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The current feline genotyping array of 63 k single nucleotide polymorphisms has proven

its utility for mapping within breeds, and its use has led to the identification of variants

associated with Mendelian traits in purebred cats. However, compared to single gene

disorders, association studies of complex diseases, especially with the inclusion of

random bred cats with relatively low linkage disequilibrium, require a denser genotyping

array and an increased sample size to provide statistically significant associations. Here,

we undertook a multi-breed study of 1,122 cats, most of which were admitted and

phenotyped for nine common complex feline diseases at the Cornell University Hospital

for Animals. Using a proprietary 340 k single nucleotide polymorphismmapping array, we

identified significant genome-wide associations with hyperthyroidism, diabetes mellitus,

and eosinophilic keratoconjunctivitis. These results provide genomic locations for variant

discovery and candidate gene screening for these important complex feline diseases,

which are relevant not only to feline health, but also to the development of diseasemodels

for comparative studies.
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INTRODUCTION

There are 389 hereditary disorders of cats listed on OMIA (Online Mendelian Inheritance in
Animals, https://omia.org/home/ accessed February 21, 2022), of which only 127 (32.6%) are
Mendelian traits and only 148 (38.0%) have likely causal variants. Clearly, there are a large number
of feline diseases whose genetic basis is still unknown. Moreover, 260 of these hereditary feline
disorders are potentially good models for human disease.

Random bred cats are the most common cats in American households, accounting for 84% of
the cat population in the United States (1). Random bred cats comprised 89% of cats admitted the
Cornell University Hospital for Animals (CUHA) in the last 15 years, thus providing an important
spontaneous source of DNA for increasing sample sizes of genetic mapping studies.
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Compared to purebreds, random bred cats have shorter
linkage disequilibrium, due to the large number of generations
since the origin of the random bred cat population, with
archaeological evidence of a human and cat burial site as old
as 9,500 years (2). The genetic heterogeneity of random bred
cats, the additive effect of many genes, and their environmental
interaction makes discovering variants contributing to complex
diseases more challenging than for Mendelian traits (3). A
few Mendelian traits have been mapped in random bred cats,
including spongy encephalopathy, Glanzmann thrombasthenia,
and inflammatory linear verrucous epidermal nevus (4–6).
Additional factors that make the discovery of complex disease
genetic mechanisms difficult include sample size, phenotyping
accuracy, mapping array marker density, and access to whole
genome sequences for variant discovery (7).

The current 63 k Illumina feline single nucleotide
polymorphism (SNP) mapping array has been used successfully
to map variants for Mendelian diseases with breeds. Examples
include the discovery of the WNK4 variant that causes
hypokalemia in Burmese cats (8), a region on chromosome E1
associated with progressive retinal atrophy in Persian cats (9), a
causal variant in COLQ for hereditary myopathy in Devon Rex
and Sphynx cats (10), refinement of the region on chromosome
B4 associated with craniofacial structure and frontonasal
dysplasia in Burmese cats (11), a region on chromosome A3
associated with an inherited neurologic syndrome in a family
of Oriental cats (12), and a dominant channelopathy variant
causing osteochondrodysplasia in Scottish Fold cats (13). This
array has also been used in a limited number of within-breed
genome wide association studies (GWAS) for complex disease
(14, 15), but there are no reports of GWAS performed with an
across-breed design.

Here, we genotyped 1,122 cats using a one-time proprietary
Illumina high density 340 k SNP mapping array designed by
Hill’s Pet Nutrition, in an effort to identify genetic underpinnings
for nine complex diseases. Our samples consisted of a mix of
31 purebreds and 905 random bred cats, the majority of which
were domestic shorthairs. This array improves upon the density
of the current commercial 63 k array by a factor of >5. As
quality control and to validate the accuracy of the 340 k array,
we performed a GWAS for the Orange coat color locus and for
Factor XII deficiency, which are known to be associated with a
region on chromosomes X and A1, respectively (16–19).

The complex diseases included in this study were
hypertrophic cardiomyopathy (HCM), hyperthyroidism,
diabetes mellitus (DM), chronic kidney disease (CKD), chronic
enteropathy, inflammatory bowel disease (IBD), small cell
alimentary lymphoma (SCAL), hypercalcemia, and feline
eosinophilic keratoconjunctivitis (FEK). These diseases are
among the most common complex diseases of cats admitted to
CUHA and are some of the most common and important feline
diseases in clinical veterinary practice (20).

We used both a linear mixed model (LMM) and a multi-locus
method called Fixed and random model Circulating Probability
Unification (FarmCPU) to perform GWAS, and together
identified loci significantly associated with hyperthyroidism, DM,
FEK, and IBD. Additionally, we identified suggestive loci for

HCM and hypercalcemia. Here, we describe the largest genetic
mapping study of feline complex diseases with the densest
mapping array ever performed.

RESULTS

Validation of Array
Principal component analysis (PCA) was performed using all
genotyped cats that passed quality control, and showed that there
was no batch effect due to genotyping on 11 sequential plates
(Figure 1A). The first two components, principal component
(PC)1 and PC2, explained 31.3% of the total genetic variation.
The cluster that separates on PC2 in this PCA includes 40
cats from a closed colony of domestic shorthair (DSH) cats
from a local breeding facility, genotyped mainly on plates 7
and 11. Principal component analysis of the genotypes of all
221 purebred cats showed that PC1 separates western breeds,
like Manx and Persian, from eastern breeds, like Tonkinese and
Burmese (Figure 1B). This eastern-western distribution of breeds
is also seen on PC1 of the PCA of all cats (Figure 1A) and has
been shown previously using the 63 k genotyping array (16, 21–
23). PC2 of the purebred cat PCA separates the Devon Rex cats
from the other breeds. The first two components of the purebred
cat PCA explained only 16.4% of the total genetic variation, much
less than the 38.4% explained by the first two components of a
PCA using the 63 k array (23).

