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1  | INTRODUC TION

Species declines and extinctions are driven by multiple factors, the 
most egregious being anthropogenic habitat alteration (Travis, 2003), 

species introductions (Vitousek, Mooney, Lubchenco, & Melillo, 
1997), and climate change (Thomas et al., 2004). Introduced spe‐
cies, in particular, have provoked negative responses in a variety of 
ecological contexts: community assembly (Sanders, Gotelli, Heller, & 
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Abstract
The persistence of an invasive species is influenced by its reproductive ecology, and 
a successful control program must operate on this premise. However, the reproduc‐
tive ecology of invasive species may be enigmatic due to factors that also limit their 
management, such as cryptic coloration and behavior. We explored the mating and 
reproductive ecology of the invasive Brown Treesnake (BTS: Boiga irregularis) by re‐
constructing a multigenerational genomic pedigree based on 654 single nucleotide 
polymorphisms for a geographically closed population established in 2004 on Guam 
(N = 426). The pedigree allowed annual estimates of individual mating and reproduc‐
tive success to be inferred for snakes in the study population over a 14‐year period. 
We then employed generalized linear mixed models to gauge how well phenotypic 
and genomic data could predict sex‐specific annual mating and reproductive success. 
Average snout–vent length (SVL), average body condition index (BCI), and trappabil‐
ity were significantly related to annual mating success for males, with average SVL 
also related to annual mating success for females. Male and female annual reproduc‐
tive success was positively affected by SVL, BCI, and trappability. Surprisingly, the 
degree to which individuals were inbred had no effect on annual mating or reproduc‐
tive success. When juxtaposed with current control methods, these results indicate 
that baited traps, a common interdiction tool, may target fecund BTS in some regards 
but not others. Our study emphasizes the importance of reproductive ecology as a 
focus for improving BTS control and promotes genomic pedigree reconstruction for 
such an endeavor in this invasive species and others.
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Gordon, 2003), competitive exclusion/niche displacement (Mooney 
& Cleland, 2001), interspecific hybridization/introgression (Muhlfeld 
et al., 2009), and even natural selection (Strauss, Lau, & Carroll, 
2006). Introductions are deemed second only to human‐induced 
habitat loss as a major cause of species endangerment (Simberloff, 
2001), yet are the primary cause of global avian extinctions (Clavero 
& García‐Berthou, 2005). Within a more social context, invasive spe‐
cies also impact global economies (Olson, 2006) and human health 
(Juliano & Lounibos, 2005).

Reproductive ecology is a key element in the establishment and 
persistence of an invasive species. Those that exhibit high fecundity 
not only increase their probability of establishment but also miti‐
gate the potential for an Allee effect and/or issues that stem from 
demographic and environmental stochasticity (Lockwood, Hoopes, 
& Marchetti, 2013). Following invasion, a species also must be able 
to persist and cope with changes in an alien environment. These re‐
sponses are mediated through the mating system (e.g., selfing, mo‐
nogamy, promiscuity), its characteristics (e.g., traits that promote 
mating and reproductive success), and associated reproductive phe‐
nomena (e.g., inbreeding, multiple paternity) that influence genetic 
variation and evolutionary potential (Ellegren & Galtier, 2016).

Two reproductive ecology parameters critical to development of 
successful invasive species control are the number of offspring that 
an individual produces annually (referred to here as annual repro‐
ductive success; ARS) and the number of mates with which an indi‐
vidual produces offspring annually (referred to here as annual mating 
success; AMS). Quantification of average ARS in an invasive species 
yields an important estimate of the annual ability of a population to 
replenish itself. Further, when phenotypes associated with high ARS 
can be identified, these can be juxtaposed with phenotypes of indi‐
viduals removed by existing control methods to gauge the efficacy 
of management and identify areas for improvement. Differently, the 
number of mates with which an individual produces offspring can 
have implications for maintenance of genetic diversity (Ellegren & 
Galtier, 2016), as production of offspring with multiple mating part‐
ners increases the overall genetic variation present in the resulting 
offspring (Foerster, Delhey, Johnsen, Lifjeld, & Kempenaers, 2003). 
In this regard, juxtaposition of phenotypes associated with high AMS 
against those of individuals targeted by control can also provide in‐
formation regarding the potential effect of control methods on ge‐
netic variation and evolutionary potential over time.

Here, we applied these concepts to explore the reproductive 
ecology of the Brown Treesnake (Boiga irregularis; BTS), introduced 
to Guam from the island of Manus in the Admiralty Archipelago 
during or shortly after World War II and subsequently deemed one 
of the “world's worst” invasive species (Lowe, Browne, Boudjelas, 
&	De	 Poorter,	 2000).	 Despite	 limited	 propagule	 pressure	 (≤10	 in‐
dividuals; Richmond, Wood, Stanford, & Fisher, 2014), its popula‐
tion size reached two million by the 1980s (Fritts & Rodda, 1998). 
BTS have since caused considerable ecological changes, to include 
extirpation/extinction of 10 native bird species (Savidge, 1987) 
and population declines of endemic nonavian vertebrates (Rodda, 
Fritts, & Chiszar, 1997). Not surprisingly, this decline in biodiversity 

has had a cascading effect on community dynamics and structure 
(Caves, Lambers, Tewksbury, & Rogers, 2013; Mortensen, Dupont, 
& Olesen, 2008; Rogers, Lambers, Miller, & Tewksbury, 2012). The 
BTS invasion has also been detrimental to the economy (Perry & 
Vice, 2009) and has implications for human health (Fritts, McCoid, 
& Haddock, 1990).

Birth rate is a demographic parameter fundamental to popula‐
tion persistence (Cole, 1954), and thus, an in‐depth understanding 
of reproductive ecology should be a focus of control efforts for BTS 
and other invasive species. Not surprisingly, this theme has been am‐
plified in the BTS literature (e.g., Engbring & Fritts, 1988; Jordan & 
Rodda, 1994; Moore et al., 2005; Rodda, Fritts, McCoid, & Campbell, 
1999; Siegel, Aldridge, Clark, Poldemann, & Gribbins, 2009). 
However, the cryptic behavior of BTS constrains field studies and 
stymies in‐depth research on its reproduction in the wild (Greene & 
Mason, 1998; Kahl, Henke, Hall, & Britton, 2012; Mathies, Franklin, 
& Miller, 2004; Trembath & Fearn, 2008). This is unfortunate in that 
successful control and eradication hinges on the ability to eliminate 
breeding individuals more rapidly than they are replenished (Rodda 
et al., 2002). If phenotypes associated with elevated mating and re‐
productive success can be so targeted, then the potential for man‐
agement to achieve this goal is enhanced considerably.

