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Abstract: We developed an efficient and convenient electrochemical method to synthesize π-conjugated
redox metal-complex linear polymer wires composed of azobenzene-bridged bis(terpyridine)metal (2-
M, M = Fe, Ru) units covalently immobilized on glassy carbon (GC). Polymerization proceeds by elec-
trochemical oxidation of bis(4′-(4-anilino)-2,2′:6′,2”-terpyridine)metal (1-M) in a water–acetonitrile–
HClO4 solution, affording ultralong wires up to 7400 mers (corresponding to ca. 15 µm). Both 2-Fe
and 2-Ru undergo reversible redox reactions, and their redox behaviors indicate remarkably fast
redox conduction. Anisotropic hetero-metal-complex polymer wires with Fe and Ru centers are
constructed via stepwise electropolymerization. The cyclic voltammograms of two hetero-metal-
complex polymer wires, GC/[2-Fe]–[2-Ru] (3) and GC/[2-Ru]–[2-Fe] (4), show irreversible redox
reactions with opposite electron transfer characteristics, indicating redox diodelike behavior. In short,
the present electrochemical method is useful to synthesize polymer wire arrays and to integrate
functional molecules on carbon.

Keywords: electropolymerization; coordination polymer; electron transfer; modified electrode; redox;
hetero-metal complex; diode

1. Introduction

Molecular wires are long molecules that allow electrons or holes to flow smoothly
within them, thereby acting as molecular-scale, electrically conductive wires. They are one
of the most important components of molecular-scale electronics for molecular or quantum
computing [1–9]. However, their preparation faces two major challenges: achieving precise
control of their lengths and structures when immobilized on electrodes and synthesizing
wires long enough to link and integrate large numbers of functional molecular units to
obtain high-performance devices [10–32].

Stepwise coordination is a good solution to the first challenge. It involves synthesis of
a series of linear and branched π-conjugated bis(terpyridine)metal complex oligomer wires
with precise lengths and specific structures on gold or silicon electrodes [33–40]. These
wires have shown excellent long-range electron transfer, high redox conductivity, and good
redox cyclability, making them promising components for molecular electronics. Elaborate
processing of stepwise coordination is not suitable for preparing long wires, as the number
of synthetic steps increases proportionally with wire length. Therefore, it is essential to
find new, simpler methods to construct long molecular wires.

This work reports the efficient electro-oxidative coupling of aniline-terminated com-
plexes [M(NH2-Ph-tpy)2] (1-M) for preparing π-conjugated M(tpy)2 polymer wires with
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azobenzene bridging (2-M) on carbon electrodes (Figure 1). This method efficiently syn-
thesizes well-ordered, long polymer wires of desired lengths and structures with high
intrawire redox conduction [33–40]. Moreover, hetero-metal-complex polymer wires ([2-
Fe]–[2-Ru]) applicable to molecular-scale diodes and redox memories can be synthesized
readily by sequential electrochemical reactions. Aside from the capacity to produce well-
controlled structures and high-performance molecules, the present method is useful for
modification of carbon materials through covalent bonding with polymer wires, which
is a significant area of current research, given the importance of carbon nanotubes and
graphene [41–44]. Here, we describe the electrochemical synthesis, characterization, and
electrochemical properties of π-conjugated homo- and hetero-metal-complex linear poly-
mer wires to demonstrate the general versatility of this method to construct polymer wire
arrays with integrated functionalities on carbon.
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Figure 1. Electrosynthesis of azobenzene-bridged M(tpy)2 polymer wires.