GWAS Positive Controls
As a positive control, we performed a GWAS on the
presence of orange fur in random bred cats (90 orange
fur, 121 black/brown fur). Using the linear mixed model in
GEMMA, we identified 25 significant associations on a region
of chromosome X between 102,884,842 and 112,136,902 bp
(Figure 2A; Supplementary Table S1). The most significantly
associated SNP in both the LMM and FarmCPU GWAS is
at 110,230,748 bp (P = 1.8 × 10−102 and P = 2.2 × 10−97,
respectively), located within an intron in the gene Ecto-NOX
Disulfide-Thiol Exchanger 2 (ENOX2). This region is known to
contain the Orange cat coloration locus (16–18) and the most
significant SNP is within the 1.5Mb haplotype block identified
by Gandolfi et al. (16). A linkage disequilibrium (LD) plot of this
region showed that the 340 k array has very few markers between
105 and 110Mb on chromosome X, and only 4 markers within
the 1.5Mb haplotype block remain after minor allele frequency
(MAF) and missingness filters, preventing the refinement of this
region (Supplementary Figure S1A).

As a second positive disease control, we performed a GWAS
for factor XII deficiency, using 19 affecteds and 34 controls.
The LMM in GEMMA identified four significant associations
on chromosome A1, between 175,333,103 and 175,445,463
bp, which reside within 63 kb of the gene Coagulation Factor
XII (F12) (Figure 2B; Supplementary Figure S1B). The most
significant association using the FarmCPU method was the same
A1 association at 175,445,463 bp (P = 1.4 × 10−19). Two
high-frequency variants in the gene F12 have previously been
reported in cats with factor XII deficiency (19). Other significant
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FIGURE 1 | Principal component analysis of cat genetic structure. Dimensions PC1 and PC2 are shown. (A) All 1,122 cats that passed QC, color-coded by

genotyping plate (1–11), showing the absence of a batch effect. PC1 shows the eastern-western breed distribution. The cluster of cats that separate on PC2 is from a

local colony that were genotyped on plates 2 (dark blue), 7 (brown), and 11 (orange). (B) 221 purebred cats color-coded by breed, showing the eastern-western

breed distribution on PC1. The Devon Rex breed (dark green) separates on PC2.
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FIGURE 2 | Manhattan and quantile-quantile (QQ) plots for GWAS positive controls. X axis represents the chromosomal SNP position and Y axis represents the

-log10(P-value). The QQ plots show observed vs. expected P-values for each SNP. (A) Orange coat color locus, showing the significant association on chromosome X

(P = 1.8 × 10−102). (B) Factor XII deficiency, showing the significant associations on chromosomes A1 and C2. The red line on the Manhattan plots shows the

Bonferroni-corrected significance threshold and the blue line on the Manhattan plot in B shows the Bonferroni-corrected significance threshold calculated using

unlinked SNPs. The genomic inflation factor (λ) is shown on each QQ plot.

associations were also identified in the factor XII GWAS by both
models, on chromosomes C2, C1, D2, F1, and D3.

Disease GWAS
Across-breed case/control GWAS was conducted for the diseases
HCM, hyperthyroidism, DM, CKD, chronic enteropathy, IBD,
SCAL, FEK, hypercalcemia, and all gastrointestinal phenotypes
(chronic enteropathy, IBD, and SCAL) merged together.
Significance thresholds were calculated using the Bonferroni
correction on all SNPs included in each GWAS (P= 2.6× 10−7),
while suggestive thresholds were calculated using the Bonferroni
correction on a pruned set of unlinked SNPs.

Three significant and two suggestive associations were
identified above the genome-wide thresholds by the LMM
GWAS in GEMMA (Table 1). The FarmCPU GWAS
showed very similar results to the LMM GWAS, with
significant associations for DM and hyperthyroidism (Table 1;
Supplementary Table S2). However, the FEK association was not
significant in the FarmCPUGWASwhile the IBD association was
significant (Table 1; Supplementary Table S2). Since the results
from the two methods were so similar, we have chosen to focus
illustrating the results of the LMM GWAS. Genomic inflation
factors, λ, are all < 1.07 (range of 0.997–1.052, average 1.016
for LMM; range of 1.013–1.062, average 1.033 for FarmCPU),
showing successful control for underlying population structure.

Hyperthyroidism
For hyperthyroidism, we found a solitary significant association
on chromosome B2 (P = 1.25 × 10−7 in LMM, P = 1.36
× 10−7 in FarmCPU), located in the gene Arginase 1 (ARG1)
and 5.5 kb downstream of, although not in LD with, the

gene Mediator Complex Subunit 23 (MED23) (Figure 3A).
The B2 locus increases hyperthyroidism risk in DSH cats
(Supplementary Table S3).

Diabetes Mellitus
Diabetes mellitus was significantly associated with a SNP on
chromosome D4 (P = 1.62 × 10−7 in LMM, P = 2.55 × 10−7 in
FarmCPU) (Figure 3B). The LD region includes many members
of the olfactory receptor gene family, such asOR1J,OR1N,OR1K,
and OR5C, among other genes. The gene PTGS1, (prostaglandin
synthase G/H isoform 1), also known as COX1 (cyclooxygenase-1),
is located within 123 kb downstream of, although not in LD with,
our significant association. This locus on D4 affects the risk of
DM in DSH and Maine Coon cats, but not in cats of other breeds
and DLH cats (Supplementary Table S3).