Fortunately, ARS and AMS can be inferred from genomic ped‐
igrees, as reconstructed from DNA samples. However, genetic 
markers for BTS are limited, particularly with regard to fine‐grained 
estimates of relatedness [but see Richmond et al. (2014) and Unger 
et al. (2015)]. This capacity has been expanded as of late through 
derivation of single nucleotide polymorphisms (SNPs) that are not 
only cost‐effective but also highly applicable to nonmodel organisms 
(Ekblom & Galindo, 2011).

Our central goal was to reconstruct a multigenerational genomic 
pedigree for BTS that would allow patterns of mating and repro‐
ductive success to be inferred in the wild. To do so, we juxtaposed 
genome‐wide SNPs identified from double‐digest restriction site‐
associated DNA (ddRAD) libraries against phenotypic and genomic 
data collected over a 14‐year period for 426 BTS from a geographi‐
cally closed population on Guam. Predictors of AMS and ARS were 
identified and the genetic mating system of BTS characterized. The 
results of this study can be applied to assess the efficacy of existing 
BTS control and to improve management. In a more general sense, 
this study highlights the importance of understanding invasive spe‐
cies reproductive ecology in the context of management action and 
promotes the use of genomic pedigree reconstruction to achieve 
this goal.

1.1 | Hypotheses

We postulated that both sexes are promiscuous (i.e., producing off‐
spring with more than one mating partner per year) as this is the most 
common snake mating system (Rivas & Burghardt, 2005). We pre‐
dicted that four factors, each focusing on a different aspect of BTS 
ecology, were related to AMS and ARS. Specifically, we predicted 
that individual AMS and ARS would be influenced by the following: 
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(a) snout–vent length (SVL; the length from the tip of the snout to 
the cloacal vent), (b) body condition index (BCI; a measure of body 
mass relative to SVL), (c) trappability (a measure of the propensity to 
enter baited traps; Le Cœur et al., 2015), and (d) the degree to which 
an individual is inbred.

We predicted an influence of SVL on AMS and ARS because 
SVL is a trait correlated with AMS (Shine et al., 2000) and ARS in 
other snakes (Levine et al., 2015). Male snakes with larger SVLs have 
a competitive advantage over smaller males in combat for gaining 
priority‐of‐access to females (Duvall & Schuett, 1997; Madsen & 
Shine, 1993, 1994), and such “combat dances” have been observed 
among male BTS in a laboratory setting (Greene & Mason, 2000). 
Differently, females with larger SVLs may appear more attractive 
to males (Blouin‐Demers, Gibbs, & Weatherhead, 2005), resulting 
in greater AMS, and their larger body cavities may correlate with 
an increased capacity to produce eggs (Blouin‐Demers et al., 2005; 
Brown & Shine, 2007). We expected body condition to be influen‐
tial for AMS and ARS in that underweight individuals in either sex 
may lack sufficient energy reserves to search for mates (Lind & 
Beaupré, 2015), engage in mating and mating‐related activities [e.g., 
male combat (Shine et al., 2000)], and/or produce offspring (Aubret, 
Bonnet, Shine, & Lourdais, 2002).

We also postulated that trappability [i.e., the propensity to enter 
baited traps (Le Cœur et al., 2015)] would impact AMS and ARS for 
both sexes for two reasons. First, trappability may serve as a proxy 
for risk‐taking behaviors (Boyer, Réale, Marmet, Pisanu, & Chapuis, 
2010; Réale, Gallant, Leblanc, & Festa‐Bianchet, 2000; Wilson, 
Coleman, Clark, & Biederman, 1993). In this sense, positive correla‐
tions exist between boldness/exploratory behavior and trappability 
across taxa (Biro & Dingemanse, 2009). We predicted that individu‐
als with high trappability would display greater values for AMS and 
ARS in that they would be more likely to take risks regarding mate 
searching and/or acquisition. Second, those individuals may also 
enter traps more often due to enhanced olfactory capabilities that 
improve their capacity to find baited traps (Shivik, 1998; Shivik & 
Clark, 1997). This should also promote mating and reproductive suc‐
cess in that olfaction influences mate finding in male BTS (Greene, 
Stark, & Mason, 2001; Mathies, Levine, Engeman, & Savidge, 2013). 
Importantly, we recognize the complexity of the relationship be‐
tween trappability, AMS, and ARS, and thus simply offer a rationale 
for their association. Finally, we predicted that a negative relation‐
ship would be found between AMS/ARS and the degree to which 
the focal individual is inbred. This would represent an echo of the 
founder effects manifested by BTS on Guam (Richmond et al., 2014).

2  | MATERIAL S AND METHODS

2.1 | Study site

The study site is a 5‐ha enclosure on Andersen Air Force Base (north‐
ern Guam) that was fenced in 2004 to prevent immigration/emi‐
gration of BTS (Rodda, Savidge, Tyrrell, Christy, & Ellingson, 2007; 
Tyrrell et al., 2009). We collected tissue samples (blood, tail clips, 

and ventral scale clips) from 426 unique individuals (217 females, 
207 males, and two of unknown sex) over an eight‐year span (2009–
2017). We back‐extrapolated median estimated hatch dates (assum‐
ing a hatch size of 350 mm SVL) for each individual from sex‐specific 
growth rates and SVL at first capture that ranged from years 2002 
to 2016. From 2004 to 2018, we captured BTS in baited traps or by 
hand during nocturnal visual searches along maintained transects. 
Baited traps deployed in the enclosure were similar to those used in 
operational control on the island. Over the course of the study, data 
including SVL, mass, and method of capture were collected from in‐
dividuals each time they were encountered.

