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Abstract: Carpal tunnel syndrome (CTS) is the most common compression neuropathy in the general
population and is frequently encountered among individuals with type 1 and 2 diabetes. The reason(s)
why a peripheral nerve trunk in individuals with diabetes is more susceptible to nerve compression
is still not completely clarified, but both biochemical and structural changes in the peripheral nerve
are probably implicated. In particular, individuals with neuropathy, irrespective of aetiology, have a
higher risk of peripheral nerve compression disorders, as reflected among individuals with diabetic
neuropathy. Diagnosis of CTS in individuals with diabetes should be carefully evaluated; detailed
case history, thorough clinical examination, and electrophysiological examination is recommended.
Individuals with diabetes and CTS benefit from surgery to the same extent as otherwise healthy
individuals with CTS. In the present review, we describe pathophysiological aspects of the nerve
compression disorder CTS in relation to diabetes, current data contributing to the explanation of the
increased risk for CTS in individuals with diabetes, as well as diagnostic methods, treatment options,
and prognosis of CTS in diabetes.

Keywords: carpal tunnel syndrome; diabetic neuropathy; diabetes

1. Introduction

Nerve compression disorders are common among the general population, and the most
frequently encountered lesions are carpal tunnel syndrome (CTS) and ulnar nerve entrapment
at the elbow (UNE) [1]. Even if both conditions are considered as nerve compression disorders,
they have substantially different characteristics, regarding the socioeconomic background of
affected individuals as well as the individual nerve’s susceptibility and reaction to trauma;
factors that both impact outcome of surgical procedures [2,3]. The prevalence of CTS is
2.7% (depending on its definition) and the yearly incidences are 428 in women and 182 in
men per 100,000 adults in Sweden [4,5], but figures may differ between both regions and
countries [6–8]. In addition, the annual incidences of CTS surgery are higher in Sweden and
the United States compared to, e.g., in the United Kingdom [1,5]. The aetiology behind CTS is
multifactorial, and both intrinsic and extrinsic factors; i.e., factors related to both the peripheral
nerve and the surroundings of the nerve trunk have to be considered. Frequent causes of
CTS are endocrine disorders, like hypothyroidism, pregnancy, menopause, obesity, diabetes,
Hand Arm Vibration Syndrome (HAVS), rheumatoid arthritis, traumatic injuries, such as
fractures and dislocations of the distal radius and carpal bones, and repetitive motions of
the wrist. However, in the majority of CTS cases, no specific cause can be identified, and the
condition is considered as idiopathic. Recently, genome-wide association studies (GWAS) have
reported 16 susceptibility loci for CTS [9], and as the variants in those genes are implicated
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in both growth (i.e., anthropometric measurements) and enrichment of extracellular matrix
architecture, the genetic risks are related to the environment of the carpal tunnel as well as
to the vulnerability of the median nerve fibres to compression. CTS is also considered to
be a part of the diabetic hand, which includes not only limited joint mobility, Dupuytren’s
disease with contracture, and flexor tenosynovitis (i.e., trigger finger) [10,11], but also ulnar
nerve compression at the elbow (UNE) [12]. Diabetes increases the risk of compression neuro-
pathies [13,14], and a prominent feature may be inherent factors in the peripheral nerve trunk,
comparable to HAVS [15–17]. This phenomenon is included in the double crush theory; a
nerve already affected by some pathology is more susceptible to compression [15].

Here, we present an overview of the pathophysiology and vulnerability of the median
nerve in CTS, with relevant diagnostic procedures, treatment options, and outcome of
surgery in individuals with CTS and diabetes.

2. Neuropathy in Diabetes

The prevalence of diabetic neuropathy is estimated to be 30–50% in individuals with
diabetes [18–20], and it increases with disease duration. Importantly, diabetic neuropathy
may be present already at the time of diagnosis [21,22], where diabetic men are more
prone than diabetic women to develop neuropathy [23]. The most common type of di-
abetic neuropathy is distal symmetric polyneuropathy, a major cause of diabetic foot
complications [21]. Other neuropathy types in diabetes are autonomic neuropathy and
mononeuropathies, including compression neuropathies [21].

