable. Signs and symptoms check for early‐onset type‐2 diabetes conducted as a
questionnaire supervised by clinicians for 520 individuals displaying newly diabetic or could‐be diabetic characteristics at the Sylhet Diabetic Hospital in Bangladesh
(320 positive and 200 negative for type 2 diabetes). The data set is in a public archive,13 and its details are provided by Islam et al.12

INTEGRATED STATISTICAL AND MACHINE LEARNING ANALYSIS FOR EARLY‐ONSET TYPE 2 DIABETES | 283



have specific relevance to the local population served by
the Sylhet Diabetic Hospital. Therefore the exact set of
criteria pertinent to other populations at different
locations might vary slightly based on what are
considered to be locally relevant factors. However,
overall the 16 criteria selected for this data set of
individuals are considered to be generally relevant
based on the criteria discussed in other studies.3,6–11

The criteria and the dependent variable assessments
for each individual are converted, for this study, into
normalized numerical ranges from −1.0 to +1.0. For the
“yes/no” criteria assigned to an individual; a “yes”
classification is assigned −1.0 and a “no” classification
+1.0. For variable #2, “male” designation is assigned −1.0
and a “female” designation is assigned +1.0. For variable
#1, the five age categories are respectively assigned −1.0,
−0.5, 0, +0.5, and +1.0. This normalized range of −1.0 to
+1.0 for each independent variable avoids scaling biases
that impact some classification models.

For the dependent variable, diabetes‐positive indivi-
duals are assigned a value of +1.0, whereas diabetes‐
negative individuals are assigned a value of −1.0. This
means that measured in numerical terms each mis-
classification error generated by a classification model will
score a value of “2” in absolute terms (e.g., +1 less −1). This
makes it possible to compute a metric determining the
number of errors generated by each model solution
(Section 2.3 and Supporting Information: Figure S1)

2.2 | Statistical and ML methods

Ten statistical and ML models are configured and
applied to predict the binary classification of the
dependent variable (“Class” in Table 1; diabetes‐
positive or ‐negative) from 16 potentially influential
criteria. This suite of well‐established ML methods
(Table 3) is executed in Python code with the aid of
published algorithms.36 The mathematics underpinning
these models are described extensively in the literature
building on the work of their original developers. All of
these models have been applied in recent years as part
of diabetes prediction studies using a selection of
potential influential variables with some examples cited
in Table 3.

LGR is a statistical model widely applied to binary
classification tasks based on values relating to indepen-
dent variables. It involves linear mathematical relation-
ships.14 The Naïve Bayes classifier (NBC) applies the
Bayes Theorem to derive probabilistic classifications by
making the simplistic assumption that each indepen-
dent variable influences the dependent variable in an

TABLE 2 Individuals categorized according to gender, age, and
type 2 diabetes blood test result

Age

Female Male

Total Positive Total Positive

20–35 years 42 36 51 15

36–45 years 46 45 92 32

46–55 years 66 58 83 43

55–65 years 23 19 66 37

>65 years 15 15 36 20

TABLE 3 Regression and machine learning models applied to predict diabetes onset risks based on influencing variables

Model Code Type Originator(s)
Examples of ML model
applied in diabetes studies

Logistical Regression LGR Probabilistic Classifier Berkson (1944)14 Tabaei and Herman (2002)15

Rajendra and Latifi (2021)16

Naïve Bayes Classifier NBC Probabilistic Classifier Thomas Bayes' Theorem was
proposed in 1763, Hand and
Yu (2001)17

Theresa and Evangeline
(2021)18

Quadratic Discriminant
Analysis

QDA Statistical Classifier with
Quadratic Decision Surface

Fischer (1936; linear version)19

Tharwat, 2016 (QDA vs. LDA)20
Maniruzzaman et al.

(2018)21

Adaptive Boosting ADA Boosted Tree ensemble Freund and Schapire (1997)22 Vijayan and Anjali (2015)23

Decision Tree DT Single tree Quinlan (1986)24 Ramezankhani et al. (2016)25

K‐Nearest Neighbor KNN Data Matching Fix and Hodges (1951)26 Sarkar et al. (2019)27

Multi‐Layer Perceptron MLP Artificial Neural Network Rosenblatt (1958)28 Bani‐Salameh et al. (2021)29

Random Forest RF Tree ensemble Ho (1998)30 Wang et al. (2021)31

Support Vector Classifier SVC Hyperplane Fit Cortes and Vapnik (1995)32 Abbas et al. (2019)33

Extreme Gradient Boosting XGB Boosted Tree ensemble Chen and Guestrin (2016)34 Wang et al. (2020)35