2.2 | ddRAD library preparation

We extracted genomic DNA using the QIAamp Fast DNA Tissue 
Kit (QIAGEN©) and quantified concentrations with a Qubit 2.0 
Fluorometer (Invitrogen, Inc.), following manufacturer protocols. We 
verified the presence of high‐quality genomic DNA (i.e., molecular 
weight > 10kb) by separating a 5‐µl aliquot of each extract on a 2% 
agarose gel for 50 m at 100 mV, with visualization via GelGreen on a 
blue‐light transilluminator (Gel Doc™ EZ Imager; Bio‐Rad). We pre‐
pared extracted DNA samples using a ddRAD protocol (Peterson, 
Weber, Kay, Fisher, & Hoekstra, 2012) subsequently modified in 
Bangs, Douglas, Mussmann, and Douglas (2018; Appendix S1) for 
single‐end sequencing (100 bp length) on an Illumina HiSeq 4000.

2.3 | Bioinformatics

We inspected fastq files for quality using FastQC (Andrews, 2014). 
We used the process_radtags module of Stacks 2.0 (Catchen, Amores, 
Hohenlohe, Cresko, & Postlethwait, 2011; Catchen, Hohenlohe, 
Bassham, Amores, & Cresko, 2013) to demultiplex reads by indi‐
vidual barcode with default values for score limit (s = 10) and sliding 
window size (w = 0.15). We clustered raw reads into loci using Stacks 
2.0, which uses three main parameters to cluster reads: minimum 
number of identical sequencing reads to be considered a putative 
locus (=m), maximum number of nucleotide differences within each 
locus (stack) per individual (=M), and maximum number of nucleotide 
differences between individuals at a locus (=n; Catchen et al., 2011). 
We determined the correct parameters for clustering reads into loci 
by following published protocols (Paris, Stevens, & Catchen, 2017; 
Rochette & Catchen, 2017). The correct values of these parameters 
were revealed by parameter optimization to be as follows: m = 3; 
M = 2; n = 2 (Appendix S1).

We then used Stacks 2.0 to cluster raw reads from all samples, 
with 75 selected for catalog construction (Rochette & Catchen, 
2017) to span the entire sampling period, include only high‐cover‐
age individuals (mean number of reads/locus = 26.67 ± 9.69), and 
minimize potential batch effects that could stem from digestion, li‐
gation, and sequencing procedures. We excluded those individuals 
sequenced more than once for quality control (Appendix S1). Upon 
completion of the core modules (ustacks, cstacks, sstacks, tsv2bam, 
gstacks), we used the populations module to retain only those loci 
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present in at least 95% of individuals (r = 0.95). To minimize link‐
age disequilibrium, we also only retained the first SNP at each locus 
(‐‐write_single_snp).

2.4 | Pedigree reconstruction

We used the R package Sequoia (Huisman, 2017) to iteratively recon‐
struct a maximum‐likelihood multigenerational pedigree from SNP 
genotypes, sex data, and estimated birth years. Sequoia is optimized 
for SNP data sets, jointly considers a variety of alternative relation‐
ship categories (e.g., grandparents/grand‐offspring in additional to 
parents/offspring), and allows the consideration of more than two 
generations at a time. Due to the longitudinal nature of our study 
and the presence of multiple overlapping generations of BTS in the 
study population, this last point is essential as multiple generations 
of snakes can feasibly produce offspring in the same cohort, thereby 
making it impossible to declare a priori a clear candidate parent 
group for each cohort [as is required by other parentage analysis 
software such as Colony (Jones & Wang, 2010)]. To prepare the SNP 
data set for pedigree reconstruction, we first used PLINK 1.9 (Purcell 
et al., 2007) to test for and discard loci in linkage disequilibrium (LD) 
and out of Hardy–Weinberg equilibrium (HWE). For LD and HWE 
tests, we considered all individuals (n = 24) born from 2002 to 2004 
(2004 = year of fence construction) as founders. We tested for LD 
with the ‐‐indep function, evaluating 50 SNP windows, five SNPs at a 
time, and with a variance inflation factor (VIF) cutoff = 2.

The Sequoia user manual recommends retaining only those loci 
with	a	minor	allele	frequency	(MAF)	≥0.3	in	the	population,	and	to	
tweak this parameter value and the level of LD tolerated until a set 
of 300–700 SNPs is achieved. Rather than compromising the strin‐
gency of LD that was tolerated in our data set and risking potential 
nonindependence of SNPs, we chose a MAF = 0.3 for the population 
which resulted in 654 SNPs for pedigree reconstruction.

We accomplished initial parentage assignments with the geno‐
type file and a life history file with MaxSibiter = 0. This allowed us to 
scan the pedigree for obvious errors, as well as for duplicates acci‐
dentally retained. We altered the parameter data frame (=Specs) to 
increase MaxSibshipSize = 100, MaxSibiter = 40, and UseAge=“Extra.” 
The agepriors file was modified to prevent impossible parentage 
assignments (e.g., one‐year‐old parents; J. Huisman, personal com‐
munication, 9 April 2018). This was accomplished by changing the 
one‐year‐old prior for maternity from 0.035 to 0.000 and the one‐
year‐old prior for paternity from 0.001 to 0.000. All other parame‐
ters were kept at default. We constructed the full pedigree by setting 
the altered parameter file as the SeqList. We ran Sequoia using R v. 
3.4.3 (R Core Team, 2013).

We assessed the accuracy of our reconstructed pedigree and 
the ability of our SNP data set to correctly identify familial rela‐
tionships in three ways. First, we used Sequoia's EstConf function 
to calculate confidence probabilities of parentage assignments for 
dams and sires of known ID (Table S1). We ran simulations for 50 
iterations (nSim = 50) and assumed that 40% of parents were not 
sampled (ParMis = 0.4), and we found all probabilities of parentage 

assignments to known individuals ranged from 0.93 to 0.99. Second, 
we regressed pairwise genomic relatedness [estimated from the en‐
tire set of SNPs (N = 6,180) using the QG89_avg estimator in the R 
package irelr (Gonçalves da Silva & Russello, 2011)] on to pairwise 
pedigree relatedness [estimated from the reconstructed Sequoia 
pedigree including dummy individuals using the R package Pedantics 
(Morrissey & Wilson, 2010)]. We found a strong correlation between 
estimated pairwise genomic relatedness and estimated pairwise 
pedigree relatedness (Pearson correlation coefficient = 0.71; Figure 
S1) that was also within the range of correlations previously reported 
for data sets analyzed with Sequoia (=0.47–0.81; Huisman, 2017). 
Third, we tested the ability of Sequoia to correctly identify dupli‐
cate individuals by running it on a data set with genotypes of 114 
individuals that were sequenced twice in different lanes following 
separate library preparations (Appendix S1), and found that all dupli‐
cates were correctly flagged. We ran Sequoia and irelr with R v. 3.4.3, 
and we ran Pedantics in RStudio (RStudio Team, 2015) with R v. 3.5.0.