There are several proposed mechanisms behind the development of neuropathy in
diabetes. The main causal factor is considered to be hyperglycaemia [24], which leads to an
increased oxidative stress and an increase in free radicals [25]. Pathophysiologically, there
are four key elements behind the hyperglycaemic damage to peripheral nerves; increased
activity in the polyol pathway, activation of protein kinase C (PKC), production of advanced
glycation end products (AGE), and an increased activity of the hexosamine pathway [24].
For details, please see Figure 1.
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Figure 1. Molecular mechanisms behind microvascular complications in diabetes that may affect
neurons, Schwann cells, and vascular endothelial cells, causing neuropathy or nerve dysfunction.
Adapted from Zimmerman 2018 [26] with permission. T1D: type 1 diabetes, T2D: type 2 diabetes.
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Alterations in axonal transport have also been described in experimental studies of di-
abetes [27,28]. These changes result in reduced axon calibre, segmental demyelination, and
loss of myelinated nerve fibres [29] (Figure 2). Both micro- and macrovascular alterations
in diabetes add additional stress on peripheral nerves. However, the mechanisms behind
diabetic neuropathy differ between type 1 and type 2 diabetes [18,30,31]. In type 1 diabetes,
intensive glucose control protects against neuropathy development [30,31], and insulin
deficiency might contribute to neuropathy since insulin has a neurotrophic effect [32]. The
loss of C-peptide in type 1 diabetes might also contribute to hypoxia by lowering eNOS [33].
In contrast, in type 2 diabetes, both hyperlipidaemia and insulin resistance may play a part
in the development of neuropathy [32,34–36]. There is also evidence that glucose control
may have a modest effect on lowering neuropathy complications in type 2 diabetes [37,38].
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Reproduced by kind permission by Osman et al., Diabetologia 2015 [39]. 
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Figure 2. Electron micrographs of the posterior interosseous nerve, with diagram of size distribution
of myelinated nerve fibres, from patients with CTS, where the individuals are healthy (a), have type
2 diabetes (b) or type 1 diabetes (c). The arrows in the upper panels indicate regenerative clusters.
In the diagram on the lower panels, the size distribution of myelinated nerve fibres is based on the
micrographs from the upper panels, indicating a redistribution of nerve fibres. Scale bar = 20 µm.
Reproduced by kind permission by Osman et al., Diabetologia 2015 [39].

3. The Increased Susceptibility to Nerve Compression in Diabetes

A peripheral nerve trunk is a delicate structure, where the various components re-
spond to an external trauma in different ways (for a classical review, see Sunderland
1978 [40]). The axons, with their associated Schwann cells, are enclosed by a basement
membrane, and the myelinated and unmyelinated nerve fibres are assembled in bundles
surrounded by a strong connective tissue layer with flattened cells (perineurium), provid-
ing both chemical and mechanical protection [40,41]. The connective tissue component
inside the perineurial sheath is called the endoneurium. The bundles of nerve fibres with
the perineurium (i.e., fascicles) are embedded in loose connective tissue components—
epineurium. The nerve trunk is segmentally provided by small blood vessels that branch
into the different connective tissue compartments, where the endoneurial blood vessels,
mainly capillaries, are strongly resistant to trauma [42]. In contrast, the epineurial blood
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vessels are sensitive to trauma with a risk of formation of epineurial oedema that may later
form into fibrosis. The number of nerve fibres with a larger diameter, i.e., the myelinated
fibres, are reduced, particularly in type 1 diabetes, with a resulting bimodal distribution of
nerve fibres (Figure 2); i.e., a higher number of unmyelinated nerve fibres [39]. Myelinated
nerve fibres are also more sensitive to nerve compression trauma than un-myelinated nerve
fibres [43].