Feline Eosinophilic Keratoconjunctivitis
We identified a significant association for FEK (P = 1.62 ×

10−7) in the LMM GWAS, with a marker on chromosome
E3, located 10.5 kb from the gene TNFRSF17 (tumor necrosis
factor receptor superfamily, member 17) (Figure 3C). The second
most significant association with this disease did not reach
significance (P = 3.1 × 10−6) but is located within the gene
TNFRSF21 (tumor necrosis factor superfamily, member 21).
Both TNFRSF17 and TNFRSF21 belong to the tumor necrosis
factor receptor superfamily, and TNFRSF21 is expressed in the
eye (24). The E3 locus affects the risk for FEK in DSH cats
(Supplementary Table S3).

IBD
A significant association (P= 9.54× 10−8) for IBDwas identified
using the FarmCPU GWAS. The marker is on chromosome B4
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TABLE 1 | Significant and suggestive associations identified for complex diseases using an across-breed GWAS design.

Disease+ (number cases,

number controls)

GWAS

model

Chr: bp P-value Allele frequency

(cases, controls)

Candidate genes

Hyperthyroidism

(310, 134)

LMM

FarmCPU

B2: 121,565,607

B2: 121,565,607

1.25 × 10−7

1.36 × 10−7

0.037, 0.127 ARG1, MED23

DM

(67, 366)

LMM

FarmCPU

D4: 83,583,678

D4: 83,583,678

1.62 × 10−7

2.55 × 10−7

0.366, 0.172 olfactory

receptors, PTGS1

FEK

(15, 40)

LMM

FarmCPU

E3: 34,663,327

E3: 34,663,327

1.62 × 10−7

1.79 × 10−6 #

0.100, 0.638 TNFRSF17

IBD

(47, 33)

LMM

FarmCPU

B4: 10,941,073

B4: 10,941,073

2.75 × 10−6 #

9.54 × 10−8

0.216, 0.533 N/A

HCM

(85, 53)

LMM

FarmCPU

E3: 3,583,882

E3: 3,583,882

2.76 × 10−7∧

1.00 × 10−6 #

0.295, 0.604 SDK1

Hypercalcemia

(25, 443)

LMM

FarmCPU

C1: 19,508,050

C1: 19,508,050

6.81 × 10−7∧

3.05 × 10−7∧

0.300, 0.085 N/A

Results are shown for both the LMM and FarmCPU GWAS.
∧Suggestive association based on unlinked SNPs.
#Not significant.
+DM, diabetes mellitus; FEK, feline eosinophilic keratoconjunctivitis; IBD, inflammatory bowel disease; HCM, hypertrophic cardiomyopathy.

near the genes ECHDC3 (enoyl-CoA hydratase domain containing
3) and USP6NL (ubiquitin-specific protease 6 N-terminal like)
(Supplementary Figure S2). ECHDC3 has a role in fatty acid
biosynthesis and has been found to have an increased expression
in the brains of Alzheimer’s patients (25) while USP6NL is a
GTPase-activating protein for Rabs and is up-regulated in several
cancers, including breast and colorectal cancers (26, 27). The
B4 significant locus affects risk for IBD in DSH and DLH cats
(Supplementary Table S3).

HCM
The LMM GWAS for HCM reached suggestive significance (P
= 2.76 × 10−7) with a marker on chromosome E3, located
within the gene SDK1 (sidekick cell adhesion molecule 1)
(Figure 4A), which is expressed especially in the kidney and
retina (28, 29) but has also been associated with hypertension
(30). This suggestive E3 locus affects risk for HCM in DSH cats
(Supplementary Table S3).

Hypercalcemia
The hypercalcemia GWAS produced a suggestive association (P
= 6.81 × 10−7 in LMM, P = 3.05 × 10−7 in FarmCPU) on
chromosome C1, located in the gene PAFAH2 (Platelet Activating
Factor Acetylhydrolase 2) and within LD of the gene STMN1
(Stathmin 1) (Figure 4B). The enzyme encoded by PAFAH2
acts to protect the cell from oxidative cytotoxicity (31), while
the protein encoded by STMN1 is involved in regulating the
microtubule cytoskeleton, including mitotic spindle formation
(32). The C1 locus affects risk for hypercalcemia in DSH cats
(Supplementary Table S3).

Genome-wide association studies of the other complex
diseases, CKD, SCAL, chronic enteropathy, and merged GI
phenotypes did not produce a significant or suggestive
association using either the LMM or FarmCPU GWAS
(Supplementary Figure S3; Supplementary Tables S2, S4).

DISCUSSION

In this study, we identified significant associations for common,
clinically relevant, complex diseases in a population of 1,122
random and purebred cats, using a dense genotyping array.While
a similar study was previously performed in dogs (33), this is the
largest GWAS disease study in cats reported to date, conducted
in a heterogeneous natural population including 80% random
bred cats. Further advantages of the current study design were the
careful phenotyping of aged control cats, accurate phenotyping
of diseased participants by specialists performed in an academic
clinical setting, and a mapping array ∼5-fold denser than the
current 63 k array. Additionally, the quality of the biospecimens
used and its associated data demonstrate the importance of using
an accredited resource such as the Cornell Veterinary Biobank.

