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Abstract

Rapidly characterizing the amplitude and variability in transmissibility of novel human influenza strains as they emerge is a
key public health priority. However, comparison of early estimates of the basic reproduction number during the 2009
pandemic were challenging because of inconsistent data sources and methods. Here, we define and analyze influenza-like-
illness (ILI) case data from 2009–2010 for the 50 largest spatially distinct US military installations (military population defined
by zip code, MPZ). We used publicly available data from non-military sources to show that patterns of ILI incidence in many
of these MPZs closely followed the pattern of their enclosing civilian population. After characterizing the broad patterns of
incidence (e.g. single-peak, double-peak), we defined a parsimonious SIR-like model with two possible values for intrinsic
transmissibility across three epochs. We fitted the parameters of this model to data from all 50 MPZs, finding them to be
reasonably well clustered with a median (mean) value of 1.39 (1.57) and standard deviation of 0.41. An increasing temporal
trend in transmissibility (dR0=dt*0:017week{1, p-value: 0.013) during the period of our study was robust to the removal of
high transmissibility outliers and to the removal of the smaller 20 MPZs. Our results demonstrate the utility of rapidly
available – and consistent – data from multiple populations.
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Introduction

Novel strains of influenza emerge as pandemics either from

animal reservoirs [1] or from reassortment in humans [2].

Pandemic strains are characterized by low levels of population

immunity that permit higher levels of incidence. However,

pandemic strains are not necessarily intrinsically more transmis-

sible nor more severe (at the individual level) than the previously

circulating seasonal strains they often replace [3]. An ability to

rapidly and reliably characterize novel strains in terms of their

transmissibility is crucial for health planners in both the civilian

and military domains: without good estimates for key parameters it

is not possible to identify the appropriate strength of interventions

[4], nor is it possible to consider the spatial optimization of

interventions based on variability in transmissibility [5].

The basic reproduction number, R0, quantifies the transmissi-

bility of a pathogen and is defined to be the average number of

secondary cases generated by one infectious individual in an

otherwise susceptible population [6]. Pathogen-population com-

binations with R0v1 typically do not generate large outbreaks

following an introduction (although they may generate self-limiting

stuttering chains of transmission [7]). The efficacy of an

intervention can be measured by the proportion of transmission

it is able to avert, thus, high-R0 pathogen-population combina-

tions such as measles in sub-Saharan Africa [8] require highly

effective intervention campaigns in order to achieve control.

However, although the main utility of R0 is often thought to be in

quantifying the strength of intervention needed for control, it is

also important in determining the likely efficacy of mitigating

interventions [9] in reducing the number of infections [10] when

control cannot be achieved.

Although often assumed to be a universal constant for a

particular pathogen, R0 is variable across time and population for

a variety of scales: the R0 within an elementary school may be

different from the R0 within a nearby high school in the same way

that the R0 within one northern hemisphere city infected during

September may be different from the R0 within a second city

infected during January. Early estimates of R0 in civilian

populations during the 2009 pandemic ranged from 1.1 to 3.3

and were based on influenza-like-illness data from an ad hoc data

gathering process in a single population [11–15]. This wide range

of values could be explained by one or more of: intrinsic

differences between populations, such as host immunity or

predisposition to infection; modifications in behavior over time,

such as increased or decreased hand hygiene; seasonal climatic

variability; methodological differences in parameter estimation;
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variability in pathogen-specific virulence across regions and/or

time; and variability in underlying data-gathering processes.

Crucially, because the 2009 pandemic strain was mild,

substantive policy uncertainty did not arise from this discrepancy:

there was no need to choose between available mitigating

interventions because costly strategies were not justified. None-

theless, should the next emergent human influenza strain be more

severe, any estimate of the absolute benefits of transmission

blocking interventions would be highly sensitive to variation in R0

of the scale seen in the literature from the 2009 pandemic.

