www.nrronline.org

# Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage

Liu-Lin Xiong<sup>1,2,#</sup>, Lu-Lu Xue<sup>3,#</sup>, Mohammed Al-Hawwas<sup>2</sup>, Jin Huang<sup>3</sup>, Rui-Ze Niu<sup>3</sup>, Ya-Xin Tan<sup>3</sup>, Yang Xu<sup>4</sup>, Ying-Ying Su<sup>4</sup>, Jia Liu<sup>3,\*</sup>, Ting-Hua Wang<sup>3, 4,</sup>

1 Department of Anesthesiology, National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine

Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan Province, China 2 School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia

3 Department of Animal Zoology, Kunming Medical University, Kunming, Yunnan Province, China

4 Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China

Funding: This study was supported by the program Innovative Research Team in Science and Technology in Yunnan Province of China (to THW); the National Natural Science Foundation of China, No. 81601074, Sichuan Provincial Scientific Foundation Grant of China, No. 2017SZ0145.

## **Graphical Abstract**



## Abstract

A single-nucleotide polymorphism (SNP) is an alteration in one nucleotide in a certain position within a genome. SNPs are associated with disease susceptibility. However, the influences of SNPs on the pathogenesis of neonatal hypoxic-ischemic brain damage remain elusive. Seven-day-old rats were used to establish a hypoxic ischemic encephalopathy model. SNPs and expression profiles of mRNAs were analyzed in hypoxic ischemic encephalopathy model rats using RNA sequencing. Genes exhibiting SNPs associated with hypoxic ischemic encephalopathy were identified and studied by gene ontology and pathway analysis to identify their possible involvement in the disease mechanism. We identified 89 up-regulated genes containing SNPs that were mainly located on chromosome 1 and 2. Gene ontology analysis indicated that the up-regulated genes containing SNPs are mainly involved in angiogenesis, wound healing and glutamatergic synapse and biological processing of calcium-activated chloride channels. Signaling pathway analysis indicated that the differentially expressed genes play a role in glutamatergic synapses, long-term depression and oxytocin signaling. Moreover, intersection analysis of high throughput screening following PubMed retrieval and RNA sequencing for SNPs showed that CSRNP1, DUSP5 and LRRC25 were most relevant to hypoxic ischemic encephalopathy. Significant up-regulation of genes was confirmed by quantitative real-time polymerase chain reaction analysis of oxygen-glucose-deprived human fetal cortical neurons. Our results indicate that *CSRNP1*, *DUSP5* and *LRRC25*, containing SNPs, may be involved in the pathogenesis of hypoxic ischemic encephalopathy. These findings indicate a novel direction for further hypoxic ischemic encephalopathy research. This animal study was approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Yunnan Province, China (approval No. kmmu2019038). Cerebral tissue collection from a human fetus was approved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval No. 2015-9).

*Key Words:* CSRNP1; DUSP5; gene ontology analysis; human fetal cortical neurons; LRRC25; mRNA; neonatal hypoxic ischemic encephalopathy; pathogenesis; signaling pathway analysis

Chinese Library Classification No. R446; R654.5+5; R741

## Introduction

Hypoxic ischemic encephalopathy (HIE) refers to a serious neurological syndrome that occurs in the earliest days of life because of placental insufficiency or umbilical cord occlusion in the perinatal period (Allen and Brandon, 2011). HIE is a major neuro-developmental disability in infants, with a prevalence of approximately 1 to 6 per 1000 births (Vannucci, 2000; Chau et al., 2014). Twenty-five percent of HIE patients suffer permanent neurological deficits (Graham et al., 2008). Additionally, worldwide, approximately one million newborns die from HIE each year (Lv et al., 2017). HIE can result in periventricular leukomalacia or developmental retardation, and can cause dysfunction in remote organs (Zeppellini et al., 2001; Wu et al., 2011; Zhao et al., 2012; Alaro et al., 2014; Khatri et al., 2014; Saeed et al., 2014). Despite numerous clinical trials, many neuro-protective strategies have failed to effectively treat HIE patients. The need to expand our understanding of HIE mechanisms and to develop novel therapies is therefore urgent (Ginsberg, 2008; Davies et al., 2019).

A single-nucleotide polymorphism (SNP) is the substitution of a single nucleotide at a certain position in a genome. Generally, SNPs are present at varying percentages within a population (e.g., > 1%) and most do not cause any disorder. However, SNPs have been linked to disorders; for example SNPs in non-coding regions can increase the risk of cancer (Li et al., 2014) or they can influence messenger RNA (mRNA) structure to increase disease susceptibility (Lu et al., 2015). This is in addition to the well-characterized SNPs related to drug metabolism. Research into SNPs is therefore important to identify an individual's genetic tendency to develop particular diseases (Goldstein, 2001; Lee, 2004; Yanase et al., 2006; Li et al., 2019). SNPs in vasoactive intestinal polypeptide and N-methyl-D-aspartate receptor subunit 3A play roles in cerebral palsy in two-year-old infants after preterm birth (Costantine et al., 2012). Therefore, to observe the role of SNPs in HIE, we aimed to detect key SNPs associated with HIE pathogenesis in rats.

RNA sequencing (RNA-seq), also known as second-generation sequencing, is a powerful tool to analyze transcriptome changes within cells and tissues. This approach enables the collection of data on gene fusion and spliced transcripts, post-transcriptional modifications, gene expression over time and SNP diagnosis (Maher et al., 2009). It also distinguishes RNA populations, such as ribosomal RNAs, transfer RNAs, microRNAs and small RNAs (Ingolia et al., 2012). Recently, this technology has been widely used to investigate the differential expression of genes. Therefore, in the present study, we used RNA-Seq to identify SNPs and changes in gene expression in rats subjected to HIE. We sought to identify SNPs involved in HIE, with the eventual aim of evaluating the genetic predisposition of an individual to developing HIE.

We used seven-day-old rats to establish a HIE model. SNPs and the expression profiles of mRNAs were analyzed in HIE and control brains using RNA-seq and compared. Genes exhibiting SNPs associated with HIE were identified and studied by gene ontology (GO) and pathway analysis to identify their possible involvement in the disease mechanism.

## **Materials and Methods**

### Animal care and grouping

Animal experiments and animal handling procedures were approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Kunming, Yunnan Province, China (approval No. kmmu2019038) and were performed in accordance with the guidelines of the Unites States National Institutes of Health. Twenty-four specific pathogen-free one-week-old male Sprague-Dawley rats weighing 100-200 g were procured from the Animal Centre of Kunming Medical University (Yunnan, China) (license No. SCXK k2015-0002). The neonate rats were housed at 21-25°C and 45-50% humidity. The animals were exposed to light for 12 hours during the daytime with free access to food and water. Pups were randomly allocated to the sham-operated group (sham, n = 12) and the HIE group (HIE, n = 12). The HIE group was subjected to permanent hypoxia ischemia. The sham-operated group was reared under standard conditions (Figure 1A & B).

### Induction of hypoxia-ischemia brain damage

HIE was induced using the suture occlusion technique as described previously (Ding et al., 2017). Briefly, animals were anesthetized using isoflurane and immobilized. A 0.5 cm skin incision was made along the midline of the neck, and the right common carotid artery was exposed and occluded with an electrocoagulator (Spring Medical Beauty Equipment Co., Wuhan, Hubei Province, China). Following the surgical procedure, the pups were returned to their dams for recovery and feeding for 1 hour. The pups were then placed into an airtight chamber maintained at  $37^{\circ}$ C and subjected to hypoxia for 2 hours ( $8\% O_2$ ,  $92\% N_2$ ). The sham group underwent anesthesia and the common carotid artery was exposed but not ligated. The sham group was not exposed to hypoxia.

### Measurement of body weight

Animals were weighed on a high precision balance (Shanghai puchun measure instrument Co., Shanghai, China) before surgery and at 24 hours after HIE.

### Zea-longa neurological score

To evaluate the success of HIE model establishment and to identify behavioral changes following the operation, animals were assessed for neurological disorders before surgery and 0, 2, 4, 6, 12, 20 and 24 hours post-surgery. The Zea-longa neurological score was performed as described previously with minor modifications (Wang et al., 2010b). Zero points were given for normal behaviors and symmetric double forelimb stretching. The rats whose contralateral forelimb weakness, torso turning or ipsilateral hindlimb could not fully stretch scored 1 point. Affected posture and circling towards the injured side scored 2 points, while 3 point was given to animals that could not weight-bear on the affected side and 4 point indicated that animals could not weight-bear on the affected side and did not exhibit spontaneous locomotor activity or displayed barrel rolling. The animals in the model group with a score  $\geq 1$  were selected for further analysis.

### High-throughput screening

High-throughput screening technologies were performed to search for the key factors participating in the occurrence and development of HIE. The standard as follow: 1) remove the genes reported in the Scientific Citation Index (SCI) paper on the functional and clinical relevance of the cancer species studied in this project; 2) removal of multiple transmembrane protein genes; 3) remove genes that are not explicitly annotated (such as with open reading frame); 4) remove the number of pubMed articles more than 60; 5) existing experimental data to filter genes combined with the key gene database of Kikekien disease.