2. Results and Discussion
2.1. Electrosynthesis of Polymer Wires

To synthesize 2-Fe and 2-Ru on carbon (Figure 1), a MeCN–H2O solution of 1-Fe or
1-Ru and 0.1 M HClO4 was used. Reactions were carried out with consecutive potential
scans from −0.5 to 1.4 V vs. Ag/AgCl for 2-Fe and from −0.3 to 1.6 V for 2-Ru. The first
potential cycle of 1-Fe showed an irreversible anodic wave at 0.94 V and a reversible wave
at 1.09 V (Figure 2A). In contrast, that of 1-Ru showed three irreversible anodic waves at
0.97, 1.06, and 1.13 V and one reversible wave at 1.24 V (Figure 2B). The irreversible peaks in
both cases can be attributed to electro-oxidation of the aniline moiety, and reversible waves
resulted from the [M(tpy)2]3+/2+ couple. Repeated potential scans increased the current
signal of the [M(tpy)2]3+/2+ couple for both 1-Fe and 1-Ru, indicating continuous growth
of polymer films on the carbon electrode. Peak currents increased almost linearly with the
number of scans up to 150 cycles, indicating that film thickness can be readily controlled
electrochemically (Figure 2, inset). When the potential sweeps reached 220 cycles, the
peak current increase began to slow down (Figure S2). After 400 cycles, the peak currents
almost stopped increasing, determining the length of the longest molecular wire that can
be synthesized in this way (Figure S2).

After electropolymerization, GC electrodes were covered with a strongly adhered
film, which was dark purple in the case of 2-Fe and red for 2-Ru. Note that Ru(tpy)2
polymer wires are not easily prepared by the stepwise coordination method because the
complexation of Ru2+ and terpyridine does not proceed at room temperature. HClO4
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was added to the solution of 1-Fe or 1-Ru to protonate the aniline moiety and to shift its
oxidation potential positively toward the oxidation potential of M(tpy)2. This improves
the ability to control electropolymerization. Furthermore, the solubility of protonated
complexes is increased in the MeCN–H2O solution.
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We previously reported the electro-oxidative polymerization of an aniline-attached
zinc porphyrin derivative in Bu4NClO4–CH2Cl2 to give azobenzene-bridged porphyrin
polymer wires on GC and indium tin oxide (ITO) electrodes [45]. The polymer film
thickness in the present case (vide infra) was much thicker than that in the previous case,
implying that the electrolyte conditions employed in this study and the redox property of
the starting materials are more suitable to the formation of ultralong redox polymer wires,
whereas their bridging structure is similar to that in the previous case.

2.2. Structural Characterization and Electropolymerization Mechanism

2-Fe was characterized by Raman spectroscopy and compared with a chemically
synthesized linear polymer, [Fe(tpy-AB-tpy)]n(BF4)2n (6), by the coordination reaction of
trans-tpy-Ph-N=N-Ph-tpy (5) with Fe(BF4)2·6H2O (Figure 3). Characteristic Raman signals
of azobenzene [46], Ar–N stretching (1145 cm−1), and trans-N=N stretching (1445 cm−1)
are present in the spectra of both 2-Fe and [Fe(tpy-AB-tpy)]n(BF4)2n. These two spectra are
perfectly consistent with each other, and no extra peaks appear. This result indicates that
the electrochemically synthesized polymer has a linear azobenzene-bridged structure.

Here, we propose the most plausible mechanism of the electropolymerization reaction
in this study. The literature records two possible ways to form azobenzene by oxidation of
aniline. One is the condensation reaction of aniline and nitrosobenzene produced by oxida-
tion of aniline [47]. The other occurs via oxidation of diphenylhydrazines stemming from
homocouplings of aniline radicals, which are common in electrochemical reactions [48]. In
the present case, the anchoring reaction of molecular wires starts from electro-oxidation of
an amino group of the monomers (Step I, left part in Figure 4). In the present electropoly-
merization, the corresponding oxidation waves appear at 0.94 V (1-Fe) and 0.97 V (1-Ru) in
the cyclic voltammograms [49,50]. These nitrogen radicals react with the carbon electrodes
to immobilize themselves through radical addition to a π-bond of the carbon, thus generat-
ing a geminal carbon radical (Step II) [51]. This surface-immobilized nitrogen is further
oxidized and reacted with the geminal carbon radical to form a N–C–C three-membered
ring (Step III). This stable anchor has been identified in a similar reaction on fullerene [52]
and is supported by results of DFT calculations (see Supplementary Materials).