The intra-axonal communication system consists of a delicate system of anterograde
and retrograde transport of various substances, such as structural, metabolic, and growth-
related proteins, known as axonal transport, which is of utmost relevance in health and
disease [44]. Axonal transport can not only be disturbed in diabetes with the development
of neuropathy, but can be inhibited by applied nerve compression [27,45]. In experimental
studies using diabetic rats, local compression of a nerve causes an increased inhibition of ax-
onally transported proteins compared to in healthy rats [45]; the concept is conceivable that
a nerve is more susceptible to compression when the peripheral nervous system is affected
by a generalised disease, such as diabetes [15]. In this context, one has also to consider all
related disturbances in diabetes, such as those occurring in the red blood corpuscles, the
extra- and intraneural blood vessels, and in the connective tissue components whether in
the nerve trunk or in the surroundings as in the carpal ligament, e.g., with glycosylation
of collagen. The glycosylation of collagen leads to an increase in advanced glycation end
products (AGE), causing cross-linking of collagen fibres in the transverse carpal ligament,
resulting in increased stiffness and contributing to space limitation in the carpal tunnel [46].
Nerve oedema, originating from an increased vascular permeability and angiogenesis,
due to upregulation of vascular endothelial growth factor (VEGF) in diabetes, may also
contribute to the increased susceptibility to compression trauma [47]; a mechanism that has
been related to increased endoneurial pressure with a risk of jeo-pardised blood supply to
the nerve fibres in the fascicles [48]. Nerve oedema has been demonstrated in ultrasound
studies, showing that the median nerve cross-sectional area is enlarged in diabetes [49].
Upregulation of VEGF and its receptors, but not of the hypoxia-inducible factor 1α (HIF1α),
has been demonstrated in biopsies of the posterior interosseus nerve (PIN) from patients
with CTS and diabetes [50]. The number of myelinated nerve fibres has been analysed
in such biopsies of the posterior interosseous nerve, indicating that otherwise healthy
subjects with CTS have a lower density of myelinated nerve fibres than those without
CTS [16]. Interestingly, patients with diabetes and CTS have an even lower density of such
myelinated nerve fibres, which may explain the increased susceptibility [16]. In accordance,
subjects with HAVS also have structural changes in upper extremity nerves [51], resulting
in a higher risk for additional CTS [17]. To conclude, diabetes may confer an increased sus-
ceptibility to the peripheral nerve, where the pathophysiological mechanisms are complex
and involve both biochemical and structural alterations in the nerve.

4. Symptoms and Clinical Signs of CTS

In CTS, symptoms, clinical findings, and electrophysiology results depend on the
magnitude, nature, and duration of the compression trauma. In individuals with diabetes,
early signs of CTS may be mistaken for diabetic neuropathy [52]. Basically, one may relate
the pathophysiological events in the nerve to the experienced symptomatology, irrespective
of whether the affected individual has diabetes or not. Initially, due to the distur-bances
in intraneural microcirculation and possible dynamic ischemia by a slight compression
trauma, paraesthesia, and numbness are induced in the median nerve innervated sensory
area of the affected hand with worse symptoms during the night [53]. This might be
detected as a metabolic conduction block on electrophysiology testing. As the compression
worsens, endoneurial oedema may form, causing increased endoneurial pressure with
further microcirculatory disturbances [54] and more constant symptoms. Eventually, the
compression trauma at this stage leads to demyelination [55,56] and at a later stage, even
axonal degeneration [57] with end-stage symptoms, such as anaesthesia and thenar atro-
phy [56]. The focal demyelination can be detected on the electrophysiology examination
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as an increased latency with a decrease in nerve conduction velocity [58], while axonal
degeneration is reflected in a reduced amplitude [59,60]. Patients with diabetes and CTS
are twice as likely to present with advanced disease as measured by electrophysiology than
those with CTS without concomitant diabetes [61]. After surgery, with the release of the
carpal ligament, recovery of patient symptoms also depends on preoperative severity. The
microcirculatory disturbances recover quickly, while the structural changes may disappear
slowly or incompletely. Remyelination follows the demyelination process, but remyeli-
nated segments have thinner myelin [62] with shorter internodal distances, observed as
a permanently reduced conduction velocity. Recovery, requiring axonal regeneration in
the nerve, may take longer and may be incomplete, with a reduced amplitude on the
electrophysiological examination.