Therefore, prior to the start of the next pandemic, there is clear

public health value in the timely coupling of routinely collected

high-quality data with robust parameter estimation. Such systems

could be calibrated each year using data from seasonal influenza

epidemics, and would provide useful decision support during

severe non-pandemic influenza seasons.

In this study, we use data from the Defense Medical

Surveillance System (DMSS) to: (1) describe the pandemic profiles

observed at military installations; (2) compare them with available

data from the surrounding civilian population to evaluate how

much civilian populations drive incidence in military installations;

and (3) use a parsimonious transmission model to estimate

installation-specific R0 values. In addition to allowing us to

characterize military-specific patterns, our study offers potential

insights into their surrounding civilian populations. Possible

strengths of analyses based on the DMSS data compared to other

data sources for civilian population are: localization (to within a

zip code); consistent reporting over many years; and, potentially,

near-realtime availability.

Methods

Data
We obtained data from the Armed Forces Health Surveillance

Center (AFHSC) consisting of outpatient visits to permanent

military treatment facilities (MTFs) by active duty military

personnel for a range of ICD (international classification of

diseases)-9 codes associated with respiratory-related illnesses

between January 1, 2009 and April 30, 2011. For each record,

the data contained: a unique study identifier for the individual;

ICD-9 codes associated with that visit; and the zip code (5 digits) of

the clinic location. We used the zip code of the reporting clinic as a

proxy with which to define military installation: we do not

explicitly represent military installations or bases, rather, we

assume that case reports from the same zip code are from the same

military installation. Each record (an anonymized Study ID) was

assigned as either ‘‘ILI-large’’ (n~1,336,471) or ‘‘ILI-small’’

(n~27,582) using a set of classifications based on ICD-9 codes

[16]. The definition of ILI-large was broader and included non-

specific diagnosis such as ‘viral infection’ and ‘acute nasopharyn-

gitis’ (Table S2). The definition of ILI-small was more constrained

and included: ‘Influenza w/other respiratory manifestations’

(25,293), ‘Influenza with manifestation not elsewhere classified

(NEC)’ (1006), ‘Infectious upper respiratory, multiple sites, acute

NEC’ (897), and ‘influenza with pneumonia’ (n~404). See Table

S2 for further details. We further trimmed the data temporally to

cover the period from April 1, 2009 through June 1, 2010, and

ranked these installations by size according to the total number of

ILI-small cases they reported. Although the AFHSC DMMS data

includes clinic visits by military personnel at many locations

around the world, here we focus on the top-50 largest profiles, 47

of which, were located within the USA. Of the remaining three,

one was located in Landstuhl, Germany, and two were located in

Japan (Misawa and Yokosuka).

We obtained civilian data through a variety of means. County-

level data were generally acquired directly from the appropriate

public health services department or from the CDC. CDC ILI

data were obtained from the flu activity and surveillance website

[17].

Models
We considered a set of independent deterministic transmission

models, one for each military installation. For each, we solved the

following set of equations:

dS

dt
~{

b(t)SI

Ntotal

, ð1Þ

dI

dt
~

b(t)SI

Ntotal

{
I

Tg

, ð2Þ

b(t)~
b1 if t1 ƒ t v t1 z D t

b0 otherwise

�
ð3Þ

where S represents the number of susceptible individuals, I is the

number of infectious individuals, R is the number of recovered

individuals, and Ntotal~SzIzR is the total active duty

population size at each installation.

The incidence (IR) is given by {
ds

dt
, which computationally, is

estimated by:

IR~pC

ðtf

ts

b(t)S(t)I(t)

Ntotal

dt ð4Þ

where pC is the proportion of the infectious active duty population

that present themselves to a clinic with ILI-small symptoms, and

the integral runs over a week from ts to tf .

The total population at each military installation, Ntotal , is

arguably a militarily-sensitive parameter. For this study, we

estimated it using publicly-available data in the following way.