Note: Prediction models evaluated for type‐2 diabetes status prediction using 520 data records from the Sylhet Diabetic Hospital published data set.13
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entirely independent way.17 Quadratic discriminant
analysis (QDA) is a statistical method involving a more
general form of Bayesian discrimination with the
assumption that the data records of each class follow
Gaussian distributions.37 QDA introduces more flexibil-
ity into linear discriminant analysis by allowing non-
linear separation of the data records.19,20

Four of the remaining seven methods are based on
decision trees (DTs). DT employs a single tree structure
to assign data records to its various branches,24

connected by nodes based on splitting criteria (e.g.,
Gini Coefficient),38 applied to the independent vari-
ables, and a depth constraint limiting the number of
subdivision layers. Random Forest (RF) is an ensemble
method employing a substantial set of DTs, each trained
on different segments of the data set and independent
variables, with predictions averaging the results of each
DT.30 Adaptive boosting (ADA), also known as Ada-
boost,22 is an ensemble method employing a set of DTs
as its base learners. It tweaks the DT values over a series
of iterations giving more weight to those data records
misclassified in the previous iteration. Extreme gradient
boosting (XGB) is also an ensemble method boosting the
performance of underlying DTs by progressively im-
proving upon the residuals of the previous iteration. It
does this by adjusting a regularization function combin-
ing L1 and L2 components.34

K‐nearest Neighbor (KNN) employs data matching as
its classification technique,26 involving no correlation or
statistical assumptions and no regression calculations. It
measures the collective differences between all the
independent variables of data records in a data set and
selects the K number of most closely matching data

records. K can vary typically between 2 and 25. Weights
are applied to those closest matches depending on the
magnitude of their distances from the data record to be
classified, to predict that record's class.

Multi‐layer Perceptron (MLP) models are shallow
forms of a neural network with input and output layers
fully connected by one or multiple hidden layers with
adjustable numbers of nodes.28 Weights and biases
applied to the nodes and layers, contribute to calcula-
tions involving activation functions, and are adjusted
over a series of training iterations. MLPs apply
back‐propagation or other optimization algorithms to
progressively reduce a loss function.

Support vector classification (SVC) is a nonprobabil-
istic method involving linear and nonlinear compo-
nents.32 It expresses the independent variables in
multidimensional hyperspace space (one dimension
for each variable) attempting to maximize the distance
separating the dependent variable classes. That separa-
tion facilitates the optimal positioning of a linear
boundary or hyperplane to classify the data records in
the defined hyperspace. Kernel functions, which can be
linear or nonlinear (e.g., radial basis function [RBF]),
map lower dimensional data values into higher dimen-
sions. Independent variable values lying close to the
hyperplane are referred to as “support vectors,” as they
are instrumental in defining the optimum hyperplane's
position.

These 10 models require some tuning adjustments to
their hyperparameters to optimize their performance
with respect to the Sylhet‐520 data set evaluated. The
hyperparameter values used to define the models
applied are provided in Table 4. Several approaches

TABLE 4 Regression and machine learning model structures and hyperparameters applied

Prediction models applied Hyperparameter values applied

Regression models

Logistical Regression Classifier (LGR) L1 ratio = 0.5; solver = saga

Gaussian Naïve Bayes Classification (NBC) Priors = none; variance smoothing = 1e−9

Quadratic Discriminant Analysis (QDA) Priors = none; regularization parameter = 0

Adaptive Boosting (ADA) Number of estimators = 1000; learning rate = 0.01; splitter = best;
base estimator criterion = Gini; base estimator is DT with depth = 10

Decision Tree (DT) Maximum depth = 10,000; splitter = best; splitting criterion = entropy

K‐Nearest Neighbor (KNN) Number of nearest neighbors assessed K = 10; distance metric =Minkowski
with p = 2 (Euclidian); neighbor selection algorithm = auto

Multi‐layer Perceptron (MLP) 3 Hidden layers with 100, 50, and 25 neurons; learning rate = adaptive;
initial learn rate = 0.001; solver = adam; α = 0.01; activation fn. = relu

Random Forest (RF) Number of estimators = 1000; maximum depth = 50;
splitting criterion = Gini

Support Vector Classifier (SVC) Kernel = rbf; C = 1; γ = 0.25

Extreme Gradient Boosting (XGB) Number of estimators = 5000; maximum depth = 5; η = 0.01;
subsample = 0.6; columns sampled per tree = 0.8; booster = gbtree
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were adopted to derive these values, including trial‐and‐
error tests of specific values, grid search,39 and Bayesian
optimization.40

Another important consideration in classification
models is to determine the appropriate number of
available data records to assign between model
training (the training subset) and model validation
(the validation subset). This data record division is
typically expressed as a fractional or percentage split
(X% training subset: Y% validation subset) and
referred to as “the split.” X + Y = 1 or 100%, and the Y
data records are excluded from the training process,
while X data records are excluded from trained model
validation analysis. The selected split needs to be
carefully selected to provide a sufficiently diverse
number of data records to facilitate training. However,
the split also needs to allocate sufficient data records
for validation such that the validation results are
statistically reproducible based on the application of
multiple random splits.