### **RNA** extraction

At 24 hours post-operation, pups were deeply anesthetized by intraperitoneal injection of pentobarbitone sodium  $(200-300 \ \mu\text{L}; 30 \ \text{mg/m})$ , before perfusion with PBS (pH 7.4) through the heart. The brain cortex was then quickly dissected and placed on dry ice. Total RNA was extracted from the ipsilateral cortex using an RNeasy Mini Kit (Qiagen, Shanghai, China) in accordance with the manufacturer's protocol. Briefly, RNA from 12 HIE and 12 sham brain samples was pooled into two HIE and two sham pools, which were used for RNA-Seq analysis (performed by Bi-omarker Technologies Co., Beijing, China) (Rodríguez et al., 2014; Seeliger et al., 2014; Wang et al., 2016). Briefly, RNA integrity was confirmed by 2% agarose gel electrophoresis and by analysis on an Agilent Bioanalyzer 2100 System (Agilent Technologies, CA, USA). RNA concentrations were calculated using a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). Finally, ribosomal RNA was depleted in the samples with a Ribo-Zero Ribosomal RNA Removal Kit (Epicentre, Madison, WI, USA).

### Construction of mRNA-seq libraries

Sequencing libraries were constructed using the NEBNext<sup>®</sup> Ultra<sup>®</sup>Directional RNA Library Prep Kit for Illumina<sup>®</sup> (NEB, New England, USA) according to the manufacturer's instructions by Biomarker Technologies Co. (Beijing, China). Briefly, mRNA was fragmented by heating to 94°C for 15 minutes in 5× NEBNext First Strand Synthesis Reaction Buffer. Random primers, reverse transcriptase and murine RNase inhibitor were then added and first strand complementary DNA (cDNA) synthesized at 42°C for 30 minutes. Then, second-strand cDNA was synthesized using a synthesis enzyme mix for 60 minutes at 16°C then for 30 minutes at 20°C. The resulting dsDNA fragments were purified using Agencourt AMPure XP Beads (Beckman Coulter, Beverly, CA, USA). The overhangs were digested to blunt ends with NEB Next End Prep Enzyme Mix and then adaptors linked to the USER Enzyme were ligated to the cDNA. cDNA was then purified using AMPure XP Beads. Finally, the DNA fragments were amplified using Hot Start HiFi PCR Master Mix, and the products were re-purified using the AMPure XP system and library quality was analyzed using an Agilent Bioanalyzer 2100 and qRT-PCR.

**Bioinformatic analysis and differential expression analysis** TruSeq PE Cluster Kitv3-cBot-HS was adopted to construct clusters of index-coded samples on an acBot Cluster Generation System (Illumina Inc., San Diego, CA, USA). The RNA library was then sequenced on an Illumina Hiseq platform and paired-end reads generated. The resultant raw reads were further cleaned by eliminating adapter sequences, low-quality reads and poly-N sequences. Furthermore, sequences below 20 nucleotides or more than 30 nucleotides were removed from the clean data to avoid any disruption to downstream analyses. The GC-content and sequence duplication levels of the clean data were then calculated to confirm the quality of the data.

Cufflinks package (version 2.1.1; https://launchpad.net/ ubuntu/+source/cufflinks) was used to calculate expression of genes and lncRNAs depending on fragments per kilobase of exon per million reads (FPKM) values (Trapnell et al., 2010). DESeq R package (version 1.10.1) was used for statistical analysis of differential gene expression between groups. The *P* values were set to < 0.01 based on Benjamini and Hochberg's method to reduce the false discovery rate. Genes with a log<sub>2</sub> fold expression variation value > 1 were considered to be differentially expressed. EBseq was adopted for the samples without biological replicates (Storey and Tibshirani, 2003).

### Gene functional annotation

The non-redundant protein sequence database of the National Center for Biotechnology Information, USA, was used to predict Gene function. Clusters of Orthologous Groups of proteins (KOG/COG) were used to study GO. GO R Packages for comprehensive study of gene function and variations were used to analyze differentially expressed genes and Pfams (Protein families). KEGG (Kyoto encyclopedia of genes and genomes) and KOBAS (KEGG orthology-based annotation system) were applied to identify the statistically enriched pathways of the differentially expressed genes (Mao et al., 2005). An intersection analysis was performed using Venny 2.1 (http://bioinfogp.cnb.csic.es/tools/venny/).

### Primary culture of human fetal cortical neurons

Cerebral tissue collection from a 29-day-old human fetus was approved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH (2020) Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 15(1):86-95. doi:10.4103/1673-5374.264469

No. 2015-9). Informed consent was obtained from the mother. An aborted 29 day-old fetus was collected from the first affiliated hospital of Kunming Medical University and im-mediately stored on ice. The brain was dissected and placed in 75% alcohol for 2 minutes. The cortical tissues were then harvested into cold Dulbecco's modified Eagle's medium (DMEM) and cut into 1 mm<sup>3</sup> sized blocks. Trypsin (0.25%) digestion for 30 minutes at 37°C was then performed to isolate cells from the cortical tissue. Cells were then rinsed in DMEM containing 10% fetal bovine serum. The tissue suspension was centrifuged at  $1000 \times g$ for 10 minutes and the pelleted cells were then resuspended in complete culture medium (Hyclone, Logan, UT, USA) composed of DMEM/high glucose, 10% fetal calf serum and 1% penicillin-streptomycin solution. Neurons were plated in 6-well plates (Corning, New York, USA) coated with poly-D-lysine and laminin (Sigma-Aldrich, St. Louis, MO, USA) at a density of  $5 \times 10^5$  cells/mL, and incubated at 37°C in a 5% CO<sub>2</sub> atmosphere. Four hours later, the medium was replaced with neurobasal medium containing 2% B27 (Invitrogen, Carlsbad, CA, USA). The culture medium was changed the next day, then half the medium was changed every three days. The cells were then incubated with oxygen-glucose deprivation (OGD). Control group cells were not exposed to OGD.

### In vitro OGD

In vitro human cortical neurons were prepared to mimic HIE using an OGD protocol (Joerger-Messerli et al., 2018). Briefly, cells were washed once with 0.01 mM PBS before the medium was changed to glucose-free medium. Cells were then transferred Ito a hypoxia chamber (Thermo Scientific, Waltham, MA, USA) and exposed to a gas mixture of 5%CO<sub>2</sub> and 95%N<sub>2</sub> for 2 hours. Control cells were incubated normally, without exposure to OGD.

### Quantitative real-time polymerase chain reaction

Total RNA was isolated from human neurons 24 hours post OGD with Trizol reagent (Takara Bio Inc., Otsu, Japan). RNA was reverse transcribed to cDNA with the Revert AidTM First Strand cDNA Synthesis kit (Thermo Scientific). qRT-PCR was then performed to detect the relative expression of mRNA according to previous protocols (Liu et al., 2014), with the primer sequences shown in **Table 1**. Reactions were performed in a DNA thermal cycler (Bio-Rad, Bole, USA) according to the following standard protocol: initial denaturation at 95°C for 2 minutes, denaturation at 95°C for 15 seconds, amplification at 53°C for 20 seconds, then at 60°C for 30 seconds for a total of 40 cycles. The threshold cycle (Ct) of each sample was recorded, and relative expression was calculated with normalization to  $\beta$ -actin values using the  $2^{-\Delta\Delta Ct}$  method.

### Statistical analysis

All data are expressed as the mean  $\pm$  standard deviation (SD). Results were compared by Student's *t*-test using SPSS 17.0 (SPSS, Chicago, IL, USA). Multiple comparisons were adjusted by Benjamini-Hochberg. The *P* value was set at < 0.05. Table 1 Primers used for quantitative real-time polymerase chain reaction

| Gene   | Sense                              | Antisense                          | Product size<br>(bp) |
|--------|------------------------------------|------------------------------------|----------------------|
| LRRC25 | 5'-TAT CGG GGC AGT<br>GGT C-3'     | 5'-CAT AGT CGG GAG<br>TGG AGG G-3' | 233                  |
| DUSP5  | 5'-GAG AAG ATT GAG<br>AGT GAG A-3' | 5'-ATC CAT TTG TAG<br>TGT AGG T-3' | 239                  |
| CSRNP1 | 5'-ATC CAC ACA CTC<br>ACC CGC C-3' | 5'-ATC CAC ACA CTC<br>ACC CGC C-3' | 193                  |

### Results

## Establishment of a hypoxia-ischemia brain damage animal model

Rats were weighed before and after HIE surgery. The bodyweight of the HIE rats was significantly reduced 24 hours post-surgery, whereas that of sham rats was not (P = 0.000, **Figure 1C**). Compared with the sham group, the Zea-longa scores of HIE rats increased over the 24 hour monitoring period after HIE surgery (P = 0.000, **Figure 1C**). Rats subjected to HIE scored an average of 2 points, with posturing and circling towards the injured side. These results were an indication of brain injury and deterioration of the rats' neurological function.