First, we calculated the total number of active duty out-patient

Author Summary

The ability to rapidly and reliably characterize novel strains
of influenza in terms of their transmissibility is crucial for
health planners: without good estimates for key parame-
ters it is not possible to identify the appropriate strength
of interventions or the spatial optimization of interven-
tions based on variability in transmissibility. While the
transmission of influenza in civilian societies has been
relatively well-studied, it has received considerably less
attention within military populations; yet the consequenc-
es, particularly during wartime, are arguably far greater.
We have investigated the incidence for the 50 largest
military installations in the USA, and, to the extent
possible, compared them with the profiles of the enclosing
civilian populations during the 2009 influenza pandemic.
We infer that the local civilian population drove the timing
of peak incidence at the military installations. We also
developed and applied a two-peak SIR model to capture
the essential properties of the pandemic at each installa-
tion, finding that transmissibility tended to increase during
the course of the pandemic.

Influenza Transmissibility in Military Populations
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Figure 1. Reported cases at US military installations during the 2009 influenza pandemic. a number of reported cases per week of: ILI-
large (green); ILI-small (blue); the top 50 military installations’ contribution to ILI-small (magenta); and the CDC’s ILI weekly surveillance (red). Profiles
overlap because of the independent y-axis scaling. b heat map representation of ILI-small profiles for each of the top 50 military installations by zip
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visits at each installation for all causes over the period from

January 2009 through April 2011, Nproxy, which we suggest is

proportional to the total population at each installation. To

estimate the coefficient of proportionality, V, we identified a subset

of the installations for which reasonably reliable estimates for the

total population have been published (Figure S3). Estimates of

Ntotal for the top-50 installations are shown in Table S3, Column

3.

The time-dependent term, b(t), changes from b0 to b1 at time t1

and returns to b0 after an interval Dt. Equivalently, we allowed R0

to change at some point in time, t1, to a new value R�. Intuitively,

this definition makes sense if we imagine some mechanism, such as

school closures on installations, the deployment of troops, or some

other behavior modification to drive the effective contact rate

down, and, hence, R0. For purposes of generality, however, we did

not impose any requirement that R0 decrease at this time.

Even during a pandemic, there are reasons other than influenza

infection for cases to present as ILI-small. Therefore, we also

included a noise term. It was implemented as a constant added to

the model output for incidence during the optimization procedure,

resulting in a total of eight parameters. For fitting purposes we

further trimmed the data in time from the outside inward and fit to

all data bounded by the first non-zero values.

Following [18] we define the Akaike Information criterion

(AIC), which is a measure of the relative goodness of fit of a model,

for a single model at the ith military installation to be

AIC~{2log(L(ĥhDdata))z2K ð5Þ

where log(L(ĥhDdata)) is the value of the maximized log-likelihood

over the unknown parameters (h), given the data and the model

(Text S1). When the total number of parameters (K ) is large

relative to the sample size (n), the reduced Akaike Information

Criterion is preferred:

AICc~{2log(L(ĥh))z2Kz
2K(Kz1)

(n{K{1)
ð6Þ

Model fits were optimized by first defining a multidimensional

hypercube, running the model simulations with the hypergrid

parameters and ranking the resulting AICc scores. Each of the top

1,000 scores is then used as an initial guess for a multi-dimensional

Nelder-Mead (also known as downhill simplex) minimization of

the Log-Likelihood. The lowest value of these searches is reported.

The bounds and resolution of the hypercube are given in Table

S1. We note in passing that while the results presented here relied

on pseudo-Poisson log-likelihoods, we also used both x2 and least-

squares fits methods to optimize the solutions with no significant

differences in results.

Results

We compared time series for both ILI-small and ILI-large with

available civilian data from the Centers for Disease Control and

Prevention (CDC, www.cdc.gov, Figure 1a) for the time period

between April 1, 2009 and March 31, 2010. There was

substantially greater temporal correlation between the CDC time

series and ILI-small (Pearson correlation 0.91) than with ILI-large

(Pearson correlation 0.80). The time series for ILI-small cases

arising from the largest 50 military installations (as defined in

Materials and Methods) was similar to the total time-series in both

trend and amplitude (Figure 1a). For the same time period (April

1, 2009 through March 31, 2010), 13,690 out of 21,285 ILI-small

cases (64%) in the DMSS data occurred in the largest 50

installations. Therefore, we restrict ourselves to ILI-small for the

remainder of this study.