We parsed the Pedigree file generated by Sequoia to calculate 
AMS and ARS for each individual for each calendar year that they 
were known to be alive, and we included dummy parents assigned 
by Sequoia in estimates of AMS. Breeding is largely aseasonal in 
BTS on Guam (Savidge, Qualls, & Rodda, 2007), although there is 
some evidence that peak copulation occurs in the dry season with 
hatching occurring in the following wet season (least rain occurs in 
March; Rodda & Savidge, 2007). Using calendar years as cutoffs for 
AMS and ARS is thus somewhat arbitrary but consistent among in‐
dividuals, a fact which should make our analyses more conservative. 
Fourteen individuals were assigned a known individual as one par‐
ent but neither a known nor dummy individual as their other parent. 
We included these assignments in estimates of AMS and ARS so as 
to not underestimate ARS, and preliminary analyses without these 
assignments demonstrated that their inclusion had no effect on the 
results of downstream analyses.

2.5 | Statistical analyses

We fit generalized linear mixed models (GLMMs) for each sex sepa‐
rately to test predictors of AMS and ARS using the glmer function 
of the R package lme4 (Bates, Maechler, Bolker, & Walker, 2015). 
We excluded from analyses records for two individuals of unknown 
sex, as well as annual records for which AMS and ARS > 0 but also 
for which phenotypic data were incomplete or lacking (=11 annual 
female records and 10 annual male records). These exclusions re‐
moved data collected during year 2014 from analyses. The final data 
set comprised records of AMS and ARS for years 2004–2013 and 
2015–2018.

For both males and females, we analyzed a complete data set 
that included all annual data records for individuals (hereafter 
“complete”; data collected during years 2004–2013 and 2015–
2018) and a data set filtered by mean annual SVL to only include 
data collected when individuals were likely adults (hereafter “SVL‐
filtered”; data collected during years 2005–2013 and 2015–2018). 
BTS can mature over a large size range (Savidge et al., 2007), so 
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drawing a clear cutoff by age or SVL at which snakes are deemed 
sexually mature is, at best, difficult and, at worst, risks biasing the 
data set by excluding from analyses legitimate adults that matured 
earlier than is average or including juveniles that matured later. 
Nevertheless, we recognize that our inclusion of juvenile records 
in the complete data sets may be problematic, particularly if traits 
undergo ontogenetic shifts [e.g., change in trappability as BTS 
mature (Rodda et al., 2007)]. Therefore, we also analyzed sex‐
specific data sets that we filtered to include only data collected 

when individuals were likely adults (=“SVL‐filtered”). Savidge et al. 
(2007) reported that most females and males reach sexual matu‐
rity at SVLs between 910 and 1,025 mm and between 940 and 
1,030 mm, respectively. Thus, these SVL‐filtered data sets only 
included annual records that exceeded these cutoffs (i.e., mean 
female	SVL	≥	910	mm,	mean	male	SVL	≥	940	mm).	Filtering	 the	
data set by mean annual SVL also ensured that only fully trappa‐
ble snakes were included in analyses of these data (Tyrrell et al., 
2009).

F I G U R E  1   Distribution of four annual measurements with respect to annual mating success (i.e., number of mates with which an 
individual produced offspring over the course of a calendar year) for male Brown Treesnakes (Boiga irregularis) collected over a 14‐year 
period from a geographically closed 5‐hectare population on Guam. Annual measurements include standardized average snout–vent length 
(“Standardized SVL”), number of times the individual was captured in a baited trap (“Trappability”), average body condition index (=BCI), and 
degree of genome‐wide inbreeding (“Inbreeding”). There were a total of 661 annual observations of 207 males

F I G U R E  2   Distribution of four annual measurements with respect to annual mating success (i.e., number of mates with which an 
individual produced offspring over the course of a calendar year) for female Brown Treesnakes (Boiga irregularis) collected over a 14‐year 
period from a geographically closed 5‐hectare population on Guam. Annual measurements include standardized average snout–vent length 
(“Standardized SVL”), number of times the individual was captured in a baited trap (“Trappability”), average body condition index (“BCI”), and 
degree of genome‐wide inbreeding (“Inbreeding”). There were a total of 735 annual observations of 217 females
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We used plots to visualize the structure and distribution of all 
data sets prior to fitting the models (complete data sets shown in 
Figures	1‒4).	We	assayed	for	the	potential	presence	of	interactions	
among explanatory variables by generating coplots and tested for 
collinearity among explanatory variables (Zuur, Ieno, & Elphick, 
2010). To do so, we visually inspected correlation matrices and cal‐
culated VIFs with the R package MCtest (Imdadullah, Aslam, & Altaf, 
2016), with no evidence of significant collinearity among explana‐
tory variables [all VIFs < 2 (Zuur et al., 2010)].

We did not model interactions among explanatory variables in 
sex‐specific GLMMs of AMS and ARS for several reasons. First, 
we had no a priori expectation that explanatory variables would 
interact to influence AMS or ARS (Harrison et al., 2018). Second, 
visualization of potential interactions with coplots did not indicate 
strong interactions among predictor variables (Bolker et al., 2009; 
Zuur & Ieno, 2016; Zuur et al., 2010). Third, we avoided overpa‐
rameterization of our models by not including interaction terms 
(Harrison et al., 2018).