Determining the split by repeated trials can be
time‐consuming and can lack statistical rigor unless a
large number of trials are run. K‐fold cross‐validation
is a technique that can rigorously determine the
appropriate split to use with a specific data set.41 In
this technique, a data set is divided randomly,
multiple times into K data subsets, each of equal size.
K values between 4 and 15 are typically found to be
the most informative. Each of the K subsets is used
once as the validation subset with the remaining data
records allocated to the training subset. For fourfold
cross‐validation this means that four cases are
required, whereas a 15‐fold cross‐validation involves
15 separate cases. As the K‐fold splits are initially
made randomly, it is statistically advisable to repeat
the K‐fold analysis in several runs. Hence, repeating a
fourfold analysis three times results in 12 cases being
evaluated, and repeating a 15‐fold analysis three times
results in 45 cases being evaluated.

Presenting and comparing the results of multiple
K‐folds in multiple runs is referred to as “multi‐K‐fold
cross‐validation analysis.” It is common practice in ML
studies that include K‐fold cross‐validation analysis to
consider or present the results of just one K‐fold to
justify using a specific training/testing split. However,
analysis of multiple K‐folds is substantially more
informative than evaluating a single K‐fold. Each
K‐fold analysis provides an expected mean and associ-
ated uncertainty value which, when considered collect-
ively, reveal the optimum training/testing split to use for
detailed ML analysis.

It is important to assess the results of multi‐K‐fold
cross‐validation analysis statistically. Based on the
multiple runs made, this can be meaningfully performed
by calculating the means and standard deviations of a
loss function and comparing those statistics for the
different K‐folds considered. In this study, 4‐, 5‐, 10‐, and

15‐fold cross‐validation analysis is conducted and mean
and standard deviations of the mean absolute error
(MAE) are compared. The results of that analysis are
presented and interpreted in Section 3.2.

2.3 | Considered measures of
classification error

Three statistical metrics are computed to assess
the classification performances of the 10 models
applied to the Sylhet‐520 data set. These are MAE,
root mean squared error, and coefficient of determi-
nation (R2). For classification problems, it is also
appropriate to assess other metrics focused specifi-
cally on the classification accuracy and types of
misclassifications (e.g., false positives [FPs] and false
negatives [FNs]). Such metrics, commonly applied to
assess classification problems are: the absolute
number of prediction errors (Error #); the percentage
of errors relating to models applied to the complete
data set (Error %); accuracy (A), precision (P), and
recall (R); and balanced F1 score. These specific
classification metrics are usefully displayed as part of
an annotated confusion matrix, which for a binary
classification problem displays four distinct com-
partments distinguishing true positives, true nega-
tives, FP, and FN. The statistical and misclassification
metrics computed in this study are defined in
Figure S1.

2.4 | Workflow of applied classification
methodology

Figure 1 describes the components involved in the
integrated workflow methodology applied in this
study to characterize and classify the Sylhet‐520 data
set. It involves correlation, statistical analysis, ML
models with multi‐K‐fold‐cross‐validation, annotated
confusion matrices, and relative importance assess-
ments of potentially influential criteria. This inte-
grated approach provides more valuable insight into
the early‐onset type 2 diabetes data set that can be
derived by merely conducting a misclassification error
analysis of the classification models applied.

3 | RESULTS

3.1 | Characterizing the Sylhet type‐2
diabetes symptom data set

Nine of the signs and symptoms covered in the
assessments of data set individuals are shown to have
substantially positive Pearson correlation coefficients
with type 2 diabetes diagnosis (Figure 2).42,43
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These key indicators can be grouped into three
categories: (A) Metabolic impacts: polyuria, polydipsia,
and polyphagia; (B) Mobility/muscular impacts: visual
blurring, partial paresis, and muscle stiffness; and (C)
Demeanor changes: sudden weight loss, weakness,
and irritability.

By considering scores (0 = No; 1 = Yes) for these nine
features, both individually and as categories A, B, and C,
further insights can be gained into their influence on the
type 2 diabetes condition of the 520 individuals
constituting the studied data set. Figure 2 summarizes
the collective scores of each individual in terms of these
nine features, distinguishing diabetes‐positive and ‐
negative groups. The individuals in this data set scoring
7–9 (maximum possible) all tested positive for type‐2‐
diabetes. It is apparent that the A + B + C scores of 0, 1,
and 2 are dominated by diabetes‐negative individuals