Elongation of the wires starts immediately after stable surface bonding is established.
The other aniline group of the surface complex is converted into a radical by oxidation (Step
IV, Figure 4). The radical seizes one electron from an aniline group of the nearest complex
in solution, and further oxidation generates a pair of radicals in close proximity. Due to
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their high reactivity and closeness, they couple to form an N–N bond before the radical
in solution diffuses far away (Step V). This diphenylhydrazine linkage is then oxidized to
form azobenzene through a 2e− oxidation reaction (Step VI) [53]. Oxidation waves appear
at 1.06 and 1.13 V in the cyclic voltammogram of 1-Ru (Figure 2B), while these two peaks
overlap with the anodic wave of [Fe(tpy)2]3+/2+ for 1-Fe. Finally, repeating Steps IV, V, and
VI generates long polymer wires.
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2.3. Electrochemical Performance and Morphology of Electropolymerized Films

Figure 5A shows a cyclic voltammogram of 2-Fe in Bu4NClO4–MeCN, in which
two reversible waves for [Fe(tpy)2]3+/2+ and [Fe(tpy)2]2+/1+ appear at 0.79 and −1.68 V
vs. Ag/Ag+, respectively [54]. The cyclic voltammogram of 2-Ru in Bu4NClO4–MeCN
displays three reversible waves for [Ru(tpy)2]3+/2+, [Ru(tpy)2]2+/1+, and [Ru(tpy)2]1+/0 at
0.96, −1.68, and −1.90 V, respectively (Figure 5C) [54]. The peak currents of [Fe(tpy)2]3+/2+

in 2-Fe and [Ru(tpy)2]3+/2+ in 2-Ru increase linearly with the scan rate (Figure 5B,D). The
linear relationship in both cases confirms their surface-confined nature and also indicates
that redox reactions in these polymer wires are facile (vide infra).
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In the present case, coverage of polymer wires, Γ (mol cm−2), was evaluated exper-
imentally as follows (Figure 6). First, a 2-Fe-modified GC electrode was treated with
methanolic KOH solution under an applied potential to oxidize and dissociate Fe2+ ions,
leaving noncoordinating terpyridine moieties on the electrode. The KOH–MeOH solu-
tion prevents the formation of insoluble iron oxides [55]. Electrochemical measurements
showed that more than 99.9% of the complexes were removed (Figure 7B). The electrode
was then treated with an ethanolic Fe(BF4)2·6H2O solution, followed by a solution of
terpyridine in CHCl3 to form a monolayer of Fe(tpy)2. Finally, the Γ value was evalu-
ated from the cyclic voltammogram of [Fe(tpy)2]3+/2+. The Γ value thus obtained was
2.00 (± 0.18) × 10−11 mol cm−2 (Figure 7C). This value is more similar to the case of strong
Si–C bonding formed by hydrosilylation on silicon, 3–4 × 10−11 mol cm−2 [34,36], rather
than the case of modest Au–S bonding on gold, 1.0–1.2 × 10−10 mol cm−2 [39,40]. The
maximum coverage of [Fe(tpy)2]2+ on a surface evaluated by a close-packing model is
1.6 × 10−10 mol cm−2.
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The lengths of polymer wires were evaluated from their cyclic voltammograms based
on the Γ value of the monolayer noted above. The Γ value of Fe(tpy)2 of the 2-Fe sample
synthesized by 150 potential scan cycles was 3.3 × 10−8 mol cm−2, which corresponds
to ca. 1500 units and a wire length of 3 µm based on molecular modelling, indicating
that the length of one Fe(tpy)2 unit is 2 nm (see Supplementary Materials). The surface
coverage of Ru(tpy)2 in the 2-Ru sample synthesized by 150 potential scan cycles was
2.2 × 10−8 mol cm−2, corresponding to ca. 1000 units and a length of 2 µm.

The surface morphology of a GC electrode modified with 2-Fe (average length: 3 µm)
was analyzed with atomic force microscopy (AFM). Its topography had height differences
between peaks and troughs of approximately 20 nm, which was only 0.6% of the wire
length (Figure 8B), indicating that all wires have an identical structure and completely cover
the electrode surface. On the other hand, the phase image of 2-Fe shows a uniform pattern
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with a domain size of around 60 × 30 nm (Figure 8D), which is common in wire-type
materials and different from that of pristine GC (Figure 8C).
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Scale bars are 1 µm.