As a positive control, we identified significant associations
for the Orange coat color locus and factor XII deficiency at the
F12 gene locus. Although the F12 locus was the most significant
association using both LMM and FarmCPU models, three and
five other significant SNPs were identified in the factor XII
deficiency GWAS, respectively. A BLAT (34) search showed that
the flanking region of the three SNPs maps to many places
in the feline genome, including chromosome A1: 175Mb, the
location of the gene F12. Thus, it appears that there may be some
non-specific binding with the A1 probe. However, factor XII
deficiency is affected by several different loci across the genome,
as shown in humans (35).

The majority of the cats included in our analyses are random
bred cats, which generally have shorter LD than purebreds (3),
because they have not been subject to selective breeding for
specific traits. Further, we are mapping complex diseases, which
usually consist of many variants each contributing a small effect
and have not been subjected to artificial selection, resulting
in shorter LD surrounding the causal variant. As a result of
investigating complex diseases in a predominantly random bred
cat population, we do not expect to see the stacking of SNPs that
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FIGURE 3 | Manhattan, quantile-quantile (QQ), and LD plots for case-control disease significant associations, using the LMM GWAS results. X axis represents the

chromosomal SNP position and Y axis represents the -log10 (P-value). The QQ plots show observed vs. expected P-values for each SNP. (A) Hyperthyroidism,

showing the significant association on chr B2. (B) DM, showing the significant association on chr D4. (C) FEK, showing the significant association on chr E3. On

Manhattan plots, the red line is Bonferroni-corrected significance threshold, and the blue line is Bonferroni-corrected significance threshold calculated using unlinked

SNPs. Inflation factors (λ) are shown on QQ plots. On LD plots, the colors indicate the amount of LD (r2) with the most significant SNP, ranging from black (r2 < 0.2) to

red (r2 > 0.8).
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FIGURE 4 | Manhattan, quantile-quantile (QQ), and LD plots for case-control disease suggestive associations, using the LMM GWAS results. X axis represents the

chromosomal SNP position and Y axis represents the -log10 (P-value). The QQ plots show observed vs. expected P-values for each SNP. (A) HCM, showing the

suggestive association on chr E3. (B) Hypercalcemia, showing the suggestive association on chr C1. On Manhattan plots, the red line is Bonferroni-corrected

significance threshold, and the blue line is Bonferroni-corrected significance threshold calculated using unlinked SNPs. Inflation factors (λ) are shown on QQ plots. On

LD plots, the colors indicate the amount of LD (r2) with the most significant SNP, ranging from black (r2 < 0.2) to red (r2 > 0.8).

are seen in GWAS studies of morphological traits, especially in
purebred cats.

Using a case/control approach, we performed GWAS with
both a LMM and FarmCPU, and found very similar results. Both
methods identified significant associations for hyperthyroidism
and DM, and the FEK association was significant in the LMM
GWASwhile the IBD association was significant in the FarmCPU
GWAS. Furthermore, the same SNPs were identified as the
most significant associations by both models. The similarity in
the outputs from the two different statistical models provide
confidence in our results, especially since FarmCPU controls
for false positive associations by including associated markers
as covariates, while also controlling for confounding between
markers and the kinship matrix (36).

For hyperthyroidism, the candidate gene ARG1 encodes
Arginase 1, a cytosolic enzyme that participates in the urea cycle
and is expressed in the liver (37). Another nearby candidate
gene, MED23, encodes a protein that acts as a subunit in
many complexes, including the thyroid hormone receptor (TR)
associated protein complex. As such, it interacts with, and

facilitates, the function of the TR. Variants in the TR have been
associated with thyroid hormone resistance, for which the clinical
presentation is very similar to thyrotoxicosis (38). In humans,
mutations in MED23 cause neural diseases and anomalies [for
example, (39–41)], but no association with hyperthyroidism has
been reported. This is the first GWAS for feline hyperthyroidism
reported and our finding represents a novel locus. Somatic
variants in the thyroid-stimulating hormone receptor (TSHR)
gene have been previously reported, but those variants were
identified in DNA extracted from the affected thyroid glands of
hyperthyroid cats (42).

The significant DM locus includes many olfactory receptor
genes. Genetic and epigenetic variation, and the resulting
functional changes, in olfactory receptors have been associated
with taste, food intake, and satiety (43, 44). These differences
may contribute to obesity risk and risk of DM. Mouse olfactory
receptor gene OLFR15 has been shown to be expressed in
pancreatic beta-cells and to regulate the secretion of insulin (45).
The other interesting gene near our significant D4 association,
although not quite within the LD region of interest, PTGS1
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(COX1), encodes an enzyme that converts arachidonate into
prostaglandin, which is involved in glucose homeostasis (46).
This gene has been associated with human DM (47, 48), but
represents a novel locus associated with feline DM. Previous
studies have identified several loci associated with DM in
Australian Burmese cats (15, 49) and a polymorphism in
melanocortin receptor 4 (MCR4) associated with DM in obese
domestic shorthair cats (50). A 2021 study of non-obese domestic
shorthair cats identified a significant region on chromosome A3
encompassing genes known to be associated with DM in humans
(51). Our DM result is very different to this 2021 study, because
of the different genotyping arrays used in the respective studies;
their A3 significant SNPs are not on the 340 k array, and our D4
significant SNP is not on the 63 k array.