(Figure 2). However, it is of significance that there are
some diabetes‐positive individuals (8–11 in each group)
with A + B + C scores of just 0–2. This means that there is
a degree of uncertainty in relying on low A + B + C scores
to confidently rule out the possibility that individuals
have type 2 diabetes, that is, they are either asympto-
matic or mildly symptomatic. On the other hand, for
A + B + C scores between 3 and 6, although dominated
by diabetes‐positive individuals, there are a substantial
number of type 2 diabetes‐negative individuals display-
ing those symptoms (Figure 2). Twenty‐nine type 2
diabetes‐negative individuals score A + B + C = 3 (vs. 50
diabetes‐positive individuals with that score), and 23
type 2 diabetes‐negative individuals score A + B + C = 5
(vs. 38 type 2 diabetes‐positive individuals with that
score). This means that the A + B + C score is highly
unreliable for discriminating between the diabetes

F IGURE 1 Workflow schematic of the data set characterization and classification analysis conducted in this study. ML, machine learning.
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status of individuals with scores of between 3 and 6
(Figure 3).

The capability of distinguishing the diabetes status
for individuals with A + B + C scores of 3–5 is improved
if the relative contributions of category A, B, and C
symptoms to the A + B + C score are considered.
Figure 4 distinguishes the relative contributions of
each category (A or B or C) to the A + B + C score. It is
apparent that all the individuals for which the category
A or category C symptoms make up more than 50% of
A + B + C scores between 3 and 5 are type 2 diabetes‐
positive (Figure 4A,C). However, Figure 4B shows that
this is not the case for the category B symptoms. Some
diabetes‐negative individuals display category B symp-
toms making up between 50% and 75% of their
A + B + C scores between 3 and 6. This implies that
category A and C symptoms are more useful in
distinguishing between type 2 diabetes‐positive and
type 2 diabetes‐negative individuals than category B
symptoms.

3.2 | Multiple K‐fold ML predictions

Statistical and ML classification methods taking into
account all 16 independent variables (Table 1) for the
520 individuals in the Sylhet data set are able to classify
the type 2 diabetes‐negative and type 2 diabetes‐positive
patients more reliably than scoring (e.g., A + B + C score)
or graphical techniques focused on just some of the
signs and symptoms (Figures 2 and 3). Moreover, by
employing rigorous multi‐K‐fold cross‐validation analy-
sis, the relative statistical robustness of these classifica-
tion methods can be demonstrated.

Table 5 displays the mean MAE and standard
deviation MAE for each classification model employed
based on 4‐, 5‐, 10‐, and 15‐fold cross‐validation analysis
of the data set. Table 5 translates these results into the
mean number of absolute errors (Error#) and mean
percentage errors (Error%) for the number of cases run
for each fold of cross‐validation. These results are useful
for determining the best‐performing models and the
data‐record splits between training and validation
subsets that provide the most reliable results.

The results reveal that the SVC model provides better
predictions of the onset of type 2 diabetes than the other
models. It is followed by RF, MLP, and XGB models, in
that order (Table 5). On the other hand, the NBC, LGR,
and QDA models, in that order, provide poorer
predictions than the other models. For most models,
the 10‐fold cross‐validation evaluations yield the lowest
mean MAE values compared with the other K‐folds
applied to each model. This is not the case for the LGR
and NBC models for which the fivefold evaluations
outperform the other K‐folds in terms of mean MAE, or
for the ADA and KNN models for which the 15‐fold
evaluations outperform the other K‐folds (Table 5). For

F IGURE 2 Pearson correlation coefficients for 16 criteria versus diabetes type 2 diagnosis for 520 individuals. Positive answers for the symptom
questions with moderate to high positive correlation coefficients indicate that individuals suffering those symptoms are more likely than not to
have tested positive for type 2 diabetes. The standard correlation coefficient scale varies from −1.0 to +1.0, with a value of −1.0 representing perfect
negative correlation, a value of +1.0 representing perfect positive correlation, and a value of zero representing no correlation. Moderate positive
correlations are considered to be those from +0.25 to +0.5, whereas high positive correlations are considered to be those >+0.5.

F IGURE 3 Collective scores for the nine features constituting the
three categories A, B, and C. An A + B + C score of zero means that the
individual was assigned “No” for all nine features. An A + B + C score
of 9 means that the individual was assigned “Yes” for all nine features.
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the RF and SVC models, the mean MAE values are only
slightly lower for the 10‐fold than for the 15‐fold
evaluation, although the MAE standard deviations are
lower for the 10‐fold case. These results suggest that it is
more appropriate to use 90%:10% (training subset:
validation subset) splits for this data set to obtain the
most reliable prediction results from the best‐
performing models. The results for the 10‐ and 15‐fold
cross‐validation analysis are displayed in Figure 5.

The mean number of prediction errors is only 11 for
the SVC model applying the 10‐ and 15‐fold evaluations
(Table 6). Eleven errors constitute just over 2% of the
520 data records. Indeed, excluding the LGR, NBC, and

QDA models, the other seven models all achieve
prediction errors of less than 5%. The superiority of
the SVC model, followed by the RF, MLP, XGB, and ADA
models, in that order, is confirmed in Tables 5, 6 and
Figure 5.

