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Abstract: A vinyl-functionalized all-cis-tetrasiloxycyclotetrasiloxane [ViSi(OSiMe2H)O]4 (Vi = vinyl
group) Janus precursor was prepared from potassium cyclotetrasiloxane silanolate. The Janus precur-
sor was selectively modified at its dimethylhydrosilyl groups [–SiMe2H] via the Piers–Rubinsztajn
reaction to obtain a family of new tetravinyl-substituted Janus rings [ViSi(OR’)O]4 containing various
functional groups in moderate yields. Remarkably, the tetravinyl groups on the structure remained
intact after modification by the Piers–Rubinsztajn reaction. Since these synthesized compounds
possess multiple functional groups (up to eight per molecule), they are potential precursors for
advanced hybrid organic-inorganic functional materials.

Keywords: Janus ring; silsesquioxane; hybrid organic-inorganic; vinyl monomer; Piers–Rubinsztajn
reaction; cyclotetrasiloxane

1. Introduction

Hybrid organic-inorganic silsesquioxane precursors play an important role in the
development of new materials and have a high potential for industrial applications [1–3].
Among them, vinyl-functionalized silsesquioxanes are interesting precursors because the
vinyl groups can be modified by various methods, e.g., C–C coupling reaction [4–7], cross-
metathesis [8,9], hydrosilylation [10], thiol-ene reaction [11–14], and polymerization [15–17].
In contrast to silica compounds that have high crystallinity and poor solubility, silsesquiox-
ane compounds typically have an adjustable solubility and good dispersion in organic
solvents or organic materials [18–20]. This is a desirable characteristic for their use as a
nanofiller to improve the thermal properties of materials instead of harmful transition
metal compounds [21–24].

The cyclotetrasiloxane T4 ring, a silsesquioxane compound with a core structure
containing four silicon and four oxygen atoms connected with adjustable organic sub-
stituents ((RSi(OR’)O)4, shows promising characteristics like high thermal durability and
a high refractive index with good solubility [25–28]. Furthermore, there are four possible
isomeric structures of cyclotetrasiloxanes with two different substituents. Among them,
all-cis-cyclotetrasiloxanes can be recognized as Janus molecules [29] because they have two
different faces [30,31]. These Janus compounds have been used in the synthesis of well-
defined nano-precursors [32–35], cubic silsesquioxanes T8 [30,36–38], copolymers [39,40],
cyclic polymers [41–43], highly porous materials [4,11,12,44], semiconducting materials [45],
protective coating molecules [46], and catalysts [47–49].

Although the synthesis of all-cis-cyclotetrasiloxanes with various substituents has been
previously reported by several groups [30,36,50–59], there are only a few reported examples
of modification, further functionalization, or bond extension of these compounds in the
literature. For example, Makarova et al. [60] successfully modified the different stereoiso-
mers of [PhSi(OSiMe2H)O]4 by hydrosilylation with H2C=CH(CH2)8COOC6H4C6H4CN.
Previously, Marciniec et al. [61] synthesized various silsesquioxanes and demonstrated
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a proficient selective cross-metathesis reaction catalyzed by the ruthenium-hydride com-
plex [RuHCl(CO)(PCy3)2] between olefins and tetramethyltetravinylcyclotetrasiloxane
D4, which has a cyclic ring structure similar to that of T4. In 2012, Panisch et al. [29]
reported the functionalization of all-cis-cyclotetrasiloxanes via the Heck and Sonogashira
coupling reactions. The Piers–Rubinsztajn reaction, an efficient route for constructing the
C–O–Si or Si–O–Si bonds [40,45,62–67], can also be used for the modification of hydrosi-
lanes and hydrosilyl-functionalized linear, hyperbranched, cage T8, and double-decker
silsesquioxanes [40,45,62–64,66,68–84]. In the case of all-cis-cyclotetrasiloxanes, we recently
synthesized and characterized Janus-type phenyl-substituted all-cis-cyclotetrasiloxanes,
as shown in Scheme 1 [35]. The isomerization reaction was not observed when using the
Piers–Rubinsztajn reaction. In the presence of excess water, [PhSi(OSiMe2H)O]4 underwent
an intramolecular cyclization reaction to form a six- or eight-membered side ring [85].
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Scheme 1. Previous work: (A) The synthesis of the Janus ring [PhSi(OSiMe2OR)O]4 (R = 4-
methylphenyl, phenyl, 4-bromophenyl, 4-chlorophenyl, 4-(chloromethyl)phenyl, and 4-allylphenyl)
by the Piers–Rubinsztajn reaction. (B) The synthesis of a tricyclic laddersiloxane by the intramolecular
cyclization mediated by B(C6F5)3.