2.4. Charge Transport in Long Fe(tpy)2 Polymer Wires

The highest coverage of Fe(tpy)2 units in 2-Fe obtained by the electropolymerization
method was 1.63 × 10−7 mol cm−2 (Figure 10A). This corresponds to 7410 layers and an
average molecular wire length of 14.8 µm. The surface structure and length of this longest
2-Fe were observed with optical microscopy (Figure 9). The wire length, as measured from
a side-view image of the electrode, was around 15 µm, which is almost identical to the
value determined electrochemically. However, wires protruding from the GC electrode
formed a rough surface, which was different from the smooth surface of the 3 µm sample
measured with AFM (above). We expect that the self-supporting force of individual wires
weakens, resulting in the formation of large bundles and a rough surface when the wires
grow longer.
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Fe(tpy)2 polymer wires (region II). Scale bar is 20 µm.

An important property of molecular wires is their charge transport capacity [10]. Here,
we employed chronoamperometry and chronocoulometry to evaluate the charge transport
kinetics of 2-Fe and 2-Ru in 1 M Bu4NClO4–MeCN. The chronoamperogram of the longest
polymer wires (close to 15 µm) shows that both oxidation and reduction currents decreased
to zero within 5 s (Figure 10B). The charge transport diffusion coefficient (Dct) can be
derived from the linear region between 0.85 s−1/2 (1.4 s) and 3.54 s−1/2 (0.08 s) in the plot
of i vs. t−1/2 (Figure 10C). The Dct value is 4.6 ×10−7 cm2 s−1, which is remarkably higher
than that of other redox complex polymer films: 2.2 × 10−10 to 4.5 × 10−9 cm2 s−1 for
poly-[Ru(vbpy)3]2+ (vbpy: 4-vinyl-4’-methyl-2,2’-bipyridine) [56], 1.6 × 10−8 cm2 s−1 for
a copolymer of [Os(vpy)(bpy)2Cl]+ (vpy: 4-vinylpyridine and bpy: 2,2’-bipyridine) [57],
1 × 10−7 to 1 × 10−8 cm2 s−1 for PVP–Fe(CN)5 (PVP: poly(4-vinylpyridine)) [58], and
1 × 10−8 to 1 × 10−9 cm2 s−1 for polyvinylferrocene [59,60]. A possible reason for this
high redox conductivity of 2-Fe is that these molecular wires have highly π-conjugated
structures, which give them facile through-bond redox conduction between the Fe(tpy)2
moieties. We previously reported this behavior for oligomeric wires prepared by the
stepwise coordination method [5], but this is our first time seeing such a high value in
micrometer-length wires. Note that the current-decay profile of this polymer wire differs
from that of Fe(tpy)2 oligomer wires on a gold surface, which shows a rate-determining
step of current flow arising from charge transportation between the electrode surface and
the first-layer complex via Au–S bonds, which cause the current flow not to obey the
Cottrell equation [39]. In the present case, the anchor of the polymer wire on carbon via
a N–C–C three-membered ring with a unique conjugate structure enables fast electron
transfer between the electrode and the nearest Fe(tpy)2 unit.
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Figure 10. Electrochemical measurements of the longest 2-Fe wires (Γ = 1.63 × 10−7 mol cm−2) on GC in 1 M Bu4NClO4–
MeCN. (A) Cyclic voltammogram at a scan rate of 1 mV s−1. (B) Chronoamperogram with a potential step from 0.5 to
1.1 V. (C) i-t−1/2 plot derived from (B). The dotted line is the linear fit of the blue region, R2 = 0.9954, y = 2.854 × 10−4 x.
(D) Chronocoulogram with a potential step from 0.5 to 1.1 V.
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2.5. Hetero-Metal-Complex Wires

Hetero-metal-complex polymer wires attract much attention owing to their unique
electronic properties and potential applicability as, for example, single-molecule diodes
and single-molecule memory [61]. We employed the present electropolymerization method
to construct hetero-metal-complex polymer wires, GC/[2-Fe]–[2-Ru] (3) and GC/[2-Ru]–
[2-Fe] (4). The cyclic voltammograms of the first preparation step of the hetero wires appear
no different from those of homo wires. However, the anodic and cathodic peak currents
of the second block show unequal current increases as the second block grows longer. 3
shows a clear cathodic peak, but a small anodic peak derived from Ru-wires in the second
step voltammogram, and the cathodic peak grows visibly as the scan number increases
(Figure 11A). On the other hand, 4 shows a sharp anodic peak and a broad cathodic peak in
the potential region of Fe-wire redox reaction in the second-step voltammogram, and the
anodic peak grows faster than the cathodic one (Figure 11B). In both cases, redox responses
of the first block show almost no decrease during the growth of the second block on top of
the first. The unequal increasing rates of the anodic and cathodic peak currents indicate
that the second complex wire is connected to the top of the first wire, and not directly to
the carbon electrode.
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Figure 11. Cyclic voltammograms of the electrosynthesis of 3 (A) and 4 (B). Cyclic scans are labeled in order. Cyclic
voltammograms of 3 (C) and 4 (D) in 1 M Bu4NClO4–MeCN at various scan rates as shown in the figure.