For FEK, we identified a significant association in the LMM
GWAS near the gene TNFRSF17. This is especially promising,
and warrants further investigation because of its role in the innate
and adaptive immune response. In patients with allergic asthma,
eosinophils infiltrate the bronchial wall and lumen, and the
bronchial epithelium is often damaged (52). These pathological
findings are associated with aberrant T helper 2 (Th2) cell-
mediated immune responses. Interleukin-5, which is produced
by Th2 cells, and the chemokine eotaxin are key players for
the proliferation, differentiation, activation and mobilization of
eosinophils (53, 54). In knockout mice studies, NF-kappa-B,
a transcription factor that is activated by the TNFRSF17 and
TNFRSF21 genes, was found to play an important role in Th2 cell
differentiation and is therefore required for induction of allergic
airway inflammation (53, 55). Similar to knockout mice with
allergic asthma, it is possible that animals affected with FEK have
an abnormal NF-kappa-B activation due to defective expression
of TNFRSF17 and TNFRSF21 genes, as suggested by the current
GWAS study.

We had three findings that did not reach genome-wide
significance in either one or both of the statistical models
employed in this study, andwe caution against overinterpretation
of these results. For IBD, a significant association was identified
by the FarmCPU method only and is located near the genes
ECHDC3 and USP6NL. Neither of these genes are good
candidates for a gastroenteropathy phenotype: in human GWAS
studies, these genes have been associated with Alzheimer’s disease
(25, 56), and low-density lipoprotein (LDL) cholesterol (57).
Using a significance threshold calculated from unlinked SNPs
only, we identified two suggestive associations. The first was an
association with the disease HCM located in the gene SDK1.
A polymorphism in SDK1 was found to be associated with
hypertension in a study of over 5,000 Japanese individuals (30)
but the function of this gene related to hypertension has not
been described. The second suggestive association was identified
for hypercalcemia and the LD region contained the genes
PAFAH2 and STMN1, neither of which have been associated with
hypercalcemia previously. In humans, PAFAH2 has been linked
to intracranial aneurysms (58, 59) while STMN1 has recently
been proposed as a biomarker for hepatocellular carcinoma
prognosis (60, 61).

Despite the use of a dense genotyping array, across-breed
GWAS for CKD, SCAL, chronic enteropathy, and merged

gastrointestinal phenotypes did not reach statistical genome-wide
significance using either single-locus or multi-locus models. We
believe that larger cohorts may be needed due to the genetic
architecture of these diseases, especially chronic enteropathy for
which we had fewer than 50 cases in the respective GWAS. By not
restricting our analyses to a single breed, we were able to include
a relatively large sample size for some of our phenotypes, thereby
increasing statistical power to identify significant associations. In
a study of this kind, especially if the majority of cats are randomly
bred, LD is shorter, resulting in smaller regions of interest and
narrowing the list of potential candidate genes. Nevertheless, for
some other phenotypes, we had an unbalanced proportion of
cases and controls. This is due to the fact that accumulation of
samples takes a long time, in part because donating samples is
an opt-in process in our hospital, and because of the difficulty of
recruiting universal controls.

GWAS statistical power is affected by sample size, array
density and level of LD, as well as parameters of the disease
of interest, such as heritability and frequency in the population
(62). Although we improved SNP density compared to the 63 k
feline array, our study was still underpowered for most of the
complex diseases studied. This is likely due to the sample sizes
of each of our phenotypes, especially since an increase in the
number of markers queried in a GWAS requires a larger sample
size. The Bonferroni correction for multiple testing used in
the present study was 2.6 × 10−7 while for a 63 k SNP study,
it would be 7.9 × 10−7. It is unknown how many samples
are required for a robust across-breed, complex disease GWAS
study in cats, but canine simulation studies indicate that 500–
1,000 cases and controls, plus a further increase in array marker
density, would substantially increase loci discovery in dogs (33).
Given the decreased levels of LD seen in random-bred cats,
compared to the dog, we expect larger samples sizes to be
required to provide a similar degree of statistical power for feline
complex disease GWAS. However, our study represents an initial
exploratory analysis of these feline complex diseases and the now-
public data can be used by other investigators to advance their
mapping studies.

Follow-up analyses using an independent cohort of
phenotyped cats are needed to validate the associations we
identified in this group of genotyped cats. Further studies
involving investigation of the regions surrounding the significant
associations are needed to determine causal variants for these
complex diseases. Use of the >300 whole genome sequences
provided by the 99 Lives Feline Genome Consortium will allow
variant discovery within candidate genes in the intervals of
interest. Finally, functional studies will be required to confirm
causal variants.

In this research, we used an across-breed GWAS design with
a ∼5-fold denser genotyping array than currently available, to
identify significant associations with important common feline
complex diseases.We demonstrated that a well-curated, hospital-
sourced population can be used effectively for mapping studies.
We also demonstrated the benefit of such a dense mapping array,
propelling the field of complex feline disease genetics forward.
Further, these results can be used to develop new diagnostic
tests to assist veterinarians in identifying diseases earlier and
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allowing the implementation of early preventative measures.
Breeders could improve their practices by identifying cats
with optimum genetic value and owners could make informed
decisions regarding the health of cats. This is particularly
important in this era of personalized medicine. The shared
environment of cats and their owners further enhances the
value of domestic cats as models of lifestyle disease common to
both species.

METHODS

Banking Biospecimens and Associated
Data
The 1,122 feline biospecimens used for this project were selected
from the Cornell Veterinary Biobank (CVB; International
Standards Organization 20387), a core resource at the Cornell
University College of Veterinary Medicine, which has been
collecting and processing whole blood samples from feline
patients admitted to the Cornell University Hospital for Animals
(CUHA) since 2006. Biospecimens from participants consented
at our satellite clinic, the Cornell University Veterinary Specialist
in Stamford, Connecticut, were also included.