In continuation of our previous studies, herein we report the synthesis of various
vinyl-functionalized Janus-type all-cis-cyclotetrasiloxanes [ViSi(OSiMe2OR)O]4. Remark-
ably, only the hydrosilyl group (–SiMe2H) of the starting material [ViSi(OSiMe2H)O]4
was transformed selectively in the Piers–Rubinsztajn reaction, and the vinyl groups (Vi)
remained unreacted after the reaction. Furthermore, these compounds have high functional
densities because they have four or eight functional groups per molecule.

2. Materials and Methods
2.1. General

All reactions in this study were conducted under an argon atmosphere (G2 grade
(purity > 99.9995%, JAPAN FINE PRODUCTS (JFP), Kawasaki, Kanagawa, Japan) and
stirred using Magnetic stirrer (PTFE stirrer, football type, As one, Osaka, Japan). All sub-
strates were purchased from Tokyo Chemical Industry Co., Ltd., (Kawaguchi, Saitama,
Japan) and used as received. The Janus precursor [ViSi(OSiMe2H)O]4 and potassium all-
cis-tetravinylcyclotetrasiloxanolate were stored under anhydrous and argon atmospheres.
All solvents were distilled and stored on anhydrous molecular sieves (Wako Pure Chemical
Industries, Ltd., Osaka, Japan). Catalyst B(C6F5)3 was stored under an argon atmosphere.
LC-5000 recycle-type preparative liquid chromatography was performed using a combina-
tion of a JAIGEL 1HR + 2HR (20 mm × 600 mm) GPC column (Japan Analytical Industry
Co., Ltd., Tokyo, Japan) (eluent: CHCl3,). Fourier-transform NMR spectra were obtained
on a JEOL JNM-ECS 600 NMR spectrometer (JEOL Ltd., Akishima, Tokyo, Japan), 1H at
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600 MHz, 13C at 150.91 MHz, and 29Si at 119.24 MHz). MALDI-TOF mass spectrometry
was performed on a Shimadzu MALDI-TOF AXIMA® instrument (Shimadzu Corpora-
tion, Kyoto, Japan). IR spectra were measured with a Shimadzu FTIR-8400S instrument
(Shimadzu Corporation, Kyoto, Japan).

2.2. Synthesis of Potassium All-Cis-Tetravinylcyclotetrasiloxanolate

As shown in Scheme 2, triethoxyvinylsilane (14.9 g, 88 mmol) was added dropwise to
a round-bottom flask containing KOH (4.9 g, 88 mmol), water (1.6 g, 88 mmol), and hexane
(90 mL) at room temperature. After stirring (RCT basic, IKA Japan K. K., Higashi-Osaka, Os-
aka, Japan) for 3.5 h, a white precipitate was formed. The precipitate was collected, washed
with hexane, and dried using a high vacuum pump (G-20DA, ULVAC, Inc., Chigasaki,
Kanagawa, Japan) for 1 day to yield potassium all-cis-tetravinylcyclotetrasiloxanolate as a
white solid (5.00 g, 50% yield). Please note that this compound is highly hygroscopic and
should be kept under an anhydrous atmosphere. In our study, it was used immediately
after its preparation. Spectral data: 29Si NMR (methanol-d4) δ = −42.06 ppm.
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Scheme 2. Synthesis of all-cis-tetravinylcyclotetrasiloxanolate by alkaline-direct condensation reac-
tion.