F I G U R E  3   Distribution of four annual measurements with respect to annual reproductive success (i.e., number of offspring an 
individual produced over the course of a calendar year) for male Brown Treesnakes (Boiga irregularis) collected over a 14‐year period from 
geographically closed 5‐hectare population on Guam. Annual measurements include standardized average snout–vent length (“Standardized 
SVL”), number of times the individual was captured in a baited trap (“Trappability”), average body condition index (“BCI”), and degree of 
genome‐wide inbreeding (“Inbreeding”). There were a total of 661 annual observations of 207 males

F I G U R E  4   Distribution of four annual measurements with respect to annual reproductive success (i.e., number of offspring an individual 
produced over the course of a calendar year) for female Brown Treesnakes (Boiga irregularis) collected over a 14‐year period from a 
geographically closed 5‐hectare population on Guam. Annual measurements include standardized average snout–vent length (“Standardized 
SVL”), number of times the individual was captured in a baited trap (“Trappability”), average body condition index (“BCI”), and degree of 
genome‐wide inbreeding (“Inbreeding”). There were a total of 735 annual observations of 217 females
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We specified a Poisson error distribution with a log‐link for 
GLMM analyses of the complete and SVL‐filtered sex‐specific data 
sets because of its utility for count data (Zuur, Ieno, Walker, Savaliev, 
& Smith, 2009) and the means of our response variables (i.e., µ < 5; 
DuVal, 2012). We chose not to convert our data to zeros (=AMS/
ARS = 0) and ones (=AMS/ARS > 0) for modeling with a binomial dis‐
tribution instead as this resulted in extreme parameter estimates and 
nonrandom patterns within our residuals. We validated our choice 
of distribution and method of modeling our data for final reduced 
models by testing for overdispersion (all p > .05), generating Q‐Q 
plots, and plotting scaled residuals against predicted values [simu‐
lated with the DHARMa package in R (Hartig, 2017)], with all models 
compliant. A Poisson distribution has also been used previously to 
model predictors of numbers of offspring produced in other organ‐
isms [e.g., male eastern chipmunks (Patterson & Schulte‐Hostedde, 
2011)].

We modeled sex‐specific AMS and ARS as linear functions of 
four fixed and two random effects. Fixed effects included annual 
mean BCI, annual mean SVL, annual trappability, and a genome‐wide 
estimate of inbreeding [Fhat3 (Yang, Lee, Goddard, & Visscher, 2011)]. 
Random effects included individual and year (Bolker et al., 2009). 
We included the “individual” random effect to account for repeated 
measurements of individuals and the “year” random effect to accom‐
modate temporal variation over the course of the study (e.g., vari‐
able numbers of traps deployed per night each year).

We estimated annual mean BCIs by taking the residuals of the 
regression of natural log‐transformed annual mean body mass ver‐
sus natural log‐transformed annual mean SVL separately for each 

sex (Schulte‐Hostedde, Zinner, Mllar, & Hickling, 2005). We assessed 
annual trappability by summing the number of times an individual 
was caught in a baited trap in a given year [see Réale et al. (2000) 
and Le Cœur et al. (2015)]. Average annual SVL was calculated for 
each individual, and this variable was standardized to have a mean 
of zero and a standard deviation of one to facilitate convergence of 
GLMMs (Harrison et al., 2018). Finally, we used PLINK 1.9 to derive 
the genome‐wide estimate of inbreeding (Fhat3, Yang et al., 2011) for 
each individual from the final filtered set of SNPs (N = 654). After 
running the global models, we used the drop1{stats} function in R (R 
Core Team, 2013) to test the significance of fixed effects using like‐
lihood ratio tests of the global model against a null model lacking the 
predictor of interest (χ2, α = .05; see Nystrand, Cassidy, and Dowling 
(2018) and Sales et al. (2018) for similar approaches). To avoid possi‐
ble bias of effect sizes, we only report estimates and standard errors 
for parameters for the global models (Harrison et al., 2018; Tables 
1 and 2). Statistical analyses were conducted in RStudio (R v. 3.5.0; 
RStudio Team, 2015).

3  | RESULTS

3.1 | ddRAD sequencing and bioinformatic 
processing

Illumina sequencing of ddRAD libraries resulted in 1,590,917,152 
raw reads, with mean number/individual = 3,734,547 (standard de‐
viation [SD] = ±1,114,685.18). When considering samples duplicated 
for quality control, sequencing resulted in 1,971,406,088 raw reads 

TA B L E  1   Results for sex‐specific generalized linear mixed models (GLMMs) of annual mating success (AMS) for Brown Treesnakes (Boiga 
irregularis) from a geographically closed population on Guam. GLMMs were run for (A) complete sex‐specific data sets (male = 661 records; 
female = 735 records) and (B) sex‐specific data sets filtered by SVL to include only likely adult records (male = 312 records; female = 367 
records). Sex‐specific AMS was modeled as a linear function of four annual fixed effects (“Parameter”): average body condition index (“BCI”), 
standardized average snout–vent length (“SVL”), the number of times the individual was captured in a baited trap (“Trappability”), and the 
individual's genome‐wide estimate of inbreeding (“Inbreeding”). GLMMs also included individual and year of sampling as random effects (not 
shown). GLMMs employed a Poisson error distribution with a log‐link

Fixed effect

Male AMS Female AMS

Estimate SE LRT p Estimate SE LRT p

(A) Complete

BCI 3.717 0.910 15.496 <.001 1.184 0.738 2.613 .106

SVL 1.643 0.275 65.820 <.001 1.483 0.245 63.988 <.001

Trappability 0.095 0.033 8.635 .003 0.034 0.020 2.640 .104

Inbreeding 0.368 1.168 0.099 .753 −0.607 1.073 0.310 .578

(B) SVL‐filtered

BCI 3.909 0.974 15.108 <.001 0.868 0.736 1.408 .235

SVL 1.416 0.394 13.105 <.001 0.794 0.351 5.000 .025

Trappability 0.091 0.034 7.441 .006 0.028 0.020 1.921 .166

Inbreeding 0.510 1.188 0.185 .667 −0.525 1.038 0.248 .618

Note: Significance of fixed effects was assessed with likelihood ratio tests of the global model containing the effect of interest against a null model 
without the effect, with significant p‐values in bold (χ2, α = .05). Estimates and standard errors are reported for effects in the global model to avoid 
overestimation of effect sizes.
Abbreviations: Estimate, statistical value; LRT, log‐likelihood ratio; p = p‐value; SE, standard error.
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(µ = 3,650,752 reads ± 1,105,292.25). Mean sequencing coverage/
individual = 25.97x (±8.26), while mean coverage/individual = 24.80x 
(±8.32), including duplicates.