The training and validation subset results for an
example of one of the randomly selected solutions
(i.e., Case Y; 1 of 30 model executions making up
the 10‐fold analysis) are presented for each model
in Table 7. The trained model for Case Y is also
applied to the full data set with the number of errors
and percentage errors displayed for that case in
Table 7.

It is apparent for Case Y that SVC is slightly
outperformed by the ADA, MLP, RF, and XGB
models (achieving one less incorrect prediction; four
errors vs. five errors for SVC). However, the 10‐fold
cross‐validation analysis has established that by averag-
ing 30 such 90%:10% splits SVC outperforms those
models. The standard deviations from Table 5 provide
an indication of the kind of fluctuations to expect in
MAE and error numbers for each case run. The Case Y
results applied to the full data set (Table 7) are displayed
in Figure 6A,B. The results are clearly consistent with the
10‐fold analysis results, highlighting the inferior predic-
tion performance of the NBC, LGR, and QDA models.
However, these results also emphasize that the results of
one random case should not be taken as an indication of
a model's performance over multiple cases, confirming
that the multi‐K‐fold analysis is most reliable for that
purpose.

The computational execution times for each model
are provided in Table 7 (including the time to conduct
the 10‐fold cross‐validation analysis). The SVC model
executes very quickly in comparison to the other high‐
performing models, making it potentially more attract-
ive for automated systems involving larger datasets.

For individual case runs, such as Case Y, it is also
worthwhile displaying the results in terms of an
annotated confusion matrix, including calculations of
accuracy, precision, recall, and balanced F1‐score (see
Supporting Information: Appendix SA for definitions of
those metrics). Figure 7 illustrates confusion matrices for
Case Y prediction results for the SVC and NBC models.

For the high‐performing SVC model, Case Y gener-
ates zero false‐negative prediction errors and just five
FPs (Figure 7A). It achieves balanced F1 scores of about
0.99 for both type 2 diabetes‐positive and ‐negative
individuals. On the other hand, the poor‐performing
NBC model generates 30 false‐negative prediction errors
and 29 FPs for Case Y (Figure 7B). It achieves balanced
F1 scores of about 0.90 for type 2 diabetes‐positive and
about 0.85 for type 2 diabetes‐negative individuals.

The methodology applied (Figure 1) meaningfully
integrates the analysis of multi‐K‐fold cross‐validation
(Figure 5), random case evaluation (Figure 6), and
annotated confusion matrices (Figure 7) to make

F IGURE 4 Relative contributions of symptom categories A, B,
and C to the A + B + C scores: (A) considers category A (polyuria,
polydipsia, and polyphagia) contributions; (B) considers category B
(visual blurring, partial paresis, and muscle stiffness) contributions;
and (C) considers category C (sudden weight loss, weakness, and
irritability) contributions.
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detailed comparisons of the prediction performances of
the models considered. Combined with the statistical
characterization of the data set, this provides maximum
insight into the model capabilities as applied to this
specific data set.

4 | DISCUSSION

Further insight into some of the prediction models can
be gained by considering information that indicates the
relative importance of each of the signs and symptoms
to the model solutions. Such information can be gleaned
from the LGR model by considering the absolute
magnitudes of its regression coefficients, from the SVC
model by considering the absolute magnitudes of its
support vector coefficients, and for the tree/ensemble‐

tree models (ADA, DT, RF, XGB) by considering their
Gini (or entropy) coefficients. Unfortunately, it is not
possible to extract such information from the NBC,
QDA, KNN, and MLP models.

Figure 8 plots the relative importance assigned
to each sign and symptom by the LGR, SVC, DT, RF,
and XGB model solutions applied to the Sylhet‐520
data set.

The relative importance of each variable in Figure 8
should be compared to their correlations with the
diabetes diagnosis (Figure 2). It is apparent that
polydipsia is given more weight by all of the models
considered in Figure 8 than other signs or symptoms,
even though polyuria has a higher correlation with the
type 2 diabetes status of the 520 individuals collectively.
Polyuria and gender are the next most important criteria
for most of the models compared in Figure 8. On the

TABLE 5 K‐fold cross‐validation analysis of 10 type 2 diabetes status prediction models expressed in terms of MAE

MAE
4‐Fold (12 cases) 5‐Fold (15 cases) 10‐Fold (30 cases) 15‐Fold (45 cases)
Mean SD Mean SD Mean SD Mean SD