The aggregate pattern of incidence of ILI-small for the largest

50 installations was driven both by qualitative variation in the

shape of incidence curves and by variation in the timing of

epidemic peaks (Figure 1b). Broadly speaking, the shape of each

installation incidence curve could be described as: (1) a typical

single-peaked epidemic profile, that is, consisting of a single

exponential rise, peak, and more gradual decay; (2) a bimodal

profile, consisting of two peaks separated by a month or two; (3) a

very narrow, sharp peak, where the entire outbreak is complete

within ,4weeks; or (4) a prolonged, noisy, and relatively flat

profile, often containing a single-peaked profile within it. For

example, the military populations defined by zip code (MPZ)

80913 (Colorado, MPZ-80913) experienced a classic epidemic

profile for the incidence of ILI-small; taking off in early

September, peaking in the middle of November and then

dropping to low levels by early January (Figure 1c). In contrast,

the profile at MPZ-92134 (southern California, Figure 1d)

displayed two clear peaks, one in July and another at the end of

October 2009. Finally, at MPZ-22134 (Quantico, Virginia) a

single, sharp peak was observed in July, with only the hint of a

second wave in early November (Figure 1e). The variability of the

profiles for the top 50 MPZs is summarized in the heat chart of

Figure 1, which illustrates the variation in timing of the peaks.

Individual line plots of incidence for each of the top 50 MPZs are

shown in Figure S1.

The peak weeks of incidence during 2009 for individual military

installations were clustered primarily around one point during

early Autumn 2009, with a few installations peaking as early as

June 2009 (Figure 2a). The timing of peak weeks was not obviously

correlated with longitude, latitude, average temperature, precip-

itation, or with distance from any of the known points of origin for

the pandemic strain in the United States (Figure S2). However, for

most military installations for which detailed civilian surveillance

data were available for the region containing that zip code, there

was a close correspondence between both the timing of the peak of

the epidemic in the civilian population and the more detailed

incidence profile in those civilian populations (Figure 2b and 2c).

In a small number of cases, however, there was a relatively poor

correlation (Figure 2d, see Discussion).

For each civilian/military profile pairing, we computed

temporal cross correlations for the period from April 1st, 2009

through March 31, 2010. The correlation coefficients ranged from

effectively zero (MPZ-22134) to 0.91 (MPZ-92134), although all

but one were w0:5. Moreover, the lag that maximized the

correlation was typically one week. Thus, the profiles at the

code (MPZ), ordered by total number of ILI-small reported (largest at top). c as b but each profile has been renormalized to its own maximum value,
thus, highlighting relative variations. Incidence curves for: Fort Carson d, just outside of Colorado Springs in El Paso County, Colorado (MPZ 80913),
containing over 21,000 soldiers; Bob Wilson Naval Hospital e in San Diego, which serves as a clinic for several military installations primarily within San
Diego County, and including MCAS Miramar (MPZ 92134); and Marine base at Quantico, Virginia(MPZ 22134) f, which is a major training facility for
both Marines and federal law enforcement agencies. The timing of individual MPZ peaks is marked by the red vertical line. A complete set of the
profiles for the largest 50 MPZs is given in Figure S1.
doi:10.1371/journal.pcbi.1003064.g001
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Figure 2. The timing of the pandemic peaks for military installations by zip code (MPZ) and their relationship to civilian profiles. a
distribution of the timing of the peaks at each installation during the interval between April 1, 2009 and January 1, 2010. A number of installations
showed evidence for two waves, one in the summer and one in October. Here, only the highest peak from the entire interval is shown. Comparison of
military and civilian population profiles for three locations: b Incidence profiles for San Diego County, together with MCAS Miramar (MPZ 92134) and
Camp Pendleton (MPZ 92055) bases; c El Paso County and Fort Carson Army Base (MPZ 80913); and d Alaska State (data at Borough/County level not
available) and Elmendorf Air Force Base (MPZ 99506). e comparison of the timing of the peaks within MPZs and the nearest civilian populations for
installations for which relatively localized civilian data could be obtained. The legend summarizes the type of civilian data obtained (confirmed/
antigen, PCR, or culture) and the installation to which it was compared. The solid line is a linear regression to the data with a Pearson correlation
coefficient of 0.9. Points lying above and to the left of the dashed line (y~x) represent cases where the military peak lagged the civilian peak.
doi:10.1371/journal.pcbi.1003064.g002
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military installations were similar in structure to the civilian peaks