## The number of single-nucleotide polymorphisms was increased in hypoxia-ischemia brain damage rats

To confirm the correlation of HIE with particular SNPs, we compared the number of SNPs between HIE and sham groups (Additional Table 1). The SNP statistical analysis was based on comparison of the reads of each sample with reference genomes. There were 130248 and 83060 SNPs in the two HIE samples, with 75646 and 49372 SNPs in gene regions (Figure 2A and Additional Table 1). Meanwhile, the control group samples exhibited 69315 and 72933 SNPs in total, with 48728 and 50516 SNPs, respectively, in gene regions (Figure 2A and Additional Table 1). Evidently, the HIE group exhibited a higher total number of SNPs and a higher number of SNPs in gene regions. This indicated that HIE induced genomic SNPs; however, there were no differences of transition, transversion and heterozygosity od SNPS between the control and HIE groups (Figure 2B, Additional Tables 1 and 2).

### Single-nucleotide polymorphism localization

The chromosomal location of SNPs was investigated in sham and HIE groups. The majority of detected SNPs were observed on the largest chromosomes (N1 and N2) as shown in **Additional Table 2**. Generally, the numbers of SNPs on each chromosome were higher in the HIE group compared with the control group.

### SNP genotypes in the HIE group

To analyze distinct SNPs in the HIE group that might be involved in the etiology of HIE, we screened the SNPs ac-cording to genotype. A total of ten SNP genotypes were identified, including A, C, G, K, M, R, S, T, W, Y. The most common SNP genotype was G (3544) and the least common Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH (2020) Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 15(1):86-95. doi:10.4103/1673-5374.264469

20



#### Figure 1 Change in body weight and Zea-longa score in HIE rats.

(A) Rats underwent hypoxia-ischemic brain damage or a sham procedure and were then returned to their cages for recovery. Their mothers normally fed them during recovery. (B) Wounds were sutured and animals numbered for identification. (C) Body weight difference was measured at 24 hours after HIE in the groups of sham and HIE. Zea-longa scores of rats subjected to sham and HIE procedures were performed at 0, 2, 4, 6, 12, 20 and 24 hours post-surgery. The rats with high Zea-longa scores had serious neurological damage. However, there were mild neurofunctional deficits in rats with low scores (Additional Figure 1). Data are expressed as the mean ± SD, and were analyzed by Student's t-test. \*P < 0.05, vs. sham group. HIE: Hypoxic ischemic encephalopathy.



нı

Sham

#### Figure 2 The change of in SNPs in sham and HIE groups.

(A) Number of SNPs in various fields. L03 and L04 groups had more SNPs and genic SNPs and intergenic SNPs compared with L01 and L02. (B) Percentage of transition, transversion and heterozygous SNPs in L01, L02 and L03, L04 groups showed no significant difference. SNP: Single-nucleotide polymorphism. SNP Number: total number of SNPs; Genic SNP: total number of SNPs in gene regions; intergenic SNP: total number of SNPs in inter-gene regions. Transition: Percentage of SNPs of the conversion type relative to the total number of SNPs; transversion: percentage transversion SNPs relative to the total number of SNPs; heterozygosity: percentage of heterozygous SNPs relative to the total number of SNP. L01 & L02 samples from the sham group; L03 & L04 samples from the HIE group. HIE: Hypoxic ischemic encephalopathy; SNPs: single-nucleotide polymorphisms.

### was W (507) (Figure 3 and Additional Table 3).

## Enrichment analysis for genes containing SNPs in HIE rats

Differentially expressed genes in both the sham and HIE groups were studied, as was enrichment analysis of GO data derived from sequence analysis. We detected 89 up-regulated genes, including Csrnp1, Dusp5, Lrrc25, Cxcl1, Clca4l, and Serpine1 exhibiting SNPs in the HIE group compared with the sham group (Figure 4 and Additional Table 4). Compared with the sham group, HIE induced more genes to contain SNPs. These genes were involved in cell adhesion, peptidyl-serine phosphorylation, protein autophosphorylation, cytoplasm, cytosol, cell junction, axon, dendrite, dendritic spine, synapse, postsynaptic membrane, phospholipid binding, protein kinase binding, PDZ domain binding and protein complex binding. These functions were in addition to processes common with the sham group, including postsynaptic density, neuronal cell body and ATP binding with neuronal cell body (Figure 4A & B). In addition, pathway analysis revealed that only genes in the sham group containing SNPs were mainly involved in mitogen-activated protein kinase, sphingolipid, adrenergic signaling in cardiomyocytes, circadian entrainment, retrograde endocannabinoid and dopaminergic synapse pathways (Figure 4A). Meanwhile, up-regulated genes containing SNPs only in the HIE group, mainly participated in mitogen-activated protein kinase, circadian entrainment, retrograde endocannabinoid signaling, glutamatergic synapse, long-term depression and oxytocin signaling pathways (**Figure 4B**). These were quite different from those of the sham group.

## Further gene ontology analysis of the up-regulated genes containing SNPs in the HIE rats

The majority of mRNA targets in the HIE group were associated with 14 biological processes, including angiogenesis involved in wound healing, bone morphogenetic protein signaling pathway, cell adhesion, immune response, integrin-mediated signaling pathway, regulation of innate immune system, negative regulation of cytokine-mediated im-munity, neutrophil chemotaxis, palate development and positive regulation of protein phosphorylation (**Figure 5**).



**Figure 3 Numbers of SNPs in the ten genotypes of the HIE group.** The abscissa represents the genotypes and the ordinate represents the number of each genotype. HIE: Hypoxic ischemic encephalopathy; SNPs: single-nucleotide polymorphisms.



#### Figure 4 Enrichment analysis of GO terms for differentially expressed mRNAs.

The three most significant items of each GO term are listed in the bar chart. The horizontal axis shows the GO annotations and pathway, and the vertical axis shows the *P* value. (A) The GO analysis and pathway analysis of the differentially expressed genes in the sham group. Blue represents decreasing expression. Red represents increasing expression. The right chart shows the top nine differentially expressed genes. (B) The GO and pathway analysis of the differentially expressed genes. (B) The GO and pathway analysis of the differentially expressed genes in HIE group. Blue represents decreasing expression. Red represents increasing expression. The right chart shows the top 24 differentially expressed genes. BP: Biological processes; CC: cellular components; GO: gene ontology; MF: molecular functions.

The GO results concur with the molecular functions analysis because they indicated that genes primarily participating in growth factor activity were ligands for protein kinases, the intracellular calcium activated chloride channel and epigenetic regulator binding regions within DNA (**Figure 5**). Similarly, a cellular components analysis showed that these differentially expressed genes encode proteins localized on the external side of the plasma membrane, and with adhesion cellular components, and the integrin alpha9-beta1 complex (**Figure 5**).

## Validation of candidate genes of interest

To further screen the gene sequencing data for genes that are truly involved in HIE, a high-throughput screening via PubMed searching was carried out. This revealed 27 factors that have not been studied in HIE (Additional Table 5). Intersection analysis of these 27 genes with the 89 up-regulated genes exhibiting SNPs using Venny 2.2 software (http:// bioinfogp.cnb.csic.es/tools/venny/index.html), identified three genes, CSRNP1, DUSP5 and LRRC25, that possessed SNPs (Figure 6A). Therefore, they were assessed in the following experiment. Human fetal cortical neurons were cultured, and OGD was employed to monitor HIE in vitro. Two hours after OGD, the neurons exhibited obvious damage, as indicated by broken cell bodies and axons (Figure 6B). Meanwhile, qRT-PCR showed that the expressional levels of CSRNP1, DUSP5 and LRRC25 were significantly up-regulated 24 hours post OGD, compared with the normal group (CSRNP1: *P* = 0.000; DUSP5: *P* = 0.000; LRRC25: *P* = 0.000; Figure 6C–E).

## Discussion

In this study, we performed a comprehensive analysis of SNPs and mRNA expression in cortical samples from rats subjected to HIE and sham operation. RNA sequencing revealed that HIE induced SNPs in mRNAs, which were mainly from genes on chromosomes 1 and 2. Phenotype analysis indicated the SNPs were commonly associated with a G phenotype and scarcely with a W phenotype. In addition, a total of 89 up-regulated genes containing SNPs were found in the HIE group, and were mainly involved in angiogenesis, wound healing biological process and glutamatergic synapse. This is in addition to long-term depression signaling pathways, which were closely correlated with the pathogenesis of HIE. Moreover, intersection analysis identified CSRNP1, DUSP5 and LRRC25 as the most relevant to HIE (Figure 7). These genes were also up-regulated in human neurons after OGD, which may be related to the pa-thology of HIE; therefore, they may be new targets for HIE therapy.

# HIE pathogenesis is correlated with SNPs detected by RNA sequencing

It is acknowledged that some SNPs are associated with specific disorders and are the main reason for differences in disease susceptibility. A variety of human diseases, including sickle-cell anemia,  $\beta$ -thalassemia and cystic fibrosis are correlated with SNPs (Ingram, 1956; Chang and Kan, 1979; Hamosh et al., 1992). Equally, the seriousness of the disease and the way our body reacts to therapies are also manifestations of genetic variation. A single base variation in poly (ADPRibose) Polymerase-1, for example, is connected with gastrointestinal tumors (Martín-Guerrero et al., 2017); the rs1495741 genetic variant and smoking are strongly associated with the risk of bladder cancer (Ma et al., 2016); and the aldehyde dehydrogenase 2 Glu504Lys SNP is a candidate risk factor for a wide range of chronic diseases, including cancer, cardiovascular disease, and late-onset Alzheimer's disease, linked to lifestyle factors such as alcohol consumption and the presence of other genetic variations (Zhao and Wang, 2015). In addition, accumulating evidence shows that lung injury is associated with genetic variations (Wang et al., 2010a; Trittmann et al., 2014, 2016; Cho et al., 2015; Liu et al., 2016). In the present study, a large number of SNPs in HIE rats were detected via RNA-seq, indicating that HIE-induced brain injury was associated with the SNPs. Moreover, further study found 89 genes exhibiting SNPs that were up-regulated after HIE.