5. CTS and Type 1 and Type 2 Diabetes

In a recent study from the UK of 401,656 individuals, including 24,558 with diabetes,
the odds ratio (OR) for CTS in diabetes was 2.31 (95% CI 2.17–2.46) [63]. Similar results
were presented in a Swedish cohort study of 30,466 individuals showing a hazard ratio
(HR) of 2.10 (95% CI 1.65–2.70) [14], and the pooled OR was 1.69 (1.45–1.96) in one large
review controlling for confounders [64]. A meta-analysis indicated that associations with
CTS were the same in type 1 and 2 diabetes [64], but more current research has confirmed
that CTS is more common in type 1 patients (9). Incidence rates for CTS are reported to
be 95.5/10,000 person-years for women and 58.1/10,000 person-years for men with type
1 diabetes, and 52.1/10,000 person-years for women and 31.6/10,000 person-years for
men with type 2 diabetes [12] (Table 1). The higher incidence rates in type 1 diabetes may
be attributed to the presence of neuropathy, which can be detected as alterations in the
distribution of nerve fibres of different sizes in the posterior interosseous nerve (PIN) with
more autophagy-related ultrastructures [39].

Table 1. Risk for CTS in diabetes related to sex.

OR (95% CI)

Men with Diabetes Women with Diabetes

1.99 (1.81–2.19) 2.63 (2.42–2.86)

T1D T2D T1D T2D

Prevalence 6.8% 5.0% 13.5% 10.1%

Incidence rate/
10,000 person-years 58.1 31.6 95.5 52.1

References: [9,12]. CI: confidence interval, OR: odds ratio, T1D: type 1 diabetes, T2D: type 2 diabetes.

6. Sex Differences in CTS and Diabetes

Diabetic neuropathy might affect CTS presentation differently in men and women.
Men generally present with worse electrophysiology results [65,66], which might be at-
tributable to the higher prevalence of diabetes among men with CTS. Diabetic neuropathy
also develops earlier and to a greater extent in men than in women [23,67]. In skin biopsies
at wrist level, men have lower intraepidermal nerve fibre density (IENFD) than women,
indicating that there might be less spare capacity in men, making male nerves more suscep-
tible to compression trauma, such as CTS [68]. This does not, however, seem to translate
to symptom presentation, as women with CTS and diabetic neuropathy experience more
symptoms than men [69].

7. Value of Electrophysiology in CTS and Diabetes

Routines for preoperative electrophysiology testing to diagnose nerve compression
disorders differ between countries. In Sweden, electrophysiology is not mandatory, but is
often used to strengthen the diagnosis of CTS. In previous studies, 70% of all patients with
CTS had undergone electrophysiology testing before surgery [70]. A general agreement
seems to be that electrophysiology is not necessary in uncomplicated cases, but can aid
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in differential diagnosis and in prognosticating surgical outcomes [71], which might be
crucial in individuals with diabetes.

In individuals with both diabetic polyneuropathy and CTS, the use of electrophysiol-
ogy has been debated [72], as diabetic polyneuropathy might obscure the electrophysiolog-
ical findings of CTS [72,73], and electrophysiology does not always reveal a predominantly
small-fibre neuropathy [32]. It may, however, be of value to generously admit individuals
with diabetes and CTS for electrophysiology testing to diagnose potential polyneuropathy,
enabling a better prognostication regarding surgical outcomes. In this setting, it might also
be relevant to perform electrodiagnostic testing also on the lower extremities to evaluate the
degree of diabetic neuropathy, as a potential differential diagnosis to CTS. However, if the
individual has evident CTS, electrophysiology testing should not delay surgical treatment.

8. Treatment Options

There is strong evidence that the surgical release of the carpal ligament provides
better symptom relief in CTS than conservative treatment options, including splinting,
corticosteroid injection, and oral NSAIDs during follow-up, up to 18 months [74–76]. About
two-thirds of individuals with CTS are treated surgically [77]. Historically, among some
physicians, there has been a cautious approach to carpal tunnel release in CTS in individuals
with diabetes, based on the notion that they may not benefit from surgery to the same
extent as individuals without diabetes [78,79]. As a result of this, current research indicates
that persons with long-term diabetes and CTS might still be undertreated [80].