but delayed by approximately one week (Figure 2e). We calculated

an overall Pearson correlation coefficient of 0.89 between available

pairs of civilian and military populations for the week of peak

incidence. Some populations were used more than once in the

calculation of the Pearson coefficient because multiple civilian

datasets were available for individual military populations.

Our modeling framework permitted two alternate models (one

nested within the other, see Methods) to estimate the transmissi-

bility during the 2009 pandemic at each of the largest 50 MPZs: a

one-peak model (four parameters) and a two-peak model (seven

parameters). As would be expected, the AICc scores for the two-

peak model were much better for MPZs that exhibited double

peaks of incidence. However, we also found that the two-peak

model always provided substantially better support for the data,

even when the time series of incidence did not obviously show two

separate peaks. Therefore, we report parameter values for the two-

peak model for all military installations.

In general, we found satisfactory model fits to the military

installations (Figure 3a–d, Table S1 and Figure S1). Usually, R0

was estimated to be greater than 1, while R� was less than 1.

However, there were a number of exceptions (Figure 3e, Text S1,

Table S3 and Figure S6). The fitted values of R0 for the two peak-

model model, when fitting to data from all 50 MPZs, were

reasonably well clustered with a median (mean) value of 1.39 (1.57)

and standard deviation of 0.41 (Table S4). We checked for any

correlation between base size and our estimates of R0 but did not

find any (Figure S5).

In most of the two-peaked profiles, R� decreased at a point in

time necessary to drive the initial wave downward, then returned

to R0 at the minimum between the two peaks, although this was

not always the case. Moreover, for single-peaked profiles R� was

used (by the model) prior to the main peak (e.g., Figure 3d), during

the main wave (e.g., Figure 3a), or even following it (MPZ-22060,

Table S3). Thus, it was not always obvious which single

transmissibility parameter best captured the profile at each

installation. To address this, we constructed an ‘‘optimum’’

estimate for R, Rbest, which was the maximum of R0 or R�

(Tables S1 and S3).

Seven installations had Rbestw2: MPZ-23665 (Joint Base-

Langley-Eustis); MPZ-22134 (Marine base at Quantico, VA

(Figure 3d)); MPZ-85309 (Luke AFB); MPZ-29152 (Shaw AFB);

MPZ-96319 (Misawa AFB); MPZ-57706 (Ellsworth AFB, SD); and

MPZ-71459 (Fort Polk) (Table S3). It is interesting to note that a

disproportionate number of these high-R0 installations are Air

Force bases, which, it could be argued, have the most civilian-like

policies of any branch of the armed forces. In general, however,

Rbest ranged from 1.0 to 2.0, being strongly biased toward the

lower limit (Figure 3f).

During the course of the six months, over which the pandemic

spread across the military installations, R0 increased from 1.1 to

1.6 (Figure 3g, blue line). A least-squares fit to the data gave

dR0=dt*0:017week{1, with a p-value of 0.013. The general

increase was present both with and without the outliers and the

trend was also captured by the top 30 installations as well as all 50.