# Gene ontology analysis of the up-regulated genes containing SNPs

A bioinformatics analysis was performed to predict the potential functions of the differentially expressed mRNAs containing SNPs in HIE rats. GO analysis categorized genes functions according to biological process, cellular com-ponent, and molecular function. Kyoto encyclopedia of genes and genomes analysis clarified the potential signaling pathways that genes might participate in. Compared with the control group, 89 genes exhibiting SNPs were up-regulated in the brain from the HIE group. This indicated that the effect of HIE-induced brain injury was a complex multigene process. The inflammatory response, together with excitotoxic and oxidative responses, are major con-tributors to ischemic injury in both the immature and adult brain (Ruscher et al., 2013; Fernández-Tajes et al., 2014). Angiogenesis is an important process in the recovery of brain ischemia-induced injury (Zheng et al., 2018). In our study, the GO analysis revealed that SNP-containing genes that were up-regulated 24 hours after HIE were mainly enriched for GO terms associated with the angiogenesis, wound healing, negative regulation of cytokine-mediated signaling pathway and negative regulation of innate immune response. Therefore, together with previous studies, our results revealed that SNPs in mRNA may influence biological processes after HIE.

A molecular function analysis revealed that the 89 up-regulated genes containing SNPs were mainly involved in growth factor activity, protein kinase binding, transcription regulatory region DNA binding, and intracellular calcium-activated chloride channel activity. The human genome contains about 560 protein kinase genes, accounting for about 2% of all human genes (Manning et al., 2002). Furthermore, kinases regulate the majority of cellular pathways, especially those involved in mechanistic cellular signaling and signal transduction (Murphy et al., 2014; Eyers and Murphy, 2016). This suggests that the up-regulated genes containing SNPs were also involved in growth factor activity, which is important for recovery from HIE.

HIE typically results in serious long-term sequelae, mainly because of damage caused to neurons or axons in the acute

phase (Busl and Greer, 2010; Shankaran et al., 2012). Therefore, long-term neurological deficits from HIE are partially caused by inhibited axon regrowth. In the current study, pathway analysis indicated that the 89 up-regulated genes containing SNPs were mainly enriched in glutamatergic synapse and long-term depression signaling pathways, indi-cating that SNPs in mRNAs also participated in pathways involved in long-term neurological function.

## CSRNP1, DUSP5 and LRRC25 are potential targets for HIE therapy

To select the most relevant genes involved in HIE, we performed high-throughput screening by searching PubMed and we used PCR to verify candidates. We identified 27 genes that have not been studied in HIE. In addition, 89 up-regulated genes containing SNPs were found in the HIE group by RNA sequencing. We intersected the 27 factors from high-throughput screening and the 89 up-regulated genes exhibiting SNPs using Venny. Three genes, *CSRNP1*, *DUSP5* and *LRRC25* were identified. qRT-PCR showed that the relative expression of *CSRNP1*, *DUSP5* and *LRRC25* was up-regulated in OGD-treated human fetal cortical neurons group compared with the control group. These data indicate that the three genes are candidate targets for HIE therapy, and they will inform further research on HIE pathogenesis.

In conclusion, this study's findings indicate that HIE is accompanied with an increased number of SNPs, which often exhibited in G phenotype and rarely the W phenotype. Additionally, 89 up-regulated genes containing SNPs were involved in angiogenesis, wound healing, negative regulation of cytokine-mediated signaling pathway, negative regulation of innate immune response and palate development, which may contribute to the pathogenesis and biochemical characteristics of HIE in neonatal rats. Finally, *CSRNP1*, *DUSP5* and *LRRC25* were verified by high throughput screening as the most relevant genes containing SNPs to HIE. However, we did not investigate the influence of SNP overexpression or knockout on HIE in the current study. In spite of this, our results provide robust evidence for advancing the development of HIE therapy.

Acknowledgments: We gratefully acknowledge Professor Fei Liu from Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China for the suggestion on the paper.

**Author contributions:** Research design: THW, LLXiong; model establishing, RNA-Seq and bioinformatics analysis: LLXiong, LLXue, MAH, JH, RZN, YXT, YX, JL; data analysis: LLXiong, LLXue, YYS; manuscript writing: LLXiong, LLXue; manuscript revising: THW, LLXiong, LLXue. All authors approved the final version of the paper.

**Conflicts of interest:** The authors declare that they have no conflict of interest.

**Financial support:** This study was supported by the program Innovative Research Team in Science and Technology in Yunnan Province, China (to THW); the National Natural Science Foundation of China, No. 81601074, Sichuan Provincial Scientific Foundation Grant of China, No. 2017SZ0145. All authors declared that the financial supports did not affect the paper's views and statistical analysis of the objective results of the research data and their reports.

**Institutional review board statement:** This animal study was approved on February 5, 2017 by the Animal Care and Use Committee of Kunming Medical University, Yunnan Province, China (approval No. kmmu2019038). Cerebral tissue collection from a human fetus was ap-

proved on September 30, 2015 by the Ethics Committee of Kunming Medical University, China (approval No. 2015-9).

**Copyright license agreement:** The Copyright License Agreement has been signed by all authors before publication.

**Data sharing statement:** Datasets analyzed during the current study are available from the corresponding author on reasonable request.

**Plagiarism check:** *Checked twice by iThenticate.* 

Peer review: Externally peer reviewed.

**Open access statement:** This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non-Commercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

#### Additional files:

Additional Figure 1: The correlation analysis of linear regression among weight, Zea-longa score and the number of SNPs found that there is no significant diffidence between the weight and the number of SNPs as well as the Zea-longa score in HIE group.

**Additional Table 1:** The total number of single-nucleotide polymorphisms (SNPs) in sham and hypoxic ischemic encephalopathy (HIE) groups.

**Additional Table 2:** The number of single-nucleotide polymorphisms (SNPs) in all of samples.

Additional Table 3: The number of single-nucleotide polymorphisms (SNPs) in A, C, G, K, M, R, S, T, W, Y genotypes.

Additional Table 4: The upregulated genes in hypoxic ischemic encephalopathy (HIE) compared with the sham group.

Additional Table 5: Advances in genes research.

### References

- Alaro D, Bashir A, Musoke R, Wanaiana L (2014) Prevalence and outcomes of acute kidney injury in term neonates with perinatal asphyxia. Afr Health Sci 14:682-688.
- Allen KA, Brandon DH (2011) Hypoxic ischemic encephalopathy: pathophysiology and experimental treatments. Newborn Infant Nurs Rev 11:125-133.
- Busi KM, Greer DM (2010) Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 26:5-13.
- Chang JČ, Kan YW (1979) beta 0 thalassemia, a nonsense mutation in man. Proc Natl Acad Sci U S A 76:2886-2889.
- Chau V, Poskitt KJ, Dunham CP, Hendson G, Miller SP (2014) Magnetic resonance imaging in the encephalopathic term newborn. Curr Pediatr Rev 10:28-36.
- Cho HY, Jedlicka AE, Gladwell W, Marzec J, McCaw ZR, Bienstock RJ, Kleeberger SR (2015) Association of Nrf2 polymorphism haplotypes with acute lung injury phenotypes in inbred strains of mice. Antioxid Redox Signal 22:325-338.
- Costantine MM, Clark EA, Lai Y, Rouse DJ, Spong CY, Mercer BM, Sorokin Y, Thorp JM, Jr., Ramin SM, Malone FD, Carpenter M, Miodovnik M, O'Sullivan MJ, Peaceman AM, Caritis SN (2012) Association of polymorphisms in neuroprotection and oxidative stress genes and neurodevelopmental outcomes after preterm birth. Obstet Gynecol 120:542-550.
- after preterm birth. Obstet Gynecol 120:542-550. Davies A, Wassink G, Bennet L, Gunn AJ, Davidson JO (2019) Can we further optimize therapeutic hypothermia for hypoxic-ischemic encephalopathy? Neural Regen Res 14:1678-1683.
- Ding H, Zhang H, Ding H, Li D, Yi X, Ma X, Li R, Huang M, Ju X (2017) Transplantation of placenta-derived mesenchymal stem cells reduces hypoxic-ischemic brain damage in rats by ameliorating the inflammatory response. Cell Mol Immunol 14:693-701.

Eyers PA, Murphy JM (2016) The evolving world of pseudoenzymes: proteins, prejudice and zombies. BMC Biol 14:98.

- Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, Cortés-Pereira E, Mosquera A, Fernández-Moreno M, Oreiro N, Fernández-López C, Fernández JL, Rego-Pérez I, Blanco FJ (2014) Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis 73:668-677.
- Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. Neuropharmacology 55:363-389.
- Goldstein JA (2001) Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 52:349-355.
- Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE (2008) A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am J Obstet Gynecol 199:587-595.
- Hamosh A, King TM, Rosenstein BJ, Corey M, Levison H, Durie P, Tsui LC, McIntosh I, Keston M, Brock DJ (1992) Cystic fibrosis patients bearing both the common missense mutation Gly----Asp at codon 551 and the delta F508 mutation are clinically indistinguishable from delta F508 homozygotes, except for decreased risk of meconium ileus. Am J Hum Genet 51:245-250.
- Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534-1550.

Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH (2020) Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 15(1):86-95. doi:10.4103/1673-5374.264469



Xiong LL, Xue LL, Al-Hawwas M, Huang J, Niu RZ, Tan YX, Xu Y, Su YY, Liu J, Wang TH (2020) Single-nucleotide polymorphism screening and RNA sequencing of key messenger RNAs associated with neonatal hypoxic-ischemia brain damage. Neural Regen Res 15(1):86-95. doi:10.4103/1673-5374.264469



- Ingram VM (1956) A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature 178:792-794.
- Joerger-Messerli MS, Oppliger B, Spinelli M, Thomi G, di Salvo I, Schneider P, Schoeberlein A (2018) Extracellular vesicles derived from Wharton's jelly mesenchymal stem cells prevent and resolve programmed cell death mediated by perinatal hypoxia-ischemia in neuronal cells. Cell Transplant 27:168-180.
- Khatri M, Himmelfarb J, Adams D, Becker K, Longstreth WT, Tirschwell DL (2014) Acute kidney injury is associated with increased hospital mortality after stroke. J Stroke Cerebrovasc Dis 23:25-30.
- Lee CR (2004) CYP2C9 genotype as a predictor of drug disposition in humans. Methods Find Exp Clin Pharmacol 26:463-472.
- Li G, Pan T, Guo D, Li LC (2014) Regulatory variants and aisease: The E-cadherin 160C/A SNP as an example. Mol Biol Int 2014:967565.
- Li PF, Wang T, Ma XL (2019) Association between COL9A2 gene polymorphisms and intervertebral disc degeneration in Asian: a meta-analysis. Zhongguo Zuzhi Gongcheng Yanjiu 23:3275-3280.
- Liu B, Yi M, Tang Y, Liu Q, Qiu H, Zou Y, Peng P, Zhang L, Hu C, Yuan X (2016) MMP-1 promoter polymorphism is associated with risk of radiation-induced lung injury in lung cancer patients treated with radiotherapy. Oncotarget :70175-70184.
- Liu R, Zhao W, Zhao Q, Liu SJ, Liu J, He M, Xu Y, Wang W, Liu W, Xia QJ, Li CY, Wang TH (2014) Endoplasmic reticulum protein 29 protects cortical neurons from apoptosis and promoting corticospinal tract regeneration to improve neural behavior via caspase and Erk signal in rats with spinal cord transection. Mol Neurobiol 50:1035-1048.
- Lu YF, Mauger DM, Goldstein DB, Urban TJ, Weeks KM, Bradrick SS (2015) IFNL3 mRNA structure is remodeled by a functional non-coding polymorphism associated with hepatitis C virus clearance. Sci Rep 5:16037
- Lv HY, Wu SJ, Wang QL, Yang LH, Ren PS, Qiao BJ, Wang ZY, Li JH, Gu XL, Li LX (2017) Effect of erythropoietin combined with hypothermia on serum tau protein levels and neurodevelopmental outcome in neonates with hypox-
- ic-ischemic encephalopathy. Neural Regen Res 12:1655-1663. Ma C, Gu L, Yang M, Zhang Z, Zeng S, Song R, Xu C, Sun Y (2016) rs1495741 as a tag single nucleotide polymorphism of N-accellutansferase 2 acetylator phenotype associates bladder cancer risk and interacts with smoking: A systematic review and meta-analysis. Medicine (Baltimore) 95:e4417.
- Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97-101.
- Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein
- kinase complement of the human genome. Science 298:1912-1934. Mao R, Wang X, Spitznagel EL, Jr., Frelin LP, Ting JC, Ding H, Kim JW, Ruczinski I, Downey TJ, Pevsner J (2005) Primary and secondary transcriptional effects in the developing human Down syndrome brain and heart. Genome Biol 6:R107.
- Martín-Guerrero SM, Josefa L, Quiles-Perez R, Belmonte L, Martin-Oliva D, Ruiz-Extremera Á, Salmerón J, Muñoz-Gámez JA (2017) Expression and single nucleotide polymorphism of poly (ADPRibose) polymerase-1 in gastrointestinal tumours: clinical involvement. Curr Med Chem 24:2156-2173
- Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, Ungureanu D, Hammaren H, Silvennoinen O, Varghese LN, Chen K, Tripaydonis A, Jura N, Fukuda K, Qin J, Nimchuk Z, Mudgett MB, Elowe S, Gee CL, Liu L, et al. (2014) A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Biochem J 457:323-334.
- Rodríguez M, Šilva Ĵ, López-Alfonso A, López-Muñiz MB, Peña C, Domínguez G, García JM, López-Gónzalez A, Méndez M, Provencio M, García V, Bonilla F (2014) Different exosome cargo from plasma/bronchoalveolar lavage in nonsmall-cell lung cancer. Genes Chromosomes Cancer 53:713-724.
- Ruscher K, Kuric E, Liu Y, Walter HL, Issazadeh-Navikas S, Englund E, Wieloch T (2013) Inhibition of CXCL12 signaling attenuates the postischemic immune response and improves functional recovery after stroke. J Cereb Blood Flow Metab 33:1225-1234.



#### Figure 7 Flow chart of experimental strategy.

A hypoxic ischemic encephalopathy model was prepared and the neurological score of animals was determined. The cortex of each animal was extracted 24 hours post-operation. RNA was extracted and mRNA-sequencing (seq) libraries were prepared. After quality control of the mRNA library, mRNA-seq and gene ontology (GO) analysis were performed. Finally, bioinformatic analysis was conducted.

- Saeed F, Adil MM, Malik AA, Qureshi MH, Nahab F (2014) Worse in-hospital outcomes in patients with transient ischemic attack in association with acute kidney injury: analysis of nationwide in-patient sample. Am J Nephrol 40:258-262.
- Seeliger C, Karpinski K, Haug AT, Vester H, Schmitt A, Bauer JS, van Griensven M (2014) Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 29:1718-1728.
- Shankaran S, Barnes PD, Hintz SR, Laptook AR, Zaterka-Baxter KM, McDonald SA, Ehrenkranz RA, Walsh MC, Tyson JE, Donovan EF, Goldberg RN, Bara R, Das A, Finer NN, Sanchez PJ, Poindexter BB, Van Meurs KP, Carlo WA, Stoll BJ, Duara S, et al. (2012) Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 97:F398-404.
- Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440-9445.
- Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511-515.
- Trittmann JK, Gastier-Foster JM, Zmuda EJ, Frick J, Rogers LK, Vieland VJ, Chicoine LG, Nelin LD (2016) A single nucleotide polymorphism in the dimethylarginine dimethylaminohydrolase gene is associated with lower risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr 105:e170-175.
- Trittmann JK, Nelin LD, Zmuda EJ, Gastier-Foster JM, Chen B, Backes CH, Frick J, Vaynshtok P, Vieland VJ, Klebanoff MA (2014) Arginase I gene single-nucleotide polymorphism is associated with decreased risk of pulmonary hypertension in bronchopulmonary dysplasia. Acta Paediatr 103:e439-443.
- Vannucci RC (2000) Hypoxic-ischemic encephalopathy. Am J Perinatol 17:113-120.
- Wang JF, Bian JJ, Wan XJ, Zhu KM, Sun ZZ, Lu AD (2010a) Association between inflammatory genetic polymorphism and acute lung injury after cardiac sur-
- gery with cardiopulmonary bypass. Med Sci Monit 16:CR260-265. Wang W, Xu J, Li L, Wang P, Ji X, Ai H, Zhang L, Li L (2010b) Neuroprotective effect of morroniside on focal cerebral ischemia in rats. Brain Res Bull 83:196-201.
- Wang WT, Sun YM, Huang W, He B, Zhao YN, Chen YQ (2016) Genome-wide long non-coding RNA analysis identified circulating LncRNAs as novel non-invasive diagnostic biomarkers for gynecological disease. Sci Rep 6:23343.
- Wu YH, Zhang X, Wang DH (2011) Role of asymmetric dimethylarginine in acute lung injury induced by cerebral ischemia/reperfusion injury in rats. Nan Fang Yi Ke Da Xue Xue Bao 31:1289-1294.
- Yanase K, Tsukahara S, Mitsuhashi J, Sugimoto Y (2006) Functional SNPs of the breast cancer resistance protein-therapeutic effects and inhibitor development. Cancer Lett 234:73-80.
- Zeppellini R, Salsa F, Gheno G, Cucchini F (2001) Cardiac injury in acute cerebral vasculopathy. Ann Ital Med Int 16:73-81.
- Zhao S, Rong R, Dan QQ, Zhang YH (2012) Expression of trkB gene in the pulmonary tissue of rats with lung injury induced by cerebral ischemia. Sichuan Da Xue Xue Bao Yi Xue Ban 43:901-903, 958.
- Zhao Y, Wang C (2015) Glu504Lys single nucleotide polymorphism of aldehyde dehydrogenase 2 gene and the risk of human diseases. Biomed Res Int 2015:174050.
- Zheng Y, Wu Z, Yi F, Orange M, Yao M, Yang B, Liu J, Zhu H (2018) By activating Akt/eNOS bilobalide B inhibits autophagy and promotes angiogenesis follow ing focal cerebral ischemia reperfusion. Cell Physiol Biochem 47:604-616.
- C-Editor: Zhao M; S-Editors: Yu J, Li CH; L-Editors: Yu J, Song LP; T-Editor: Jia Y



Additional Figure 1 The correlation analysis among weight, Zea-longa score and the number of SNPs found that there is no significant diffidence between the weight and the number of SNPs as well as the Zea-longa score in HI group.