2.3. Synthesis of Hydrido-Functionalized Janus Precursor [ViSi(OSiMe2H)O]4

As shown in Scheme 3, in a 250 mL two-necked round-bottom flask equipped with
a magnetic stirrer, the white solid of potassium all-cis-tetravinylcyclotetrasiloxanolate
(molecular weight 504.91, 5.00 g, 9.09 mmol) was added and evacuated for 1 day before
use. Subsequently, the flask was refilled with argon. Then, anhydrous hexane (100 mL)
and distilled NEt3 (7.6 mL, 54.54 mmol, 6 equiv.) were added to the reaction flask, and
the mixture was vigorously stirred at −5 ◦C for 60 min. Next, SiMe2HCl (54.54 mmol,
6 equiv.) was added dropwise (1–2 drops per second) into the reaction flask via a glass
syringe (Hamilton Company Inc., Reno, NV, USA). Water (200 mL) was then added to the
reaction mixture, which was extracted with hexane (100 mL × 3). The combined organic
layer was washed with water (200 mL × 3) and saturated NaCl solution once, dried over
anhydrous Na2SO4, and concentrated using a high vacuum pump (G-20DA, ULVAC, Inc.,
Chigasaki, Kanagawa, Japan) for 1 day. After 1 day of evacuation, the pure product was
obtained as a colorless liquid in 90% yield without purification.
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Scheme 3. Synthesis of Janus precursor by condensation reaction.

Spectral data: 1H NMR of Janus precursor (CDCl3) δ = 0.26–0.26 ppm of CH3 (s);
total H = 24H, 4.76–4.80 ppm of Si–H (m); 4H, 5.87–5.89 ppm for CH=CH2 (m); 8H, and
5.98–6.01 ppm (m) for CH=CH2; 4H), 29Si NMR of in CDCl3 (δ = −4.06 and −79.63 ppm).

2.4. Synthesis of Vinyl-Functionalized Janus Rings [ViSi(OSiMe2OR)O]4

In a 25 mL two-necked round-bottom flask equipped with a magnetic stirrer, Janus
precursor [ViSi(OSiMe2H)O]4 (200 mg, 0.34 mmol) was mixed with a solution of aryl
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anisole (2.05 mmol, 6 equiv.) in anhydrous toluene (4 mL). Then, 5 mol% B(C6F5)3 (8.7 mg)
was added to the reaction in an open system with an argon flow. After the addition
of the catalyst, we observed that a gas was released spontaneously. The mixture was
stirred at room temperature and subsequently quenched with water. Finally, the product
was extracted using hexane, and the organic layer was washed with brine (CGC JAPAN
CO., Ldt., Tokyo, Japan.) and dried over anhydrous Na2SO4. After solvent evaporation,
the crude product was purified by GPC (CHCl3) (product yield and 29Si-NMR data are
summarized in Table 1 and Supplementary Materials Table S1).

Table 1. The synthesis of Janus rings [ViSi(OSiMe2OR)O]4 Vi-JR-01 to Vi-JR-08 by Piers–Rubinsztajn
reaction from the Janus precursor [ViSi(OSiMe2H)O]4 with an excess amount of aryl anisole.
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3 Vi-JR-03 
 

42 

4 Vi-JR-04 
 

46 

5 Vi-JR-05 
 

39 

6 Vi-JR-06 
 

38 

7 Vi-JR-07 
 

50 

8 Vi-JR-08 

 

53 

1 The yield was determined after purification using GPC (eluent = CHCl3). All products are color-

less viscous liquids. 

55

3 Vi-JR-03
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5 Vi-JR-05
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7 Vi-JR-07
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1 The yield was determined after purification using GPC (eluent = CHCl3). All products are color-

less viscous liquids. 

50

8 Vi-JR-08
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53

1 The yield was determined after purification using GPC (eluent = CHCl3). All products are colorless
viscous liquids.

3. Results

The Janus precursor [ViSi(OSiMe2H)O]4 was prepared by the condensation of vinyl-
functionalized potassium cyclotetrasiloxane silanolate all-cis-[ViSi(OK)O]4 with chlorodime
thylsilane (Me2SiHCl) according to our previous report [27], as shown in Scheme 4. The
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reaction was conducted under argon atmosphere at low temperature (–5 ◦C) with the slow
addition of Me2SiHCl in the presence of triethylamine (NEt3) to avoid side reactions such
as acid-catalyzed isomerization and polymerization. These reaction conditions provided a
90% yield of the pure product ([ViSi(OSiMe2H)O]4), which was confirmed by Fourier trans-
form infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy
(Supplementary Materials, Figures S1–S51).
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Scheme 4. The synthesis of Janus precursors [ViSi(OSiMe2H)O]4 by the condensation of [ViSi(OK)O]4

with Me2SiHCl in the presence of NEt3.