After clustering raw reads into loci and filtering with the popu‐
lations module of Stacks 2.0, we identified 6,180 SNPs, each pres‐
ent in at least 95% of sequenced BTS (N = 426). Of the 6,180 SNPs 
that passed initial filtering, we discarded 217 due to departures from 
HWE (p < .05), 482 with evidence of LD (VIF > 2), and 4,827 that had 
allele frequencies < MAF threshold (=<0.3). We used all remaining 
loci (n = 654) for pedigree reconstruction.

3.2 | Pedigree reconstruction

We were able to assign 69 known females as dams to 199 known 
individuals and 51 known males as sires to 257 known individuals 
with confidence probabilities ranging from 0.93 to 0.99 (Table S1). 
A promiscuous mating system was evident in that both sexes pro‐
duced offspring via multiple mates each year. Of individuals that re‐
produced, males produced offspring with an average of 2.28 mates/
year (±2.06), whereas females produced offspring with an average of 
1.33 mates/year (±0.64). Of these individuals, mean male ARS = 3.38 
(±4.03) offspring/year, while mean female ARS = 2.01 (±1.33).

3.3 | GLMMs of AMS and ARS

We analyzed 1,396 complete annual data records, to include 
661 records for males and 735 for females collected during years 
2004–2013 and 2015–2018. The SVL‐filtered data sets included 312 

records for likely adult males and 367 records for likely adult females 
collected during years 2005–2013 and 2015–2018. Mean age of re‐
production was 3.68 (±1.09) and 3.94 (±1.20) years for males and 
females, respectively. Mean Fhat3 was 0.02 (±0.11) and ranged from 
−0.69	to	0.36.

We found BCI, SVL, and trappability to have significant positive 
effects on male AMS when considering both the complete data set 
and the SVL‐filtered data set for males (Table 1A,B). When consider‐
ing the complete and SVL‐filtered data sets for females, only SVL had 
a significant positive effect on AMS (Table 1A,B). BCI, SVL, and trap‐
pability had significant positive effects on ARS when analyzing both 
the complete and SVL‐filtered data sets for males (Table 2A,B). SVL, 
BCI, and trappability also had positive significant effects on female 
ARS when considering the complete female data set (Table 2A), with 
only significant positive effects of SVL and trappability on female 
ARS remaining when analyzing the SVL‐filtered data set (Table 2B).

4  | DISCUSSION

4.1 | Characterization of the BTS mating system

Our expectation of a promiscuous mating system for BTS on Guam 
was supported; both sexes produced offspring with multiple mates 
each year. Promiscuity is the most common type of mating system 
in snakes (Rivas & Burghardt, 2005), although polygyny (multiple 
mating only by males) and polyandry (multiple mating only by fe‐
males) are also prevalent (Duvall, Schuett, & Arnold, 1993; Kissner, 
Weatherhead, & Gibbs, 2005).

TA B L E  2   Results for sex‐specific generalized linear mixed models (GLMMs) of annual reproductive success (ARS) for Brown Treesnake 
(Boiga irregularis) from a geographically closed population on Guam. GLMMs were run for (A) complete sex‐specific data sets (male = 661 
records; female = 735 records) and (B) sex‐specific data sets filtered by SVL to include only likely adult records (male = 312 records; 
female = 367 records). Sex‐specific ARS was modeled as a linear function of four annual fixed effects (“Parameter”): average body 
condition index (“BCI”), standardized average snout–vent length (“SVL”), the number of times the individual was captured in a baited trap 
(“Trappability”), and the individual's genome‐wide estimate of inbreeding (“Inbreeding”). GLMMs also included individual and year of 
sampling as random effects (not shown). GLMMs employed a Poisson error distribution with a log‐link

Fixed effect

Male ARS Female ARS

Estimate SE LRT p Estimate SE LRT p

(A) Complete

BCI 4.194 0.938 19.240 <0.001 1.723 0.736 5.616 0.018

SVL 1.755 0.290 68.804 <0.001 1.683 0.262 78.852 <0.001

Trappability 0.113 0.034 11.730 <0.001 0.049 0.020 5.623 0.018

Inbreeding 0.404 1.388 0.085 0.771 −0.582 1.219 0.223 0.636

(B) SVL‐filtered

BCI 4.365 1.004 18.393 <0.001 1.369 0.734 3.548 0.060

SVL 1.601 0.415 14.971 <0.001 1.013 0.365 7.556 0.006

Trappability 0.113 0.036 10.810 0.001 0.044 0.020 4.664 0.031

Inbreeding 0.621 1.439 0.187 0.666 −0.505 1.138 0.194 0.660

Note: Significance of fixed effects was assessed with likelihood ratio tests of the global model containing the effect of interest against a null model 
without the effect, with significant p‐values in bold (χ2, α = 0.05). Estimates and standard errors are reported for effects in the global model to avoid 
overestimation of effect sizes
Abbreviations: Estimate, statistical value; LRT, log‐likelihood ratio; p = p‐value; SE, standard error.
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For individuals that produced offspring in a given year, we found 
mean ARS for males and females to be 3.38 (±4.03) and 2.01 (±1.33), 
respectively, and these data provide important insight into annual 
BTS reproductive capacity. Mean clutch size has been a difficult pa‐
rameter to estimate on Guam, with few wild clutches located, and 
low annual recruitment (as estimated from appearance of hatchlings) 
has been reported for the study population [i.e., 0.5 female offspring 
per female per year (Rodda & Savidge, 2007)]. Gravid females have 
previously been found to contain 3–12 eggs when palpated (Rodda 
& Savidge, 2007), and Savidge et al. (2007) estimated mean clutch 
size to be 4.3 eggs (±2.2). Yet, this value was based off of counts 
of ovarian follicles and oviductal eggs rather than eggs laid by fe‐
males. A few gravid females have been collected in the wild on Guam 
and taken into the laboratory for parturition, resulting in clutches 
ranging from 3 to 11 eggs (Savidge et al., 2007). However, success‐
ful hatching of eggs can be variable. For example, of three Guam 
females induced to reproduce in a laboratory setting, the number of 
eggs hatched was 0 (out of 3 eggs laid), 2 (out of 8 eggs laid), and 7 
(out of 10 eggs; Mathies & Miller, 2003). In this regard, our estimate 
of female ARS in particular may be a more informative metric for BTS 
reproductive ecology than clutch size, as it represents the realized 
annual reproductive success of females and not a count that may 
include unfertilized or unhatched eggs. Importantly, these estimates 
represent minimum mean AMS and ARS for males and females as it 
is possible that some hatchlings died before they could be sampled.