Discussion

In this study, we have derived incidence curves for individual

MPZs using data from the AFHSC DMSS for the 2009 H1N1

pandemic. Comparison of the military incidence profiles with

available civilian surveillance and testing data during the same

time period suggested that most MPZs were temporally well-

synchronized with their enclosing civilian population, but,

importantly, tended to lag it by approximately one week. If we

assume that the military installation is usually much smaller than

the local civilian population, these findings suggest that the local

civilian population is driving the timing of peak incidence in many

military installations. Using SIR-like transmission models [19], we

described a gradual increase in the transmissibility of influenza

during 2009 in these populations.

Our study employed a number of assumptions that require

careful consideration. First, we estimated the total population at

each installation (Ntotal ) by assuming that the total number of visits

to a clinic for all causes was a reasonable proxy for the total

number of active duty personnel at that location (Figure S3). We

estimated the constant of proportionality by comparing this

number to published base sizes. However, in addition to intrinsic

inaccuracies that these numbers may have, they are also subject to

change over time as troops are recruited, deployed, and/or base

sizes are changed. Fortunately, these ‘‘denominator’’ data, while

undoubtedly sensitive information, are likely well known by

military planners. Thus, in the hands of military personnel, these

analysis could be easily re-run with significant improvement.

Second, our analysis also assumed a constant value for pC , the

proportion of infectious individuals that presented themselves to a

clinic. This assumption was made for simplicity, enabling us to

address the fundamental properties of the incidence profiles and

estimate R0. R0 is clearly a key parameter that needs to be

estimated early in an outbreak to guide policy makers in what

types of intervention strategies, if any, should be employed.

However, pC , which is a measure of the severity of the pandemic,

is rapidly gaining appreciation. This will be addressed in a

forthcoming study.

Third, we did not explicitly include age-dependent effects, rates

of reporting, nor accurate estimates of the population at-risk, all of

which could potentially improve the utility of this approach.

However, given the more tightly clustered age distribution within

the active component of the military (typically 18–45 years old),

together with the smaller number of cases that would define each

profile, we suggest that our fitted models have good utility for the

characterization of transmissibility. However, with accurate age-

specific denominator data for each population we are confident

that these methods can be expanded to allow a more finely-

resolved study of age-specific transmissibility.

Although on average there was good correlation between the

military installations and the enclosing civilian populations, this

was not universally true. For MPZs that did not track well with the

surrounding population, credible explanations can be given. For

example, at Elmendorf AFB, just outside Anchorage Alaska, while

the profile on-base was relatively simple, the civilian curve was

considerably more complex. Alaska’s civilian population, however,

is modulated substantially with tourists, which over the course of a

year outnumber residents by a factor of two. The two installations

in Japan – Misawa and Yokusuka – displayed peaks that coincided

with the trailing portion of the bimodal Japanese pandemic, one at

the end of each wave. It is possible that, here, military personnel

were insulated from the civilian population earlier in each wave. In

contrast, the installation at Landstuhl, Germany, provided the

only example where a military installation peaked significantly

earlier than the civilian population. Here, it is quite possible that

the pandemic at the installation was brought by troops recently

deployed there from the United States. Thus, the lack of

synchronicity at foreign installations can be explained by the fact

that such troops mix far less frequently with the surrounding

populations. More generally, the analysis presented here could act

as a starting-point for the development of more detailed models of

different types of military populations and for the systematic

Influenza Transmissibility in Military Populations
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identification of a subset of installations that act as accurate

sentinels for nearby civilian populations.

Our estimate for the basic reproduction number (mean: 1.57,

median: 1.38) is generally consistent with those found using

various civilian data (e.g., [11,20–27]), and is relatively clustered

(quartiles: 1.27 and 1.79, see Table S4). One might have expected

higher values, particularly at installations supporting new recruits,

or with on-base families and schools, but this does not appear to be

the case. Further, our analyses do not suffer from obvious

population selection-bias, as is the case with many early-outbreak

studies. Rather, these data originate from routine episode

recording for health insurance purposes. Similar data-streams

exist in the civilian domain but have less uniform spatial coverage

and would be more difficult to make available in real time [28].