Out of the 1,122 cats, 57 were recruited through the
Senior Feline Health Screening program from 2014 to 2018.
The program was created to build a biobank of DNA and
associated clinical data from healthy senior cats to serve as
universal controls for mapping studies. In order to participate,
feline candidates had to be at least 9.5 years of age and
in good health. Privately owned cats that participated in
the screening had a general physical examination and were
examined accordingly by board certified specialists: cardiac
auscultation and echocardiogram, dental examination, body
condition scoring, body mapping (used by oncologists to record
any masses found), ocular examination, and an orthopedic
examination. A complete blood count, serum chemistry panel,
coagulation panel, feline immunodeficiency virus (FIV) and
feline leukemia virus (FeLV) test, baseline serum thyroxine (T4)
level, and urinalysis were performed.

Sample Processing, Storage, and
Distribution
Samples were collected according to the Cornell University
Institutional Animal Care and Use Committee (IACUC)
protocol #2005-0151. Following owner informed consent,
whole blood samples were collected in EDTA tubes and
refrigerated at 4◦C until DNA extraction. Formalin fixed,
paraffin embedded (FFPE) scrolls of splenic tissue were
acquired from a collaborating pathologist and used for DNA
extraction when necessary. Genomic DNA was extracted from
blood samples using a standard salt precipitation. Genomic
DNA was extracted from FFPE samples using the E.Z.N.A.
Tissue DNA kit (Omega Bio-Tek) following the manufacturer’s
instructions. DNA concentration and purity were determined by
spectrophotometry on a NanoDropND1000 (Thermo Scientific).
DNA samples were stored at ≤ −20◦C until distribution
for genotyping.

Inclusion Criteria
Since we analyzed each disease independently, participants with
a disease of interest could simultaneously be used as controls
for other traits/diseases, as long as these traits were ruled out.
Phenotypes included cases and controls from any breed, unless
specified. In order to minimize the inclusion of affected cats (that
had not yet been diagnosed) as controls, we used an age cutoff
of 9.5 years of age for controls, while cases could be of any age.
Numbers of purebred and random bred cats included as cases
and controls, as well as sex and age information, for each GWAS
are shown in Table 2, and numbers of individuals from each
breed are shown in Supplementary Table S5. The distribution
of all cases and controls by age is shown for each phenotype in
Supplementary Figure S4.

Hypertrophic Cardiomyopathy
HCM is the most common cardiac disease in cats, affecting
around 15% of the feline population (63, 64). Similarly to
humans, familial HCM has been described in purebred cats,
and in Maine coon and Ragdolls is caused by mutations
in myosin binding protein C gene (MYBPC3) (65). Some
Maine coon and Ragdolls cats develop HCM in the absence
of this mutation, indicating that other mutations are yet to
be identified (65). Diagnosis was based on echocardiography.
Phenotypic criteria for controls included normal left ventricular
wall thickness measurements: left ventricular free wall (LVFW)
and interventricular septum (IVS) in diastole ≤ 6mm by M-
mode (motion mode). Phenotypic criteria for cases included
LVFW and IVS wall thickness > 6mm. Additionally, affected
cats must have had normal baseline T4 and be normotensive
and normally hydrated in order to rule out other causes of
cardiac hypertrophy.

Hyperthyroidism
Hyperthyroidism is one of the most common endocrine
disorders affecting senior cats. The disease most often results
from benign adenomatous thyroid nodules similar to human
toxic nodular goiter (66). Hyperthyroidism is believed to
be a multifactorial disease, with nutritional, environmental,
and genetic factors postulated as interacting causes (66). The
diagnosis of cases and controls was based on the following
criteria: control cats had low-normal thyroxine (T4; <3 µg/dL;
normal range 2–5 µg/dL). Cases had T4 > 5 µg/dL or normal
T4 with increased free T4. Radioiodinated thyroid scan results
confirming the diagnosis were recorded, if available.

Diabetes Mellitus
DM is also one of the most common endocrine diseases of cats
with the majority of the cats resembling Type 2 (adult onset)
DM in humans. The disease is caused by a combination of
decreased β-cell function, insulin resistance, and environmental
and genetic factors (67). Diagnosis of DM was based on the
following criteria: control cats had blood glucose values < 200
mg/dL (reference values: 71–182 mg/dL) and no glucosuria.
Cases had elevated blood glucose (>250 mg/dL) and glucosuria
in at least two consecutive visits. Also, fructosamine, if evaluated,
had to be above normal range (174–294 µmol/L). Of the 67
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TABLE 2 | Breed, age and sex information about case and control groups for each disease.

Disease+ Purebred

numbers

Random bred∧

numbers

Median age in months

(interquartile range),

number unknown

Number males,

number females

Total numbers

HCM

- Cases 14 69 105 (82), 7 61, 22 83

- Controls 20 33 154 (40), 0 31, 22 53

Hyperthyroidism

- Cases 24 286 156 (43), 2 146, 164 310

- Controls 38 96 171 (43), 0 75, 59 134

DM

- Cases 13 54 135 (66), 2 49, 18 67

- Controls 62 304 165 (44), 1 182, 184 366

CKD

- Cases 29 125 180 (44), 2 93, 61 154

- Controls 10 52 149 (38), 0 30, 32 62

Chronic enteropathy

- Cases 9 32 164 (66), 0 26, 15 41

- Controls 10 18 138 (35), 0 15, 13 28

IBD

- Cases 9 38 122 (81), 0 31, 16 47

- Controls 15 18 137 (35), 0 17, 16 33

SCAL

- Cases 12 66 146 (42), 0 42, 36 78

- Controls 16 18 140 (36), 0 19, 15 34

GI combined

- Cases 33 133 144 (56), 1 99, 67 166

- Controls 16 18 140 (36), 0 18, 16 34

FEK

- Cases 2 13 100 (89), 0 6, 9 15

- Controls 13 27 146 (53), 0 21, 19 40

Hypercalcemia

- Cases 5 20 178 (48), 0 15, 10 25

- Controls 78 365 165 (43), 1 233, 210 443

∧ Includes domestic shorthair (DSH), domestic longhair (DLH), domestic medium hair (DMH), as well as cats identified as breed mixes (e.g., Siamese mix).
+HCM, hypertrophic cardiomyopathy; DM, diabetes mellitus; CKD, chronic kidney disease; IBD, inflammatory bowel disease; SCAL, small cell alimentary lymphoma; GI, gastrointestinal;