(A, B) Correlation linear analysis among the weight, Zea-longa score and the number of SNPs. Two points on the line represent sham group, the two points of dispersion represent HI group.

| #Sample_ | _IDSnp_number Snp_ | _number_gene Snp_n | umber_intergeni(Tra | ansition (%) Tra | ansversion (% Hete | rozygosity (%) |
|----------|--------------------|--------------------|---------------------|------------------|--------------------|----------------|
| L01      | 118043             | 69315              | 48728               | 69.31            | 30.69              | 42.81          |
| L02      | 123449             | 72933              | 50516               | 69.25            | 30.75              | 46.77          |
| L03      | 205894             | 130248             | 75646               | 70.40            | 29.60              | 47.05          |
| L04      | 132432             | 83060              | 49372               | 70.77            | 29.23              | 47.10          |

L01 & L02 samples from control group; L03 & L04 samples from hypoxic ischemic encephalopathy group.

)

| Gene ID   | False Discovery rate | Log2FC (fold change) | Regulated | Gene name    |
|-----------|----------------------|----------------------|-----------|--------------|
| gene10928 | 0.007321917          | 1.234849228          | Up        | Cecr2        |
| gene11610 | 0.000494348          | 1.440158186          | Up        | Chd7         |
| gene11832 | 0.000510142          | 1.401960952          | Up        | B4galt1      |
| gene12406 | 0.036291268          | 1.405219558          | Up        | Rorl         |
| gene12937 | 0.00059812           | 2.539193652          | Up        | Fgr          |
| gene13033 | 0.017403119          | 1.11615355           | Up        | LOC684122    |
| gene13264 | 8.00E-07             | 1.998225126          | Up        | Casz 1       |
| gene1410  | 0.006976111          | 1.195557824          | Up        | Proser3      |
| gene14458 | 1.01E-08             | 1.517016795          | Up        | Elmsan l     |
| gene15930 | 0.003616995          | 1.456447854          | Up        | Irak3        |
| gene16622 | 1.82E-14             | 2.088731276          | Up        | Ccdc134      |
| gene16625 | 0.001539985          | 1.275741357          | Up        | Shisa8       |
| gene16799 | 1.04E-05             | 1.01371392           | Up        | Ano6         |
| gene17912 | 0.014602678          | 1.127546269          | Up        | Arid3b       |
| gene17977 | 0.033618102          | 1.652847862          | Up        | Spesp1       |
| gene17997 | 0.001029297          | 1.770125454          | Up        | Smad6        |
| gene18421 | 1.46E-05             | 2.000879142          | Up        | Slco2a1      |
| gene18711 | 1.69E-05             | 1.280236316          | Up        | Itga9        |
| gene18726 | 0.004030785          | 1.288195305          | Up        | Xylb         |
| gene18736 | 1.23E-11             | 3.638238928          | Up        | Csrnp1       |
| gene18827 | 0.025594256          | 3.10825301           | Up        | Ccrl         |
| gene19018 | 2.67E-16             | Inf                  | Up        | LOC100912849 |
| gene19083 | 0.000139538          | 2.188379763          | Up        | Runx2        |
| gene19085 | 0.030428257          | 1.484082283          | Up        | Clic5        |
| gene20150 | 0.002857127          | 1.217668196          | Up        | Vasn         |
| gene20655 | 0.019537489          | 1.38160466           | Up        | Tcf7         |
| gene20938 | 0.000337032          | 2.83969408           | Up        | Hs3st3b1     |
| gene21624 | 0.028824658          | 1.562356011          | Up        | Pctp         |
| gene21784 | 0.000108425          | 2.220223383          | Up        | Arl5c        |
| gene21921 | 2.95E-18             | 1.480593354          | Up        | Stat3        |
| gene21922 | 6.95E-17             | 1.57894954           | Up        | Ptrf         |
| gene22053 | 0.000267204          | 1.567816761          | Up        | Itgb3        |
| gene22098 | 7.88E-09             | 1.368885314          | Up        | Pecam 1      |
| gene22145 | 0.007564055          | 1.691362364          | Up        | Fam20a       |
| gene22728 | 5.87E-13             | 1.237620155          | Up        | Ets2         |
| gene23174 | 0.000252217          | 2.317403614          | Up        | Leprell      |
| gene23185 | 0.001227681          | 1.037587703          | Up        | Lpp          |
| gene23858 | 1.32E-46             | 5.16528331           | Up        | Serpine1     |
| gene24177 | 0.011318539          | 1.216444191          | Up        | Vsig10       |
| gene24687 | 3.47E-07             | 3.017963325          | Up        | Ptprc        |
| gene25476 | 0.009700318          | 1.158533434          | Up        | Tgfbr3       |
| gene25582 | 0.000392403          | 2.521693129          | Up        | Fgf5         |
| gene25612 | 5.20E-08             | 1.768312007          | Up        | Shroom3      |
| gene25643 | 1.44E-22             | 6.759783682          | Up        | Cxcll        |
| gene26603 | 1.77E-05             | 1.022215948          | Up        | Flnb         |
| gene27014 | 0.004656377          | 1.004953379          | Up        | Lats2        |
| gene27729 | 0.014227908          | 1.010355395          | Up        | Dcpla        |
| gene2782  | 0.001952483          | 1.028077146          | Up        | Zfp143       |
| gene27887 | 0.035139802          | 3.219479213          | ∪p        | Lrrc25       |
| gene28211 | 0.014214731          | 1.011538396          | Up        | Pragmin      |
| gene28758 | 9.32E-05             | 1.426349769          | Up        | Kor2         |
| gene28759 | 2.07E-15             | 1.516883601          | ∪p        | NJ113        |
| gene28852 | 1.67E-07             | 1.478320873          | ∪p        | KNJ144b      |
| gene28867 | /.98E-05             | 1.0297/4301          | ∪p        | Kbm24        |
| gene28923 | 0.012/09411          | 1.454983568          | ∪p        | Mak          |
| gene28946 | 3.28E-06             | 1.664387255          | ∪p        | втро         |
| gene29280 | 1.94E-05             | 2.469452509          | υp        | SJIP4        |

| gene2954  | 0.01129745  | 1.184598231 Up | A rhgap 17 |
|-----------|-------------|----------------|------------|
| gene29939 | 4.79E-05    | 1.17526293 Up  | Nrg2       |
| gene30479 | 1.26E-06    | 1.923075394 Up | Zfp516     |
| gene3108  | 9.78E-09    | 2.654171021 Up | Bag3       |
| gene31215 | 2.09E-06    | 1.651489706 Up | Irf8       |
| gene31237 | 0.017930871 | 1.346726574 Up | Zfp469     |
| gene31693 | 0.004789907 | 2.684390722 Up | RT1-A1     |
| gene31715 | 0.002824524 | 1.266958747 Up | Itpr3      |
| gene31863 | 6.56E-07    | 2.527943172 Up | Itgb2      |
| gene31869 | 0.003597344 | 1.206319056 Up | Col18a1    |
| gene32290 | 0.013296976 | 1.495250541 Up | A im l     |
| gene33491 | 0.000675436 | 1.245128971 Up | Lonrf3     |
| gene4319  | 7.61E-14    | 3.35208246 Up  | Dusp5      |
| gene4981  | 0.031396721 | 1.007595524 Up | Fam105a    |
| gene5150  | 4.11E-06    | 1.815866502 Up | Ср         |
| gene5422  | 1.93E-07    | 1.32403003 Up  | Wwtrl      |
| gene5687  | 7.30E-35    | Inf Up         | Sh2d2a     |
| gene6379  | 5.43E-07    | 2.585755151 Up | Synpo2     |
| gene6410  | 0.003597344 | 1.301344945 Up | Zgrf1      |
| gene6465  | 0.005514585 | 1.771361524 Up | Dkk2       |
| gene6493  | 0.031604667 | 1.320650436 Up | Tacr3      |
| gene6563  | 0.02891601  | 1.643902108 Up | Gbp5       |
| gene6564  | 0.000229551 | 2.077167857 Up | LOC685067  |
| gene6587  | 7.44E-05    | 6.178383959 Up | Clca4l     |
| gene7067  | 0.029239889 | 1.105943242 Up | Ptgs1      |
| gene7238  | 4.90E-11    | 1.174738611 Up | gene7238   |
| gene8116  | 2.92E-52    | 3.079275962 Up | Cd44       |
| gene9608  | 1.17E-08    | 1.836606238 Up | Cdk6       |
| gene9626  | 0.020857722 | 3.432909322 Up | Tfpi2      |
| gene9721  | 1.10E-06    | 1.640092399 Up | Mdfic      |
| gene9738  | 0.00386661  | 2.268566993 Up | Cftr       |
| gene9891  | 7.54E-13    | 1.752861704 Up | Cald 1     |