Further, reaction screening of the Janus precursor [ViSi(OSiMe2H)O]4 was conducted.
It revealed that the Pier–Rubinsztajn reaction conditions enabled selective transformation
of dimethylhydrosilyl groups with various aryl anisoles (Table 1). Vinyl-functionalized
Janus ring products Vi-JR-01 to Vi-JR-08 were successfully synthesized in the presence of
5 mol% B(C6F5)3 using an excess of the aryl anisole derivatives (1.5 equivalents per Vi)
at room temperature for 1 day. Anhydrous toluene was used as the solvent because all
the starting materials displayed good solubility in this solvent. It is worth noting that the
reactions were conducted using an open system with an argon flow because the catalyst
liberated flammable methane gas. Purification by gel permeation chromatography (GPC)
provided the desired Janus rings in moderate yields (Table 1).

In these reactions, the yields were affected by the purification methods because
several byproducts formed as a result of partial intramolecular cyclization, intermolecular
reaction, and polymerization, as shown in Figure 1. Owing to the interference of water
or hydride migration, intramolecular cyclization took place competitively to partially
form 6- or 8-membered cyclic or tricyclic laddersiloxanes as byproducts as shown in
Scheme 5 [35,70–74,84,85].
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Figure 1. The structure of target product and possible by-products, including the partial in-
tramolecular cyclization product, intramolecular cyclization product (tricyclic laddersiloxane), and
crosslinked product.
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Scheme 5. Proposed reaction mechanism [35].

1H, 13C, and 29Si NMR spectroscopy and matrix-assisted laser-desorption-ionization
time-of-flight (MALDI-TOF) mass spectrometry were used to characterize the product
structures. Similar results have been reported previously [35,59]; 29Si NMR spectra for Vi-
JR-01 to Vi-JR-08 exhibited two peaks in the region from−11.7 to−12.3 ppm, corresponding
to the D unit of Si in the –OSiMe2OAr arms, and in the region from −80.0 to −80.7 ppm,
corresponding to the T unit Si atoms on the T4 ring of all-cis-cyclotetrasiloxanes. The
disappearance of the signal at −4.08 ppm confirmed that all the Si–H in the starting
material was transformed to –OSiMe2OAr. In the 1H NMR spectra, all the isolated products
exhibited similar signals for the vinyl groups (CH=CH2) at 5.90–6.07 ppm, confirming that
these groups were intact after the reaction. The lone signal of the T unit Si in the 29Si NMR
spectrum of each product confirmed the conservation of the all-cis structure. All target
Janus ring products are colorless viscous liquids with lower thermal properties (e.g., glass
transition temperature or melting temperature) and lower crystallinity than previously
reported tricyclic laddersiloxanes, double-decker, or octahedral oligomeric silsesquioxanes
T8 [25,26,86–91].

Further investigations of the application of these vinyl-functionalized Janus rings
as ion recognition molecules and porous materials are underway in our group. These
products can be considered highly functionalized precursors because they have either
four vinyl groups in each molecule (Vi-JR-01 to Vi-JR-03, and Vi-JR-08) or eight functional
groups per unit (Vi-JR-04 to Vi-JR-07). Since they can be prepared more easily than octa-
hedral oligomeric silsesquioxanes, vinyl-functionalized Janus rings can be used for the
construction of advanced materials, such as well-defined cage silsesquioxanes, Janus-type
nanomaterials, new polymers, and porous materials.

4. Conclusions

In this study, we successfully synthesized new vinyl-functionalized Janus-type all-cis-
cyclotetrasiloxanes, [ViSi(OSiMe2OR)O]4 (R = 4-methylphenyl (Vi-JR-01), 2-methylphenyl
(Vi-JR-02), phenyl (Vi-JR-03), 4-chlorophenyl (Vi-JR-04), 4-bromophenyl (Vi-JR-05), 4-
iodophenyl (Vi-JR-06), 4-allylphenyl (Vi-JR-07), and naphthyl (Vi-JR-08)), by the Piers–
Rubinsztajn reaction from the prepared Janus precursor. Currently, further investigations
on the application of these compounds, e.g., as porous materials and ion-recognition-
responsive materials, are underway in our group. Moreover, since these compounds have
a high number of functional groups per unit, they are potential monomers of well-defined
cage silsesquioxanes, Janus-type nanomolecules, and new polymers and porous materials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14082014/s1, including 1H, 13C, and 29Si NMRs, MALDI-TOF-MS (Table S1, Figures S1 to
S42), and FTIR spectra (Figures S43 to S51).

https://www.mdpi.com/article/10.3390/ma14082014/s1
https://www.mdpi.com/article/10.3390/ma14082014/s1
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