The cyclic voltammograms of 3 in Bu4NClO4–MeCN at a scan rate lower than
10 mV s−1 show two pairs of redox waves at 0.79 and 0.96 V vs. Ag/Ag+ attributable
to [Ru(tpy)2]3+/2 and [Fe(tpy)2]3+/2, respectively (Figure 11C). The peak currents of ca-
thodic and anodic waves of 2-Fe, in the first block of the wire, are close to each other,
whereas the cathodic peak of 2-Ru, in the second block, is sharper and higher than the
anodic one. When the scan rate is increased to 100 mV s−1, the cathodic peaks of both
blocks remain sharp and gradually fuse. On the other hand, the sharpness of the anodic
peaks of 2-Fe shows almost no change, but that of 2-Ru becomes much broader and finally
inseparable above 100 mV s−1.

The cyclic voltammograms of 4 show an irreversible phenomenon similar to 3, but
they reflect the reverse connection of the two complex wires (Figure 11D). The first Ru(tpy)2
block connected to the GC electrode shows no difference in the cathodic and anodic waves,
while the second Fe(tpy)2 block shows considerable dependence of the anodic peak current
and sharpness on the scan rate. The unequal cathodic and anodic waves in each hetero
wire are “redox diode” behaviors that can be attributed to a redox potential difference
of 0.17 V between [Ru(tpy)2]3+/2+ and [Fe(tpy)2]3+/2+ (Figure 5). Redox diode behavior
is observed in hetero redox polymer films [62,63]. In the cyclic voltammogram of 3, the
[Fe(tpy)2]3+/2+ couple attached directly to the electrode has similar oxidation and reduction
rates, whereas the [Ru(tpy)2]3+/2+ couple shows slow oxidation and fast reduction because
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the electron transfer is perturbed by the inner [Fe(tpy)2]3+/2+ couple. In the wire with
the reverse structure, 4, the inner Ru(tpy)2]3+/2+ couple controls the electron transfer of
the outer [Fe(tpy)2]3+/2+ couple, resulting in slow reduction and fast oxidation. Note that
similar π-conjugated hetero-metal oligomer wires prepared by the stepwise coordination
method did not show such diodelike behavior clearly [35,40]. This implies that the length
of the molecular wires in this study is crucial for a significant hetero-junction effect on the
direction of electron transfer.

3. Conclusions

A highly efficient method for preparing long polymer wires on a carbon surface was
established by using electrochemical coupling reactions of anilinoterpyridine complexes of
iron and ruthenium. The resulting wire consists of a π-conjugated linear and rigid structure
with azobenzene bridging. This electropolymerization method affords ultralong (up to
7400 units corresponding to 15 µm) bis(terpyridine)iron and bis(terpyridine)ruthenium
polymer wires, 2-Fe and 2-Ru, respectively, with fast redox conduction capacities. Hetero-
metal-complex polymer wires on a glassy carbon electrode, GC/[2-Fe]–[2-Ru] and GC/[2-
Ru]–[2-Fe], were prepared by two-step sequential electropolymerization reactions. The
cyclic voltammograms of these polymer wires show redox diodelike behaviors due to the
redox potential difference at the junction of two blocks. Our method offers an easy way to
synthesize polymer wire arrays and to integrate functional molecules on carbon.

Supplementary Materials: The following are available online. Experimental Section, cyclic voltam-
mograms for electropolymerization of 1-Fe; Raman spectrum of Fe polymer wire, 2-Fe, and its peak
assignment; cyclic voltammograms of 2-Fe and 2-Ru at various scan rates; DFT calculation, valuation
of the length of 2-Fe and 2-Ru blocks in 3; evaluation of the length of 2-Fe and 2-Ru blocks in 4.
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