LGR 0.1551 0.0446 0.1487 0.0594 0.1500 0.0725 0.1542 0.1027

NBC 0.2269 0.0619 0.2244 0.0680 0.2282 0.0968 0.2208 0.1210

QDA 0.1167 0.0484 0.1103 0.0468 0.1026 0.0547 0.1038 0.0777

ADA 0.0872 0.0538 0.0769 0.0525 0.0692 0.0565 0.0644 0.0718

DT 0.1064 0.0476 0.0974 0.0509 0.0821 0.0513 0.0900 0.0732

KNN 0.1077 0.0562 0.1026 0.0495 0.0885 0.0660 0.0809 0.0684

MLP 0.0718 0.0484 0.0782 0.0602 0.0551 0.0532 0.0616 0.0716

RF 0.0667 0.0500 0.0628 0.0499 0.0526 0.0548 0.0527 0.0670

SVC 0.0577 0.0417 0.0487 0.0313 0.0423 0.0500 0.0437 0.0522

XGB 0.0808 0.0526 0.0718 0.0468 0.0590 0.0542 0.0681 0.0766

Note: The SVC model generates the lowest MAE values for the 10‐ and 15‐fold solutions (in bold). MAE is expressed in terms of the value difference between negative
type 2 diabetes (−1) and positive (+1) type 2 diabetes. Each incorrect prediction therefore contributes an absolute error value of 2 to the MAE computation.

Abbreviations: ADA, adaptive boosting; DT, decision tree; KNN, K‐nearest neighbor; LGR, logistic regression; MAE, mean absolute error; MLP, multilayer
perceptron; NBC, Naïve Bayes classifier; QDA, quadratic discriminant analysis; RF, random forest; SD, standard deviation; SVC, support vector classification;
XGB, extreme gradient boosting.

F IGURE 5 Standard deviation MAE versus mean MAE for 10 prediction models applied to the Sylhet Diabetic Hospital published data set for:
(A) 10‐fold cross‐validation analysis; and (B) 15‐fold cross‐validation analysis. ADA, adaptive boosting; DT, decision tree; KNN, K‐nearest neighbor;
LGR, logistic regression; MAE, mean absolute error; MLP, multilayer perceptron; NBC, Naïve Bayes classifier; QDA, quadratic discriminant
analysis; RF, random forest; SVC, support vector classification; XGB, extreme gradient boosting.
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other hand, sudden weight loss, weakness, polyphagia,
visual blurring, and partial paresis are not assigned
substantial weights despite having moderate correlation
coefficients (about +0.2 to +0.4; Figure 2) with type 2
diabetes status.

The DT model stands out in that it assigns a more
substantial weight (about 40% of the total weight it
assigns) to polydipsia than the other models displayed
in Figure 8. The ADA and XGB models also assign

relatively high weights to polydipsia. The relative
weights assigned by the regression models LGR and
SVC are quite similar in magnitude and quite distinct
from those assigned by the tree/ensemble models. For
instance, those two models assign comparable weights
to gender, polyuria, polydipsia, itching, and irritability,
at levels that are distinct from the other models. The RF
model assigns weights that tend, for the most part, to
fall between those of the other ensemble methods and

TABLE 6 K‐fold cross‐validation analysis of 10 type 2 diabetes status prediction models expressed in terms of actual numbers of errors and
percentage errors

Mean absolute and
percentage errors

4‐Fold (12 cases) 5‐Fold (15 cases) 10‐Fold (30 cases) 15‐Fold (45 cases)

Error # Error % Error # Error % Error # Error % Error # Error %

LGR 40.3 7.76% 38.7 7.44% 39.0 7.50% 40.1 7.71%

NBC 59.0 11.35% 58.3 11.22% 59.3 11.41% 57.4 11.04%

QDA 30.3 5.83% 28.7 5.51% 26.7 5.13% 27.0 5.19%

ADA 22.7 4.36% 20.0 3.85% 18.0 3.46% 16.7 3.22%

DT 27.7 5.32% 25.3 4.87% 21.3 4.10% 23.4 4.50%

KNN 28.0 5.38% 26.7 5.13% 23.0 4.42% 21.0 4.04%

MLP 18.7 3.59% 20.3 3.91% 14.3 2.76% 16.0 3.08%

RF 17.3 3.33% 16.3 3.14% 13.7 2.63% 13.7 2.63%

SVC 15.0 2.88% 12.7 2.44% 11.0 2.12% 11.4 2.18%

XGB 21.0 4.04% 18.7 3.59% 15.3 2.95% 17.7 3.41%

Note: The SVC model generates the lowest numbers of errors and percentage errors for the 10‐ and 15‐fold solutions (in bold).

Abbreviations: ADA, adaptive boosting; DT, decision tree; KNN, K‐nearest neighbor; LGR, logistic regression; MLP, multilayer perceptron; NBC, Naïve Bayes classifier;
QDA, quadratic discriminant analysis; RF, random forest; SVC, support vector classification; XGB, extreme gradient boosting.