9. Outcome of Surgery

The surgical outcome for CTS is difficult to compare between studies, since there is
a lack of consensus on how to measure and evaluate nerve function and patient-related
outcomes. In one prospective series, with extensive outcome measurements using monofila-
ment, 2-point discrimination (2PD), the strength of the abductor pollicis brevis muscle, grip-
and pinch strength, pillar pain, and a VAS-questionnaire up to five years postoperatively,
individuals with diabetes improved to the same extent as those without diabetes; the only
observed difference at one year being remaining cold sensitivity in diabetes [81,82]. In
the same cohort, electrophysiological measurements improved over five years in both
individuals with and without diabetes and were not influenced by the presence of neu-
ropathy [59,60]. Another prospective study, using QuickDASH, found that individuals
with CTS and diabetes had poorer functional scores at 12 months postoperatively than
those without diabetes (mean difference 7.5 points in the QuickDASH), but it is doubtful
whether this difference was of clinical significance [83]. One retrospective study, comparing
individuals with type 2 diabetes to those without diabetes, reported higher frequencies of
night time pain, weakness, and paraesthesia in those with type 2 diabetes both pre- and
postoperatively, and a higher frequency of postoperative numbness among individuals
with diabetes following open carpal tunnel release (OCTR) [84]. Another retrospective
study, using the Boston Carpal Tunnel Questionnaire, found no differences in surgical
outcome at six months postoperatively between individuals with and without diabetes [85].
Two other prospective studies using the Boston Carpal Tunnel Questionnaire reported
similar results; however, individuals with diabetes took longer times to improve [86] and
had more symptoms at a 10-year follow-up [87]. In one prospective study on the resolu-
tion of daytime numbness, however, diabetes did not affect surgical results [88]. Another
study, using a symptom score, reported substantial improvement in individuals with non-
insulin-dependent diabetes, but this group still had more residual symptoms compared to
individuals without diabetes [79].
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Concomitant diabetic polyneuropathy has been associated with more residual symp-
toms, measured by QuickDASH at 12 months, following OCTR (i.e., median postoperative
QuickDASH score of 61 compared to 20 in diabetic individuals without polyneuropa-
thy) [89]. Worse diabetic control, reflected by higher preoperative HbA1c levels, has also
been associated with higher QuickDASH scores at 12 months after OCTR. In the same study,
those with diabetic retinopathy recovered slower than individuals with diabetes without
retinopathy [90]. One recent meta-analysis concluded that there were no differences in
improvement of patient-reported outcomes following carpal tunnel release between indi-
viduals with and without diabetes. Among the electrophysiology results, the only variable
that showed less improvement in individuals with diabetes was the sensory conduction
velocity [91], possibly due to pre-existing diabetic neuropathy. There is also data indicating
that individuals with prediabetes have a worse surgery outcome than individuals without
diabetes [90]. In theory, CTS could be the first symptom of diabetes, but screening individ-
uals with CTS for diabetes has not been proven to be cost-effective [92]. Please see Table 2
for an overview of studies evaluating outcomes after OCTR in diabetes.

Individuals with diabetes also have a higher risk of surgical wound infection following
OCTR [93], although infection rates are generally low [94]. Although higher preoperative
HbA1c levels are associated with a higher frequency of surgical site infections [95], routine
screening with HbA1c for the purpose of lowering surgical complications is not clinically
valuable [96]. In all, there is substantial evidence that individuals with diabetes and CTS
benefit from surgery.
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Table 2. Overview of studies evaluating outcome after open carpal tunnel release in individuals’ CTS and with and without diabetes.

Author, Year Study Design N of Individuals
(Hands) Diabetes Type of

Diabetes Neuropathy Outcome Measure Follow-Up
Time

Results, Diabetes vs.
No Diabetes

Haupt 1993 [78] Prospective 60 (86) 10/60 (17%) Not reported Not reported

Motor function, sensory
deficit, trophic changes,

neurography and
electro-myography

5.5 years
Marginally less pain
relief in individuals

with diabetes

al-Qattan 1994 [97] Retrospective 15 (20) 15/15 (100%) Not reported 15/15 Grading:
excellent/good/poor 18 months

5 hands had poor
improvement—all of

these had normal/mild
neurography pre-op

Choi 1998 [98] Retrospective 154 (294) 19/154 (12%) Not reported 3 (1.9%) Symptom resolution
(poor-excellent) 12 months No difference