The trend for R0 to increase with time is interesting in light of

recent work on the seasonality of influenza transmission [29].

Although it is likely that media reports may have driven some

individuals to seek treatment when they would otherwise not have

done so, and that this effect varied over the course of our study, it

would not have affected our description of trends in transmissi-

bility to a large degree. Values for R0 in our analyses were driven

by the growth rate of incidence, not by the absolute level of

incidence. Therefore, a gradual change in the propensity to report

over many months would not affect our reported trend in R0.

More rapid increases during the period of exponential growth at a

specific base would affect our results and it is certainly possible that

such changes in behavior may have occurred during late April

2009. However, we would expect those changes to bias R0

upwards during the early part of our study, which is not consistent

with the pattern we report.

It is intriguing that the two-peak model consistently out-

performed (based on AIC results) the one-peak model, even for

profiles that visually appear to display a single, classic profile

consisting of a sharp exponential rise, peak and slower decay. This

suggests that even for these apparently straight-forward profiles,

there may be some underlying mechanism at work that makes use

of the freedom of the extra parameters. It is possible, for example,

that changes in behavior or exchange of personnel may sufficiently

modulate the basic profiles to the point that a seven-parameter

model is appropriate. More generally, these results suggest subtle

dynamics around the peak of short-time scale respiratory

infections not captured by the very simple saturation process of

the classic SIR model.

Supporting Information

Figure S1 Influenza incidence (i.e, the number of reported ILI-

small cases per week (red) and model fit (blue) as a function of time

during the 2009 pandemic for the top-50 military installations.

The value of the basic reproduction number is shown in green. A

value of 1.0 is indicated by the dashed grey line. The military

installations are ordered by the total number of ILI-small cases

reported.

(PDF)

Figure S2 Scatter plot matrix comparing the relative timing (Dt)
of the peaks at each of the top 20 installations with: the total

number of ILI-small cases at each base (np); longitude (lon);

latitude (lat); distance from MPZ-92134 (d92134, this is included

for illustration - other potential ‘origins’ were also tested); average

temperature (temp); and average precipitation (precip) at each

installation. The red solid and dashed lines show linear regression

and spread results, while the green line is a smoothed regression.

The Figure was created using the ‘‘scatterplotMatrix’’ routine,

which is part of the ‘‘car’’ R package.

(EPS)

Figure S3 Comparison of ‘‘N-PROXY’’ and ‘‘N-Web.’’ The

quantity N-PROXY is the total number of outpatient visits for all

causes to clinics serving a particular MPZ over a 2.3-year period

from January 2009 through April 2011, which we anticipate is a

proxy for the total number of personnel within each MPZ. ‘‘N-

Web’’ is our estimate for the total number of troops at a selection

of installations based on publicly-available sources (i.e., the web).

These were limited to what we considered to be the most reliable

values. This is obviously a subjective process, open to a number of

sources of error and potential biases. To mitigate these, we

employed a handful of heuristic rules, such as: (1) giving preference

to descriptions that explicitly gave the number of active duty

personnel; (2) omitting installations where the potential number

was uncertain and/or fluctuated largely (navy installations serving

ships, for example); and (3) giving additional weight to installations

that were predominantly populated by a stable number of active

duty personnel. Thus, to convert Nproxy to Ntotal requires a

constant of proportionality, V, which we obtain by fitting the

selected bases using: Nweb~V|Nproxy. The best-fit line to the

data, forcing the intercept to be zero, resulted in V~1:56.