|        | Gene name | Synonyms                                                | Description                                                              | GeneSummary                                                                                                                                                                                                                                                                                                                                                                                         | Transcription quantity | Sequence ID                                                                          | Cellular localization                                                                                                                                                                                                            | Literature<br>quantity<br>from<br>Pubmed | Novoseek<br>disease<br>relationships<br>for the gene | MalaCards<br>disease<br>relationships fo<br>the gene | r Symbol | Number         | False<br>discovery rat | Fold<br>e change | Regulated | Function                                                                                          |
|--------|-----------|---------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------|----------------|------------------------|------------------|-----------|---------------------------------------------------------------------------------------------------|
| 3437   | IFIT3     | CIG-49 GARG-<br>49 IFI60 IFIT4 IRG2 I<br>SG60 P60 RIG-G | Interferon-<br>induced protein<br>with<br>tetratricopeptide              | e                                                                                                                                                                                                                                                                                                                                                                                                   | 4                      | NM_001031683(1473),<br>NM_001289759(1317),<br>NM_001549(1473),<br>NM_001289758(1317) | Cytoplasm. Mitochondrion                                                                                                                                                                                                         | 42                                       | 0                                                    | 2                                                    | Ifit3    | gene4056       | 1.83E-10               | 5.8044           | Up        | Negative regulation of cell proliferation                                                         |
| 59271  | EVAIC     | B18 B19 C21orf63 C2<br>1orf64 FAM176C PR<br>ED34 SUE21  | <sup>2</sup> Eva-1 homolog<br>C (C. elegans)                             |                                                                                                                                                                                                                                                                                                                                                                                                     | 2                      | NM_001286556(1317),<br>NM_058187(1326)                                               | Membrane; Single-pass type I membrane protein<br>(Potential)                                                                                                                                                                     | 10                                       | 0                                                    | 0                                                    | Eva1c    | gene22665      | 5.12E-11               | 4.2549           | Up        | Plasma membrane, integral<br>component of membrane,<br>carbohydrate binding                       |
| 51804  | SIX4      | AREC3                                                   | SIX homeobox<br>4                                                        | This gene encodes a<br>member of the<br>homeobox family,<br>subfamily SIX. The<br>drosophila homolog<br>is a nuclear<br>homeoprotein<br>required for eye<br>development. Studies<br>in mouse show that<br>this gene product<br>functions as a<br>transcription factor,<br>and may have a role<br>in the differentiation<br>or maturation of<br>neuronal cells.<br>(provided by RefSeq,<br>May 2010) | 5<br>1                 | NM_017420(2346)                                                                      | Nucleus (By similarity)                                                                                                                                                                                                          | 18                                       | 0                                                    | 0                                                    | Six4     | gene14292      | 2 7.99E-09             | 4.2156           | Up        | Regulation of synaptic growth at<br>neuromuscular junction, regulation<br>of protein localization |
| 10361  | NPM2      | -                                                       | Nucleophosmin/<br>nucleoplasmin 2                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                   | 3                      | NM_001286681(411),<br>NM_182795(645),<br>NM_001286680(645)                           | Nucleus (By similarity). Note=Found in the oocyte<br>nucleus before nuclear membrane breakdown, after<br>which it is redistributed to the cytoplasm (By similarity)                                                              | 13                                       | 0                                                    | 0                                                    | Npm2     | gene27231      | 0.0000146              | 4.1234           | Up        |                                                                                                   |
| 115265 | 5 DDIT4L  | REDD2 Rtp801L                                           | DINA-uaillage-                                                           |                                                                                                                                                                                                                                                                                                                                                                                                     | 1                      | NM_145244(582)                                                                       | Cytoplasm (By similarity)                                                                                                                                                                                                        | 14                                       | 0                                                    | 1                                                    | Ddit41   | gene6516       | 5.36E-10               | 3.8915           | Up        |                                                                                                   |
| 64651  | CSRNP1    |                                                         | rich nuclear                                                             | Small GTP-binding<br>proteins of the RAB                                                                                                                                                                                                                                                                                                                                                            | 1                      | NM_033027(1770)                                                                      | Nucleus (By similarity)<br>Mitochondrion. Cytoplasmic vesicle, phagosome.<br>Cytoplasmic vesicle, phagosome membrane; Lipid-                                                                                                     | 15                                       | 0                                                    | 0                                                    | Csrnp1   | gene18736      | 5 1.23E-11             | 3.6382           | Up        |                                                                                                   |
| 10981  | RAB32     | -                                                       | RAB32,<br>member RAS<br>oncogene<br>family                               | RAB32, play<br>essential roles in<br>vesicle and granule<br>targeting (Bao et al.,<br>2002 (PubMed                                                                                                                                                                                                                                                                                                  | 1                      | NM_006834(678)                                                                       | anchor; Cytoplasmic side (By similarity).<br>Note=Recruited to phagosomes containing S.aureus or<br>M.tuberculosisExplore the universe of human proteins at<br>neXtProt for RAB32: NX_Q13637Post-translational<br>modifications: | 19                                       | 0                                                    | 0                                                    | Rab32    | gene46         | 4.88E-28               | 3.4791           | Up        |                                                                                                   |
| 2634   | GBP2      | -                                                       | Guanylate binding protein                                                | Interferons are cytokines that have                                                                                                                                                                                                                                                                                                                                                                 | 1                      | NM_004120(1776)                                                                      | Cytoplasm. Nucleus. Golgi apparatus membrane; Lipid-                                                                                                                                                                             | 31                                       | 0                                                    | 0                                                    | Gbp2     | gene6566       | 0.0000554              | 3.4162           | Up        |                                                                                                   |
| 1847   | DUSP5     | DUSP HVH3                                               | 2 Juar specificity                                                       | ntevproleffencoueu                                                                                                                                                                                                                                                                                                                                                                                  | 1                      | NM 004419(1155)                                                                      | Nucleus (Potential)                                                                                                                                                                                                              | 58                                       | 4                                                    | 1                                                    | Dusp5    | gene4319       | 7.61E-14               | 3.3521           | Up        |                                                                                                   |
| 126364 | LIRRC25   | МАРА                                                    | Leucine fich 5                                                           | by this cana is a                                                                                                                                                                                                                                                                                                                                                                                   | 1                      | NM 145256(918)                                                                       | Membrane; Single-pass type I membrane protein                                                                                                                                                                                    | 8                                        | 0                                                    | 0                                                    | Lrrc25   | c<br>gene27887 | 0.0351398              | 3 2 1 9 5        | Un        |                                                                                                   |
| 8638   | OASL      | OASLd TRIP-<br>14 TRIP14 p59<br>OASL p59-               | Containing 25<br>2'-5'-<br>Oligoadenylate<br>synthetase-like             |                                                                                                                                                                                                                                                                                                                                                                                                     | 3                      | NM_001261825(1155),<br>NM_198213(768),<br>NM_003733(1545)                            | (Potential)<br>Isoform p56: Nucleus, nucleolus. Cytoplasm Isoform<br>p30: Cytoplasm                                                                                                                                              | 39                                       | 0                                                    | 0                                                    | Oasl     | gene24225      | 0.0000296              | 3.2178           | Up        |                                                                                                   |
| 57820  | CCNB11P1  | C14orf18 HEI10                                          | Cyclin B1<br>interacting<br>protein 1, E3<br>ubiquitin<br>protein ligase | HEI10 is a member<br>of the E3 ubiquitin<br>ligase family and<br>functions in<br>progression of the<br>cell cycla through                                                                                                                                                                                                                                                                           | 3                      | NM_182852(834),<br>NM_021178(834),<br>NM_182849(834)                                 | Nucleus. Chromosome. Note=May associate with<br>segregating chromosomes during metaphase and<br>anaphaseExplore the universe of human proteins at<br>neXtProt for CCNB1IP1: NX_Q9NPC3Post-translational<br>modifications:        | 21<br>1                                  | 0                                                    | 0                                                    | Ccnb1i   | p]gene26728    | 8 0.0000691            | 3.1892           | Up        |                                                                                                   |
| 56833  | SLAMF8    | BLAME UD333 SBB<br>19                                   | 1 SLAW Iamiy                                                             | This gene encodes a                                                                                                                                                                                                                                                                                                                                                                                 | 1                      | NM_020125(858)                                                                       | Membrane; Single-pass type I membrane protein                                                                                                                                                                                    | 10                                       | 0                                                    | 0                                                    | Slamf8   | gene25120      | 7.95E-09               | 3.0308           | Up        |                                                                                                   |
| 79094  | CHAC1     | -                                                       | glutathione-<br>spacific gamma<br>SAM domain,                            | SAMSN1 is a                                                                                                                                                                                                                                                                                                                                                                                         | 2                      | NM_024111(795),<br>NM_001142776(660)                                                 | Golgi apparatus, trans-Golgi network (By similarity).<br>Cytoplasm, cytosol<br>Nucleus, Cytoplasm (By similarity). Cell projection                                                                                               | 14                                       | 0                                                    | 0                                                    | Chac1    | gene8349       | 7.27E-12               | 2.9496           | Up        |                                                                                                   |
| 64092  | SAMSN1    | HACS1 NASH1 SAS<br>H2 SH3D6B SLy2                       | SH3 domain<br>and nuclear<br>localization                                | member of a novel<br>gene family of<br>putative adaptors and<br>scaffold proteins                                                                                                                                                                                                                                                                                                                   | 3                      | NM_001256370(1326),<br>NM_022136(1122),<br>NM_001286523(915)                         | ruffle (By similarity). Note=Shuttles between cytoplasm<br>and nucleus. Colocalizes with the actin cytoskeleton and<br>actin-rich membrane ruffles (By similarity)                                                               | 19                                       | 0                                                    | 0                                                    | Samsn    | gene22523      | 0.0006012              | 2.8449           | Up        |                                                                                                   |
| 2615   | LRRC32    | D11S833E GARP                                           | repeat                                                                   | type I membrane                                                                                                                                                                                                                                                                                                                                                                                     | 2                      | NM_001128922(1989),<br>NM_005512(1989)                                               | Membrane; Single-pass type I membrane protein                                                                                                                                                                                    | 26                                       | 0                                                    | 0                                                    | Lrrc32   | gene2350       | 0.000000131            | 2.7125           | Up        |                                                                                                   |