Ozkul 2002 [79] Prospective 47 (60) 22/47 (47%) T2D Excluded PROM: global symptom
score, neurography 12 months

Better PROMs and
neurography recovery
in individuals without

diabetes

Mondelli 2004 [99] Prospective case
series 96 (96) 24/96 (25%) T1D: 19

T2D: 5 6/24 (25%) BCTQ 6 months No difference

Thomsen 2009 [81] Prospective 66 (66) 35/66 (53%) T1D: 15
T2D: 20 14/35 (40%)

Monofilament, 2PD,
APB strength, grip
strength, key pinch,

lateral pinch, pillar pain,
postoperative

questionnaire (VAS
questions)

52 weeks

Individuals with
diabetes had the same

beneficial outcome after
carpal tunnel release as

non-diabetes
individuals

Thomsen 2010 [59] Prospective 66 (66) 35/66 (53%) T1D: 15
T2D: 20 14/35 (40%) Electrophysiology

testing 12 months

Electrophysiology
improved as much in
individuals with as

without diabetes
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Table 2. Cont.

Author, Year Study Design N of Individuals
(Hands) Diabetes Type of

Diabetes Neuropathy Outcome Measure Follow-Up
Time

Results, Diabetes vs.
No Diabetes

Jenkins 2012 [83] Prospective 1564 (1564) 176/1564
(11.3%) Not reported Not reported QuickDASH 12 months

Poorer functional scores
after 12 months in
individuals with

diabetes, but doubtful
whether of clinical

significance

Isik 2013 [84] Retrospective
case-control 74 (99) 36/74 (49%) T2D none PROM questions on

symptoms 12 months

Worse post-op
symptoms in

individuals with
diabetes

Zyluk 2013 [85] Retrospective 386 (386) 41/386 (11%) T1D: 11
T2D: 30 None BCTQ 6 months

Clinical benefit: no
difference. DM

individuals had weaker
grip strength and poorer

perception of touch

Ebrahimzadeh
2013 [100] Retrospective 74 (74) 35/74 (47%) T1D: 14

T2D: 21 Not reported WHOQOL-BREEF;
MHQ 3 months

Worse results in
individuals with

diabetes, MHQ-scores
better in T2D than T1D

Cagle 2014 [86] Prospective 826 (950) 90/950 (10%) Not reported 20/950 (2%) BCTQ 12 weeks
Individuals with

diabetes improved but
took longer

Gulabi 2014 [87] Prospective 69 (69) 27/69 (39%) T1D: 18
T2D: 9 Not reported BCTQ 10 years

Individuals with
diabetes worse at the 10

years follow-up. No
difference at 6 m.

Thomsen 2014 [82] Prospective 66 (66) 35/66 (53%) T1D: 15
T2D: 20 14/35 (40%)

BCTQ, monofilament,
2PD, APB strength, grip

strength, key pinch,
lateral pinch, pillar pain,

VAS questions

5 years

Excellent long-term
improvement in
individuals with

diabetes
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Table 2. Cont.

Author, Year Study Design N of Individuals
(Hands) Diabetes Type of

Diabetes Neuropathy Outcome Measure Follow-Up
Time

Results, Diabetes vs.
No Diabetes

Yucel 2015 [101] Retrospective 83 (101) 35/83 (42%) Not reported Not reported
VAS-questions, BCTQ,

monofilament, grip and
pinch strength

Not specified
Individuals with

diabetes had more
symptoms in BCTQ

Zimmerman
2016 [89] Retrospective 493 (531) 76/531 (14%) T1D: 18

T2D: 58 18/76 QuickDASH 12 months

Same improvement, but
more persistent

symptoms in
individuals with

diabetes and
polyneuropathy

Thomsen 2017 [60] Prospective 57 (57) 27/57 (47%) T1D: 13
T2D: 14 10/27 (37%) Electrophysiology