TABLE 7 Case Y (1 of 30, 10‐fold cross‐validation cases) results comparing training subset, validation subset, and full‐data set prediction errors
for models applied to the Sylhet Diabetic Hospital published data set13

90:10 Split Case Y training subset Case Y validation subset Case Y full data set
Record # 468 52 520
Model R2 RMSE MAE Error # R2 RMSE MAE Error # R2 RMSE MAE Error # Error % Ex time

LGR 0.7572 0.4804 0.1154 27 0.5752 0.6202 0.1923 5 0.7400 0.4961 0.1231 32 6.15% 4.7

NBC 0.5504 0.6537 0.2137 50 0.2353 0.8321 0.3462 9 0.5206 0.6737 0.2269 59 11.35% 4.5

QDA 0.8651 0.3581 0.0641 15 0.5752 0.6202 0.1923 5 0.8375 0.3922 0.0769 20 3.85% 4.6

ADA 0.9730 0.1601 0.0128 3 0.9150 0.2774 0.0385 1 0.9675 0.1754 0.0154 4 0.77% 95.0

DT 0.9730 0.1601 0.0128 3 0.8301 0.3922 0.0769 2 0.9594 0.1961 0.0192 5 0.96% 4.6

KNN 0.9730 0.1601 0.0128 3 0.7451 0.4804 0.1154 3 0.9513 0.2148 0.0231 6 1.15% 4.5

MLP 0.9730 0.1601 0.0128 3 0.9150 0.2774 0.0385 1 0.9675 0.1754 0.0154 4 0.77% 17.7

RF 0.9730 0.1601 0.0128 3 0.9150 0.2774 0.0385 1 0.9675 0.1754 0.0154 4 0.77% 32.1

SVC 0.9730 0.1601 0.0128 3 0.8301 0.3922 0.0769 2 0.9594 0.1961 0.0192 5 0.96% 4.8

XGB 0.9730 0.1601 0.0128 3 0.9150 0.2774 0.0385 1 0.9675 0.1754 0.0154 4 0.77% 40.2

Note: RMSE and MAE are expressed in terms of the value difference between negative type 2 diabetes (−1) and positive type 2 diabetes (+1), a value of 2. Model
execution times (ex time) are expressed in seconds and include the time taken to conduct 10‐fold cross‐validation.
Abbreviations: ADA, adaptive boosting; DT, decision tree; KNN, K‐nearest neighbor; LGR, logistic regression; MAE, mean absolute error; MLP, multilayer
perceptron; NBC, Naïve Bayes classifier; QDA, quadratic discriminant analysis; RF, random forest; RMSE, root mean squared error; SVC, support vector classification;
XGB, extreme gradient boosting.
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the SVC/LGR models. It is noticeable that obesity and
age are assigned relatively low weights by all models.

Although the SVM and LGR models assign similar
weights to most of the signs and symptoms they perform
quite differently in their abilities to predict diabetes
status. The SVM model performs much better than the
LGR model (Tables 5 and 6, Figure 5). This is most likely
explained in terms of the different mathematical
concepts underpinning those two models. Whereas
LGR is a binary, categorical classification model apply-
ing linear relationships between the independent vari-
ables and the dependent variable, SVC combines linear
computations, associated with the definition of its
optimum hyperplane, and nonlinear relationships asso-
ciated with its RBF kernel used to locate that hyper-
plane. It appears that the nonlinear aspect of the RBF
component of the SVM model provides it with a

substantial advantage over the linear LGR model in
type 2 diabetes status predictions when applied to the
studied data set.

Establishing distinct influences and relative impor-
tance of the signs and symptoms of the high‐performing
prediction models is important information to ascertain
for two reasons. Firstly, it helps focus a clinician's
attention on the key signs andsymptoms to look for in
type 2 diabetes screening. Secondly, it suggests thatus-
ing one or other model, or correlation coefficients, to
conduct featureselection to limit the number of signs
and symptoms to input to otherprediction models is
probably not a good idea. Each feature exerts a different
influence oneach of the prediction models, therefore it
is risky to disregard any of them. For instance, the
“itching” criterion is assigned a low weight by the tree/
ensemble methods and has a low correlation with

F IGURE 6 Case Y results for 10 prediction models applied to the Sylhet Diabetic Hospital published data set displaying: (A) MAE versus
RMSE for the validation subset; and (B) error fraction versus error number for the case solution applied to the full data set (520 data records).
ADA, adaptive boosting; KNN, K‐nearest neighbor; LGR, logistic regression; MAE, mean absolute error; MLP, multilayer perception; NBC,
Naïve Bayes classifier; QDA, quadratic discriminant analysis; RF, random forest; RMSE, root mean squared error; XGB, extreme gradient boosting.