| 55647  | RAB20     | -                                 | RAB20,<br>member RAS<br>oncogene<br>family                     |                                                                                                                                                                                                     | 1 | NM_017817(705)                                                                                                                                                                | Golgi apparatus. Cytoplasmic vesicle, phagosome.<br>Cytoplasmic vesicle, phagosome membrane; Lipid-<br>anchor; Cytoplasmic side (By similarity). Note=Highly<br>enriched on apical endocytic structures in polarized<br>epithelial cells of kidney proximal tubules (By<br>similarity). Recruited to phagosomes containing S.aureus<br>or M.tuberculosis                                                                                                                                                                                                                                       | 11 | 0 | 0 | Rab20 gene28479 0.000000736 | 2.7008 | Up |
|--------|-----------|-----------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|---|---|-----------------------------|--------|----|
| 387496 | 5 RASL11A | -                                 | RAS-like,<br>family 11,<br>member A                            | KASL11A is a<br>member of the small<br>GTPase protein<br>family with a high                                                                                                                         | 1 | NM_206827(729)                                                                                                                                                                | Nucleus, nucleolus (By similarity). Note=Associates with rDNA transcription unit throughout the cell cycle (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10 | 0 | 0 | Rasl11a gene23588 7.73E-10  | 2.6636 | Up |
| 55303  | GIMAP4    | ΙΑΙΝ-<br>1 ΙΓΛ ΝΙΊ ΙΓΜ Λ ΦΛΙΝΛΟΤΦ | GIPase, IMAP<br>family member                                  | This gene encodes a                                                                                                                                                                                 | 1 | NM_018326(990)                                                                                                                                                                | Cytoplasm, cytosol (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17 | 0 | 1 | Gimap4 gene10131 0.0055691  | 2.6318 | Up |
| 10457  | GPNMB     | HGFIN NMB                         | Glycoprotein<br>(transmembrane<br>) nmb                        | by this gene is a type<br>I transmembrane<br>glycoprotein which                                                                                                                                     | 2 | NM_002510(1683),<br>NM_001005340(1719)                                                                                                                                        | Membrane; Single-pass type I membrane protein<br>(Potential). Melanosome. Note=Identified by mass<br>spectrometry in melanosome fractions from stage I to<br>stage IV                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 | 3 | 2 | Gpnmb gene10145 2.82E-20    | 2.594  | Up |
| 121549 | 9 ASCL4   | HASH4 bHLHa44                     | Achaele-scule                                                  | basic neurop-                                                                                                                                                                                       | 1 | NM_203436(522)                                                                                                                                                                | Nucleus (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8  | 0 | 0 | Ascl4 gene15593 0.0009807   | 2.5786 | Up |
| 55008  | HERC6     | -                                 | domain                                                         | the HERC family of                                                                                                                                                                                  | 2 | NM_017912(3069),<br>NM_001165136(2961)                                                                                                                                        | Cytoplasm, cytosol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 | 0 | 0 | Herc6 gene10306 0.0044702   | 2.5675 | Up |
| 131450 | ) CD200R1 | CD200R HCRTR2 M<br>OX2R OX2R      | CD200 receptor<br>1                                            | receptor for the OX-2<br>membrane<br>glycoprotein. Both<br>the receptor and                                                                                                                         | 4 | NM_138939(567),<br>NM_170780(978),<br>NM_138940(498),<br>NM_138806(1047)                                                                                                      | Isoform 1: Cell membrane; Single-pass type I membrane<br>protein Isoform 4: Cell membrane; Single-pass type I<br>membrane protein Isoform 2: Secreted Isoform 3:<br>Secreted                                                                                                                                                                                                                                                                                                                                                                                                                   | 46 | 0 | 0 | Cd200r1 gene22955 0.0018284 | 2.4729 | Up |
| 51166  | AADAT     | KAT2 KATII                        | Aminoadipate<br>aminotransferas<br>e                           | This gene encodes a<br>protein that is highly<br>similar to mouse and<br>rat kynurenine<br>aminotransferase II                                                                                      | 4 | NM_016228(1278),<br>NM_182662(1278),<br>NM_001286683(1278),<br>NM_001286682(1290)                                                                                             | Mitochondrion (Potential)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32 | 0 | 1 | Aadat gene28019 0.0042495   | 2.4221 | Up |
| 23704  | KCNE4     | MIRP3                             | Potassium<br>chargaluseltage                                   | voltage-gateu                                                                                                                                                                                       | 1 | NM_080671(666)                                                                                                                                                                | Membrane; Single-pass type I membrane protein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 26 | 0 | 0 | Kcne4 gene19690 0.0239597   | 2.4019 | Up |
| 54626  | HES2      | bHLHb40                           | ьш ц                                                           | turn common d of                                                                                                                                                                                    | 1 | NM_019089(522)                                                                                                                                                                | Nucleus (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8  | 0 | 0 | Hes2 gene13331 0.0025872    | 2.3469 | Up |
| 84617  | TUBB6     | HsT1601 TUBB-5                    | Tubulin, beta 6<br>class V                                     | turn composed of<br>alpha- and beta-<br>tubulin polymers.<br>Each microtubule is<br>polarized, at one end<br>alpha-subunitsare<br>exposed (-) and at the<br>other beta-subunits<br>are exposed (+). | 8 | NM_001303526(1230),<br>NM_032525(1341),<br>NM_001303530(903),<br>NM_001303527(1125),<br>NM_001303528(1146),<br>NM_001303529(903),<br>NM_001303524(1341),<br>NM_001303525(315) | Cytoplasm, cytoskeleton (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45 | 0 | 1 | Tubb6 gene30325 2.86E-30    | 2.3358 | Up |
| 152007 | 9 GLIPR2  | C9orf19 GAPR-<br>1 GAPR1          | GLI<br>pathogenesis-<br>related 2                              |                                                                                                                                                                                                     | 6 | NM_022343(465),<br>NM_001287014(219),<br>NM_001287010(387),<br>NM_001287013(510),<br>NM_001287012(189),<br>NM_001287011(315)                                                  | Golgi apparatus membrane; Lipid-anchor. Note=Binds<br>lipid-enriched microdomains of Golgi membranes not<br>only by ionic interactions but also through the myristate                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 | 0 | 0 | Glipr2 gene11917 4.52E-08   | 2.2159 | Up |
| 91543  | RSAD2     | 2510004L01Rik cig3<br>3 cig5 vig1 | Radical S-<br>adenosyl<br>methionine<br>domain<br>containing 2 |                                                                                                                                                                                                     | 1 | NM_080657(1086)                                                                                                                                                               | Endoplasmic reticulum membrane; Peripheral membrane<br>protein; Cytoplasmic side. Golgi apparatus. Endoplasmic<br>reticulum. Lipid droplet (By similarity). Mitochondrion.<br>Mitochondrion inner membrane. Mitochondrion outer<br>membrane. Note=Infection with human cytomegalovirus<br>(HCMV) causes relocation to the Golgi apparatus and to<br>cytoplasmic vacuoles which also contain HCMV proteins<br>glycoprotein B and pp28. Interaction with human<br>cytomegalovirus/HHV-5 protein vMIA/UL37 results in<br>its relocalization from the endoplasmic reticulum to the<br>mitochondria | 45 | 0 | 0 | Rsad2 gene13889 0.000000123 | 2.1947 | Up |
| 8676   | STX11     | FHL4 HLH4 HPLH4                   | Syntaxin 11                                                    | This gene encodes a<br>member of the<br>syntaxin family.                                                                                                                                            | 1 | NM_003764(864)                                                                                                                                                                | Membrane; Peripheral membrane protein (Potential).<br>Golgi apparatus, trans-Golgi network membrane;<br>Peripheral membrane protein (By similarity)                                                                                                                                                                                                                                                                                                                                                                                                                                            | 44 | 0 | 5 | Stx11 gene63 0.0000149      | 2.153  | Up |