parameters 5 years

Long-term
electrophysio-logy

improvement was seen
in both diabetes and

non-diabetes
individuals

Watchmaker
2017 [88] Prospective 1031 (1037) 133/1031

(13%) Not reported Not reported Symptom survey 6 months
Individuals with

diabetes had the same
symptom resolution

Zhang 2018 [102] Retrospective 904 (1144) Not reported Not reported Not reported Secondary surgery 60 months
DM associated with

greater risk of
secondary surgery

Zimmerman
2019 [90] Retrospective 9049 (10,770) 1508/9049

(17%)
T1D: 335

T2D: 1150 Not reported QuickDASH 12 months

Individuals with
diabetes benefitted from
surgery, but not to same

extent as patients
without diabetes

APB: adductor pollicis brevis muscle, BCTQ: Boston Carpal Tunnel Questionnaire, DM: diabetes mellitus, PROM: Patient-reported outcome measure, QuickDASH: short version of
disabilities of arm, shoulder and hand, T1D: type 1 diabetes, T2D: type 2 diabetes, 2PD: two-point discrimination, VAS: visual analogue scale.
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10. Controversies in Nerve Compression and Diabetes

Current data clearly states that individuals with CTS and diabetes benefit from surgery
when the diagnosis of CTS is obvious [59,60,78,79,81–90,97–99,101]. This conclusion should
not be confused with the discussions about the surgical release of nerves in the lower
extremity. It has been suggested that nerves in the lower extremity of individuals with
diabetes and sensorimotor polyneuropathy should be decompressed as a preventive pro-
cedure against “superimposed nerve entrapment”, with the intention to prevent diabetic
foot ulcers [103–105]. The indications for such procedures have been questioned [106], but
recent opinions have been raised that the scepticism concerning such a procedure should
be reassessed [107]. To solve the question, standard definitions and outcome measures
are used in prospective randomised controlled trials to determine the usefulness of such
interventions [108,109]. However, there are no data to support that peripheral nerves in the
upper extremity, such as the median nerve at carpal tunnel or the ulnar nerve at the elbow,
should be surgically released on broader indications than presently performed.

11. Future Perspectives—The Diabetic Nerve

In order to improve the care of the diabetic hand, physicians and health care staff should
ask simple questions and perform modest clinical tests for screening of diabetic hand-related
diseases, such as CTS and UNE at the elbow. This could potentially lead to faster diagnosis
and treatment. Hopefully, future studies will also shed more light on the pathophysiology
of diabetic neuropathy, enabling the use of novel techniques. Recently, X-ray phase-contrast
holographic nanotomography has been used to reveal the three-dimensional architecture
of the nerve fibres in a human nerve (Figure 3). Interestingly, details of normal as well as
degenerating and regenerating nerve fibres have been visualised, particularly the architecture
of regenerative clusters in nerve biopsies from diabetic subjects [110] (Figure 3). This novel
technique can be combined with mass spectrometry to analyse the proteomics in the nerve
biopsies [111]. Identification of individuals at risk for the development of neuropathy, as well
as CTS or UNE at the elbow, is crucial, with the intention of appropriately timed diagnosis
and treatment [9]. Finally, national registers, in which diagnosis and outcomes of surgery of
thousands of patients are assembled [90], constitute an additional step towards further refined
treatment strategies in neuropathy and CTS.
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created with normal myelinated nerve fibres (c). Enlarged area (d) with a regenerative cluster, i.e.,
regenerating nerve fibres (e), and with details of such a regenerative cluster (f), showing spiral-
shaped nerve fibres that have regenerated. Length of bar indicated in the figure. Reproduced by kind
permission from Dahlin et al., Scientific Reports 2020 [110].

12. Conclusions

Multiple mechanisms, including both biochemical and structural factors, contribute
to the susceptibility of peripheral nerves to compression in diabetes, where CTS is more
common among individuals with diabetes. CTS is more common in type 1 diabetes
than in type 2 diabetes. A meticulous case history as well as a thorough clinical and
electrophysiological examination are recommended to support the diagnosis and reveal
neuro-pathy in individuals with diabetes and suspected CTS. Individuals with diabetes
with CTS benefit from surgical treatment to the same extent as individuals with CTS but
without diabetes. Symptom resolution may, however, be slower in those with diabetes, and
pre-existing diabetic neuropathy may negatively influence surgical outcomes.
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