(EPS)

Figure S4 Distribution of R0, R�, Rmax, and Rmodal . The first

two parameters (R0, R�) are estimated from the model fit. Rmax is

the value of R at the time of the peak in the model profile (not to

be confused with Rbest, which is defined below). Rmodal is the most

common value of R during the outbreak, weighted by the number

of infectious individuals at each time. The two resulting

distributions are quite similar, and even the two outliers (Rw2)

match. However, one issue remains: 15 (Rmax) or 10 (Rmodal )

installations still produce estimates v1. Since a pandemic must be

associated with Rw1, our final ‘‘best’’ estimate (Rbest) was defined

Figure 3. Model fits for the top 50 installations during the 2009 pandemic. (a, b, c, and d) Comparison of model fits with military
installations for a selection of installations: (a) Portsmouth Naval Medical Hospital, Portsmouth, Virginia (MPZ-23708). This location produced the
largest number of ILI-small cases. The hospital employs 4,300 active duty military and civilians but is also located near several Navy and Army facilities.
The profile demonstrates a clean epidemic curve and the model fit closely matches the observed profile. (b) Camp Pendleton Marine base (MPZ-
92055). The installation has five schools on the base, three of which fall under the Oceanside school district and two of which are managed by
Fallbrook. (c) Fort Sam Houston Army base located in San Antonio, Texas (MPZ-78234). This large installation has over 70,000 family members, 15,000
retirees, and trains more than 25,000 students each year. An independent school district is located on the base. (d) Quantico Marine base (MPZ-
22134). See Figure 2 for more details. In each panel a–d, the red line indicates data, the blue line indicates the model fit, and the green line shows the
time evolution of R. (e) Comparison of R0 and R� for the top 50 installations. The solid line marks a slope of one, while the dashed circular curves
mark boundaries at R~1, 2, and 3, serving to separate the outliers from the main cluster. (f) Distribution of Rbest, the maximum or R0 or R� , and the
inferred value of R0 during the pandemic. The basic reproduction number clusters around a median value of 1.39 (mean 1.57); however, there are
some notable exceptions. A complete set of model parameters is provided in Table S3 and histograms of R0 , R� , Rmax and Rmodal are shown in Figure
S4. (g) The relationship between Rbest and the model-determined time of initial infection, T0 . A linear regression to all fits (left) shows a modest
increase in R0 from the early summer to late fall. When the outliers (that is, R0w2:0) are removed from the analysis, the general rise in R0 still persists.
Moreover, when only the top 30 bases are included in the analysis (red points), the trend persists.
doi:10.1371/journal.pcbi.1003064.g003
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to be the maximum of either R0 or R�. A complete set of model

parameters is provided in Table S3.

(EPS)

Figure S5 Possible effects of bias from analyzing only the top-50

military installations. In terms of the total number of ILI cases,

choosing the top 50 installations does not lead to bias in the sense

that almost all of the cases are included in those installations and

therefore, the estimates of R0 (and other parameters) are

representative of the majority of the cases. We did not believe

that the less-populated installations would produce as reliable

estimates for the parameters and so did not include them in the

analysis. If such a bias did exist, we might expect to see a

correlation between military installation index (with 1 being the

most populous installation and military installation 50 being the

least) and, say, R0. This panel suggests no obvious trend, and, thus,

no evidence for any bias. On the other hand, we do note that the

variability in R0 does increase modestly with smaller installations,

which is what we would anticipate based on lower-number

statistics and increased errors in the model fits.

(EPS)

Figure S6 Variation of model-determined basic reproduction

number as a function of time during the 2009 pandemic. Each

MPZ has been drawn in a different color and the corresponding

zip code identified. In most cases, R� corresponds to a decrease

during some portion (usually between the two peaks) of the profile.

Less frequently, R increases, often substantially, for a short period

of time.

(EPS)

Table S1 Minimum, maximum, and step size for hypercube

parameters used in the study.

(PDF)

Table S2 ICD-9 Codes and frequencies for respiratory illnesses

in the Defense Medical Surveillance System (DMSS) for the period

January 2009 through April 2011.

(PDF)

Table S3 Model fit parameters for the top-50 MPZs.

(PDF)

Table S4 Statistics for the values of R for the top-50 MPZs.

(PDF)

Text S1 Methodology for estimation of goodness-of-fit.

(PDF)
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