4.2 | Predictors of AMS and ARS

We predicted that AMS and ARS in both sexes would be influenced 
by SVL, BCI, trappability, and degree of genome‐wide inbreeding. 
We found significant effects of SVL, BCI, and trappability on AMS 
for males, and a significant effect of SVL on AMS for females re‐
gardless of the data set analyzed (Table 1A,B). Further, we found 
significant effects of SVL, BCI, and trappability on both male and 
female ARS when analyzing the complete data sets, with significance 
remaining for these effects when the SVL‐filtered data sets were an‐
alyzed, save the effect of BCI on female ARS (Table 2A,B).

The effect of SVL on AMS and ARS for males and females was 
present regardless of the data set analyzed (i.e., complete vs. SVL‐
filtered). Larger SVLs have previously been shown in male snakes 
to correlate with greater AMS (Shine et al., 2000) and ARS (Levine 
et al., 2015) due to larger males having a competitive advantage 
over smaller males for gaining priority‐of‐access to females (Duvall 
& Schuett, 1997; Madsen & Shine, 1993, 1994). While male–male 
combat for priority‐of‐access to females has not been observed 
in wild BTS, it has been observed in captivity (Greene & Mason, 
2000). Larger females, on the other hand, may reflect adequate 
energy reserves for production of offspring (Aubret et al., 2002) 
and, given this, appear more attractive to males (Blouin‐Demers 
et al., 2005), thereby facilitating offspring production with more 
partners. Furthermore, larger females have larger body cavities 
which may correlate with an increased capacity to produce off‐
spring (Blouin‐Demers et al., 2005; Brown & Shine, 2007). An 

additional factor that may contribute to our results is that males 
and females with larger SVLs are older, and therefore are more 
likely to have reached sexual maturity and to participate and in 
mating and reproduction. This is supported by a stronger effect of 
SVL on AMS and ARS for both males and females when analyzing 
the complete (as opposed to the SVL‐filtered) data sets (Tables 1 
and 2).

We predicted that BCI would influence AMS and ARS, and 
found this to be true for males regardless of the data set analyzed. 
Males with better body condition have greater energy reserves, 
and this should support a variety of mating‐related behaviors. For 
example, larger male BTS gain access to females by being success‐
ful in confrontations with smaller males (Greene & Mason, 2000). 
Sufficient energy reserves also permit mate searching by males (Lind 
& Beaupré, 2015) and allow more time for mate searching in that 
competing activities such as foraging are less mandatory (Beaupré, 
2008). Although the energetic status of male snakes often influences 
their ability to mate [e.g., Red‐Sided Garter Snake (Shine & Mason, 
2005), Timber Rattlesnake (Lind & Beaupré, 2015)], the relationship 
between BCI and male reproductive success remains somewhat neb‐
ulous (Shine & Mason, 2005). Male snakes seemingly contribute little 
energy to actual reproductive success, in that gamete production re‐
quires limited energy (Aubret et al., 2002). However, they do expend 
considerable energy during related activities (Lind & Beaupré, 2015; 
Shine & Mason, 2005). It is possible that the significant effect of BCI 
on ARS we identified is due to factors associated with mate acqui‐
sition, or even the physical ability of males to mate [e.g., adequate 
plasma testosterone levels (Bonnet & Naulleau, 1996); elevated cor‐
ticosterone levels due to food stress (Waye & Mason, 2008)]. Indeed, 
chronic stress and elevated corticosterone levels are associated with 
low BCI in BTS (Waye & Mason, 2008), whereas elevated male BCIs 
are related to higher levels of plasma testosterone (Mathies, Cruz, 
Lance, & Savidge, 2010), and both elevated corticosterone and re‐
duced plasma testosterone negatively affect reproduction in male 
BTS (Aldridge, Siegel, Bufalino, Wisniewski, & Jellen, 2010; Moore et 
al., 2005). Male BCI may also have the capacity to directly influence 
reproductive success. Male body size is associated with testes mass, 
such that larger male BTS may in fact have greater rates of sperm 
production, and thus an increased capacity for fertilization (Mathies 
et al., 2010).

We did not find a significant effect of BCI on female AMS re‐
gardless of the data set analyzed. Further, there was a significant 
effect of BCI on female ARS only when analyzing the complete data 
set and not the SVL‐filtered data set. We found the inconsistent ef‐
fect of BCI on female AMS and ARS surprising as adequate energy 
reserves should be necessary for females to participate in mating 
and produce offspring. However, females may actively forage while 
vitellogenic, so as to acquire energy for reproduction [i.e., income 
breeding (Bonnet, Bradshaw, & Shine, 1998)]. In support of this hy‐
pothesis, Savidge et al. (2007) found that 79% of female BTS cap‐
tured on Guam with vitellogenic follicles had prey in their stomachs. 
Therefore, a lack of a consistent effect of BCI on female AMS and 
ARS could be due to the presence of income breeding in BTS. Future 
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work will be required to determine why BCI is important to male 
AMS and ARS, but seemingly less so to female AMS and ARS.

We also predicted that trappability would influence AMS and 
ARS in both sexes. With regard to AMS, we only found a significant 
positive effect for males (although these estimates were small for 
both the complete and SVL‐filtered data sets; Table 1A,B). These re‐
sults indicate that males with a greater propensity to enter baited 
traps mate with more partners to produce offspring. Importantly, 
although juveniles are not considered trappable by baited trap 
(Rodda et al., 2007), the significant effect of trappability on male 
AMS remained when the male records were filtered by SVL to retain 
only those for likely adults. Trappability has often been used as a 
proxy for propensity of individuals to engage in risk‐taking behaviors 
(Biro & Dingemanse, 2009). Presumably, males bold enough to enter 
baited traps will also take risks to acquire mates. For instance, move‐
ment by bold individuals in search for mates may increase their risk 
of predation, while those less bold would not, with the likelihood of 
encountering potential mates subsequently diminished (Sih, Bell, & 
Johnson, 2004).