FEK, feline eosinophilic keratoconjunctivitis.

cases in the GWAS, 39 had fructosamine tests and all had
elevated levels. Fifty-three diabetic cases and 339 controls had
body weight recorded. Although the body weights of cases were
spread throughout the range of 1.8–10 kg, a greater proportion
of cases (12 of 53, or 22.6%) had weights > 7 kg, compared to
controls (17 of 339, or 5.0%) (Supplementary Figure S5).

Chronic Kidney Disease
CKD is highly prevalent in both humans and cats with
approximately 10% of cats > 10 years of age reported to
be affected. Cats with CKD experience a progressive loss of
functional renal mass. CKD is considered a heterogeneous
syndrome, rather than a single entity (68). CKDwas diagnosed by
evaluating the level of blood urea nitrogen (BUN) and creatinine,
in conjunction with the urine specific gravity (USG). Symmetric
dimethylarginine (SDMA), a natural occurring indicator for

kidney function, was measured in the blood of some cases to
determine if early renal disease was occurring. The diagnosis was
established according to the following criteria: controls cats had
creatinine< 1.6mg/dL (normal range 0.6–2mg/dL), BUNwithin
normal range (16–36 mg/dL) and USG > 1.035 (preferably
performed on the same day as creatinine was measured). Cases
had to be azotemic (elevated BUN and creatinine values) with
concurrent isosthenuria (failure of the kidney to dilute or
concentrate urine) and increased SDMA, diagnosed by a board-
certified veterinary internist.

Chronic Enteropathy/Inflammatory Bowel

Disease/Small Cell Alimentary Lymphoma
Chronic enteropathies, which include Inflammatory Bowel
Disease (IBD) and Small Cell Alimentary Lymphoma (SCAL),
are common forms of primary gastrointestinal disease in cats.
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Although the cause of feline IBD is unknown, it has been
hypothesized that, similar to canines and humans, feline IBD is
caused by several factors such as intestinal microbial imbalances,
diet, and defects in the mucosal immune system (69). SCAL is the
most frequent digestive neoplasia in cats, accounting for 60–75%
of gastrointestinal lymphoma cases (70).

For this study, cats were assigned as chronic enteropathy cases
if gastrointestinal (GI) clinical signs such as chronic vomiting,
diarrhea, or weight loss were present, non-GI causes of their
clinical signs were excluded, thus highly suggestive of either
IBD or SCAL, but no histologic diagnosis was performed. IBD
and SCAL were considered separate diagnoses that required
histological confirmation. Distinguishing between IBD and
SCAL can be difficult, so in addition to histologic assessment,
immunophenotyping and polymerase chain reaction (PCR) for
antigen receptor rearrangements (PARR) were used in some cases
to confirm the SCAL diagnosis. Phenotypic criteria for affected
cats included persistent clinical GI signs and histopathology
performed by a board-certified veterinary pathologist confirming
either IBD or SCAL. Control cats were examined by a board-
certified oncologist and had an absence of any GI signs. We
performed a separate GWAS for each of IBD and SCAL, and
then chronic enteropathy, which includes cats that were not
formally diagnosed but could be either IBD or SCAL. Finally,
we performed a GWAS including all GI cases in an attempt
to increase statistical power, and since IBD, SCAL, and chronic
enteropathy can be considered a different manifestation of the
same disorder (71). There is also evidence that IBD leads to
SCAL (72).

Feline Eosinophilic Keratoconjunctivitis
FEK is a corneal/conjunctival disease characterized by
vascularized white-to-pink plaques on the cornea and bulbar
conjunctiva. In the majority of cats, previous corneal ulceration
has been diagnosed and an association with feline herpesvirus
type 1 (FHV-1) infection has been proposed (73). The diagnosis
of FEK was made according to the following criteria: affected
cats had signs of the disease during ophthalmologic exam
performed by a board-certified veterinary ophthalmologist,
including proliferative vascularized lesions affecting peripheral
corneal/bulbar conjunctiva and the presence of eosinophils in the
ocular cytology. Control cats had a normal ophthalmologic exam.

Hypercalcemia
Hypercalcemia is a common condition of cats defined by an
increase in both total and ionized serum calcium. It may be
caused by many conditions such as neoplasia, renal failure,
primary hyperparathyroidism, hypoadrenocorticism, ingestion
of cholecalciferol-containing rodenticides, or granulomatous
disease. In cats, hypercalcemia can also be idiopathic (74),
which is the phenotype we are investigating here. The diagnosis
of hypercalcemia was determined as follows: control cats had
total serum calcium values within the normal range (9.1–10.9
mg/dL); affected cats had elevated total serum calcium and
ionized calcium values (reference interval 1.11–1.38 mmol/L).
Parathyroid hormone (PTH) and PTH related peptide (PTHrP)

were recorded if available, and were used to differentiate between
causes of hypercalcemia.