F IGURE 7 Case Y annotated confusion matrices applied to full data set displaying accuracy, precision, recall, and balanced F1 score (see
Appendix S1 for definitions of those metrics): (A) high‐performing SVC model; and (B) poor‐performing NBC model.
NBC, Naïve Bayes classifier; SVC, support vector classification.
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diabetes status, yet it is assigned a relatively high 10%
weight by the SVC and LGR models.

Although the SVC, RF, MLP, and XGBmodels perform
well with the Sylhet‐520 data set evaluated, further study
is required to be able to generalize these models for
application to other datasets involving larger numbers of
individuals and broader geographic areas. One issue is
the significance of weights assigned by the models to
individual age and gender as influential variables. If these
variables are to be used for larger datasets, it is important
to ensure that the age and gender distributions of the
individuals tested, and percentages of type 2 diabetes‐
positive and type 2 diabetes‐negative individuals repre-
sented, are comparable with those observed in the
region/nation being evaluated. The Sylhet‐520 is some-
what skewed in this regard. For instance, of the 192
females represented in the data set 173 are diabetes‐
positive (90%), and of the 328 males represented in the
data set 147 are diabetes‐positive (45%). Hence, correla-
tions between gender and diabetes status established for
the Sylhet‐520 data set are not likely to be meaningful
when applied to other data sets.

5 | CONCLUSIONS

An integrated methodology combining correlations,
statistical analysis, multiple ML models, multi‐K‐fold
cross‐validation, and confusion matrices, not only gener-
ates reliable and reproducible classifications of type 2
diabetes‐positive and type 2 diabetes‐negative individuals
from a suite of 16 signs and symptoms (features) but it
also provides insight to the relative influences of those

features in generating those predictions. Of the 10 ML
and statistical prediction methods, applied to a published
data set of 520 individuals, the Support Vector Classi-
fier demonstrates the best performance. It generates only
11 misclassifications (2.1% error) based on an average of
thirty 10‐fold cross‐validation runs. The RF, MLP, and
XGB models also perform well, generating predictions
with, on average, less than 3% misclassifications. On the
other hand, the statistical methods, such as naïve Bayes,
logistical regression, and QDA perform comparatively
less accurately, generating between 5.2% and 11.4%
average misclassification.

Multiple K‐fold cross‐validation is highly effective at
identifying the best‐performing prediction models and
establishing the most reliable data record splits to apply
to training and validation subsets. Comparison of 4‐, 5‐,
10‐, and 15‐fold analysis using multiple runs, and
considering mean and standard deviations of error
metrics, reveal the 10‐fold configuration (involving 30
separate cases split 90% training: 10% validation) to
generate the least errors for the SVC (and most other)
models. This was closely followed by the 15‐fold
configuration. In contrast, the 4‐fold configuration
generated the poorest prediction performance.

Nine of the potentially influential features assessed
were found to display the highest positive correlations
with diabetes status in the data set studied. These
features can be divided into metabolic impacts (poly-
uria, polydipsia, and polyphagia), mobility/muscular
impacts (visual blurring, partial paresis, and muscle
stiffness), and demeanor changes (sudden weight loss,
weakness, and irritability). Statistical analysis reveals
that the metabolic impacts and demeanor changes are

F IGURE 8 The influences of specific signs and symptoms on selected type 2 diabetes likelihood model solutions. ADA, adaptive boosting;
DT, decision tree; RF, random forest; XGB, extreme gradient boosting.
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collectively more effective indicators of diabetes status
than the mobility/muscular impacts. However, for
individuals afflicted by less than three of the nine
features that are more highly correlated with type 2
diabetes status, there is a high incidence of both type 2
diabetes‐positive and ‐negative results. This makes it
unreliable to use these few features for type 2 diabetes
screening predictions.

Assessments of the relative influences of features
on the solutions of high‐performing ML prediction
models reveal that polydipsia is assigned the highest
weight. For the SVC model, this is followed by
gender, polyuria, itching, and irritability, whereas
obesity and age are assigned very low weights. These
relative influences are quite distinct from the
magnitude of the correlation coefficients of these
features with diabetes status. The relative influences
also vary in detail from one ML model to another.
These findings suggest that caution is required when
making decisions to disregard certain features
because of their low correlations or low weights
assigned by screening models. Features displaying
low correlations with diabetes status or assigned low
importance by one quick‐to‐execute ML or statistical
model may have a substantial influence on other ML
models.

Some of the feature influences are of specific
relevance to the data set studied (e.g., gender and
age), due to the makeup of the gender/age mix sampled,
and the percentage of type 2 diabetes‐positive and ‐
negative individuals represented in each group. To
generalize early‐onset type 2 diabetes screening models
for society as a whole, involving age and gender as
potentially influencing features, makes it necessary to
ensure sample distribution balances that are represent-
ative of the society being tested.
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