Trappability is also related to the ability of an individual to detect 
chemical stimuli from baited traps. BTS use olfactory cues to find 
prey in baited traps (Shivik, 1998), and male BTS also use olfactory 
cues (i.e., female pheromones) to find mates (Greene et al., 2001; 
Parker, Patel, Zachry, & Kimball, 2018) and elicit courtship (Greene 
& Mason, 1998). Therefore, it is likely that males with better che‐
mosensory abilities will not only find baited traps more frequently 
but also have greater success in finding and acquiring mates. This 
may be the reason that we found a relationship between trappabil‐
ity and AMS in males but not females. The use of olfactory cues to 
detect prey in baited traps may also contribute to both males and fe‐
males with greater trappability having greater ARS. Individuals that 
are better able to detect prey in baited traps may also be better at 
energy acquisition which would result in greater energy availability 
for mating and reproduction. However, additional research will be 
required to untangle the complicated relationship between trappa‐
bility and ARS.

We found the degree to which an individual was inbred to have 
no effect on AMS or ARS for males or females, and these results 
were consistent regardless of the data set analyzed. This finding 
was surprising because most individuals (68.4%) in our study had 
estimates of genome‐wide inbreeding (Fhat3) > 0, with several (8.3% 
females; 6.8% males) consistent with having half‐sibling parental re‐
lationships (Fhat3 > 0.125). In other systems, mating success in the 
wild is negatively impacted by the degree to which focal individuals 
are inbred (Janicke, Vellnow, Lamy, Chapuis, & David, 2014; Joron & 
Brakefield, 2003).

Although we found no significant effect on AMS or ARS for ei‐
ther sex, inbreeding effects may instead manifest indirectly by in‐
fluencing other traits that, in turn, impact AMS and ARS [e.g., by 
affecting propensity for risk‐taking behavior (Richardson & Smiseth, 
2017) or motivation to mate (De Boer, Eens, & Müller, 2018)]. The 
effects of inbreeding may also be context‐dependent, with negative 
impacts more pronounced under stressful conditions (Armbruster 

& Reed, 2005). Guam's relatively constant environment (Rodda et 
al., 1999) may counter environmental stress and thus act to dampen 
negative effects of inbreeding on AMS and ARS. Further, individ‐
uals may avoid inbreeding effects through behavioral plasticity 
(Lucia‐Simmons & Keane, 2015). Finally, inbreeding may simply exert 
minimal effects on AMS and ARS (Gooley, Hogg, Belov, & Grueber, 
2017). Future work will be required to determine why inbreeding 
seemingly does not significantly affect AMS and ARS in Guam BTS, 
particularly considering the small size of the founding population 
(Richmond et al., 2014).

4.3 | Implications for control

A variety of control efforts have been implemented to reduce or 
eliminate BTS on Guam and to prevent its dispersal to other areas 
(Clark, Clark, & Siers, 2018; Engbring & Fritts, 1988; Rodda & 
Savidge, 2007). Baited traps are a primary method of control, and 
improving trap success will likewise promote BTS management. 
Here, we interpret our results with regard to common phenotypes 
found in trapped individuals.

First, several studies have explored the relationship between 
body size and trappability (Boyarski, Savidge, & Rodda, 2008; 
Lardner et al., 2013; Rodda et al., 2007; Tyrrell et al., 2009), with 
larger individuals trapped more often than those smaller. Given this 
finding, our results indicate that baited traps are effective at captur‐
ing males and females that produce more offspring and males that 
produce offspring with more mating partners.

However, while several studies have also evaluated the relation‐
ship between trapping success and BCI, results have been variable. 
For example, Tyrrell et al. (2009) found a minimal positive effect of 
BCI on female trappability and a negative effect of BCI on male trap‐
pability, such that males with low BCIs were caught in baited traps 
more often. Differently, Lardner et al. (2013) found a positive cor‐
relation between BCI and accession of bait tubes for both sexes. Our 
study demonstrated that BCI has a positive effect on AMS and ARS 
for males, with a similar effect of BCI on ARS supported for females. 
Given these relationships between BCI and AMS/ARS, our incom‐
plete understanding of how BCI is related to trappability (by either 
baited traps or bait tubes) is troubling.

Finally, it is promising that overall trappability is related to 
AMS for males and ARS for both males and females, although the 
estimates for the effects of trappability on AMS and ARS were 
small. Males and females with higher trappability produce more 
offspring annually and males with higher trappability produce off‐
spring with more mates; importantly, these effects remain when 
removing likely juveniles (untrappable) from analyses. Removal of 
trapped individuals thus has the potential to depress the birth rate 
of the population by eliminating more fecund males and females. 
However, significant unexplained heterogeneity in trappability ex‐
ists among individuals (Clark, Savarie, Shivik, Breck, & Dorr, 2012; 
Mason, Savidge, Rodda, & Yackel Adams, 2011; Rodda et al., 2002; 
Tyrrell et al., 2009), prompting concerns that trappability may have 
a heritable genetic component (Tyrrell et al., 2009), as documented 
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in fishes (Cooke, Suski, Ostrand, Wahl, & Philipp, 2007). If BTS 
trappability is indeed heritable, then selection may yield a popu‐
lation with overall lower ARS, but also one that is trap‐shy (Tyrrell 
et al., 2009). We are currently evaluating the heritability of being 
trappable to gauge the potential for inadvertent adaptive re‐
sponses of reproductive ecology to management action.

5  | CONCLUSION

An understanding of the reproductive ecology of invasive species 
is critical for the development of effective control. Phenotypes as‐
sociated with enhanced annual mating and reproductive success can 
be targeted to maximally impact the birth rate of the population. 
Furthermore, by identifying correlates of mating and reproductive 
success and juxtaposing them with “controllable” phenotypes, the 
long‐term efficacy of control can be gauged, particularly consider‐
ing eco‐evo dynamics generated by the control methods themselves 
(Závorka et al., 2018). Here, we demonstrated the use of multigen‐
erational genomic pedigree reconstruction as an avenue for identi‐
fication of predictors of AMS and ARS in an invasive vertebrate and 
compared phenotypes associated with elevated AMS and ARS with 
those targeted by control. We did so using genomic markers that 
are widely applicable to nonmodel organisms (Peterson et al., 2012). 
These results will serve to promote similar endeavors for other in‐
vasive species.
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