Design of Array
Genotyping was performed on an Illumina Infinium iSelect
Custom BeadChip. These arrays contain 340,000 attempted
beadtypes for genotyping single nucleotide polymorphisms
selected across the entire cat genome, using feline genome
assembly felCat5. Of the 340,000 markers included on the array,
297,034 (87%) provided a reliable call.

SNPs for the array were selected from whole genome
sequencing of 6 genetically diverse female DSH cats. These 6 cats
were sequenced on a HiSeq2500 (Illumina, San Diego, CA) to
generate 100 bp paired-end reads. Following GATK best practices
pipeline (75), reads were mapped to the feline reference genome
using BWA mem (76), then duplicate reads were tagged by
PICARD MarkDuplicates, and indels were realigned and quality
scores were recalibrated using GATK. Variants were called and
filtered using GATK HaplotypeCaller and VCFtools (77). The
full list of variants was thinned randomly using PLINK and
then protein-coding variants with moderate and high impact as
defined by SnpEff (78) were added back in.

Genotyping
In total, 1,200 feline DNA samples were genotyped on the Hill’s
custom Illumina feline high density mapping array. Genotyping
was performed in 11 batches, or plates, by Neogen GeneSeek
Operations (Lincoln, NE). Raw data files were converted to
PLINK format and quality control was performed in PLINK v1.9
(www.cog-genomics.org/plink/1.0/) (79, 80).

Quality Control
Genotyping data from the 11 batches were merged together using
PLINK’s –bmerge command and a sex check of all samples was
performed using PLINK’s –check-sex command. Seventy samples
were removed due to missingness > 80%, including 53 samples
from the same batch.

SNPs were converted to the genome assembly felCat9 (81) and
SNPs with missingness > 95% in the 1,130 cats were removed,
leaving 252,987 SNPs. Eight cats were genotyped on two different
plates each as internal controls. The SNPs that were discordant
between these eight duplicates were identified and removed.
Finally, duplicate samples were removed, leaving a dataset of
1,122 individuals and 251,978 SNPs for GWAS.

A Principal Component Analysis (PCA) was performed using
the program EIGENSTRAT in the EIGENSOFT package (82).
For this, linked SNPs were pruned using PLINK’s –indep 50 5
2 command, leaving 91,556 SNPs. PCA was performed using all
cats to look for batch effects, and all purebred cats to ensure
individuals of the same breed clustered together. PCA was also
performed using only the cats included in each phenotype to
identify and remove outliers before GWAS analysis. An outlier
is an individual that is located separately from the main cluster of
cats on either the PC1 or PC2 axis. Further, in order to reduce the
effects of genetically distinct individuals in our GWAS, we also
removed any purebred cat that was located separately from the
main cluster of random bred individuals on either PC1 or PC2.
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For the DM and HCM phenotypes, a further two and 16 cats,
respectively, were genotyped on the same 340 k custom Illumina
array by external coauthors (MEW and JAB, respectively). For
these cats, the genotype files were merged with the sample set
before the QC was performed, as described above. The genotype
and phenotype data for all three of these datasets are available as
PLINK files, and include the SNP information (chromosome, bp
location, alleles).

Genome-Wide Association Study
Both a single-locus linear mixed model (LMM) and a multi-
locus model were used to perform a GWAS for each disease
phenotype. The LMM was performed in the program GEMMA
v 0.98.1 (83), which includes a relatedness matrix as a random
effect. The multi-locus method performed was FarmCPU (Fixed
and random model Circulating Probability Unification) (36)
run using rMVP (84) in R. FarmCPU is designed to help
control for false positives by including associated markers as
covariates, while also reducing false negatives by removing the
confounding between the population structure and kinship and
the markers to be tested. We used the default parameters,
with a maximum of 10 iterations. For each phenotype, we
included the relatedness matrix calculated by GEMMA and
a covariate file consisting of the first four PCs from a
PCA run on the genotypes of the cats included in the
phenotype only.

For both models, the Wald test was used to calculate P-values,
and the Bonferroni correction (pgenome = 0.05) was used to
calculate the genome-wide significance threshold. A suggestive
threshold was calculated using the Bonferroni correction on
unlinked SNPs (pruned using the –indep 50 5 2 option
in PLINK).

For each phenotype, PCA outliers and related cats (pihat >

0.40) were excluded. Single nucleotide polymorphisms with a
minor allele frequency (MAF) < 5% and a genotyping call rate
< 90% were removed from each analysis. SNPs are provided in
genome assembly felCat9.

Manhattan and quantile-quantile (QQ) plots were created
using the package qqman (85) in R v4.0.2 (86). Lambda values,
as a quantification for genomic inflation, were calculated in R.
Linkage disequilibrium plots were created using matplolib (87)
in jupyter notebook (88).

GWAS Positive Controls
As a positive control for the 340 k array, we performed
GWAS on the presence of orange fur. The Orange locus
has been refined to a 1.5Mb region on the X chromosome,
although the causal variant is unknown (16–18). We used
211 random bred cats in the orange GWAS: 90 cats that
had a coat color description of orange (including solid
orange, orange and white, and orange tabby), and 121
cats that had a coat color description of black, brown or
brown tabby.

We also performed a positive control GWAS of factor XII
deficiency, a common hereditary coagulation factor deficiency
in cats that does not cause a bleeding diathesis. For this
phenotype, affected cats were classified based on severe

factor XII deficiency (factor XII coagulant activity < 10%
of normal), whereas control cats had values above 60%.
Nineteen affected cats and 34 controls were included in
the GWAS.
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