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Abstract: Electrocardiographic (ECG) signals have been used for clinical purposes for a long time.
Notwithstanding, they may also be used as the input for a biometric identification system. Several
studies, as well as some prototypes, are already based on this principle. One of the methods already
used for biometric identification relies on a measure of similarity based on the Kolmogorov Com-
plexity, called the Normalized Relative Compression (NRC)—this approach evaluates the similarity
between two ECG segments without the need to delineate the signal wave. This methodology is
the basis of the present work. We have collected a dataset of ECG signals from twenty participants
on two different sessions, making use of three different kits simultaneously—one of them using
dry electrodes, placed on their fingers; the other two using wet sensors placed on their wrists and
chests. The aim of this work was to study the influence of the ECG protocol collection, regarding
the biometric identification system’s performance. Several variables in the data acquisition are not
controllable, so some of them will be inspected to understand their influence in the system. Move-
ment, data collection point, time interval between train and test datasets and ECG segment duration
are examples of variables that may affect the system, and they are studied in this paper. Through
this study, it was concluded that this biometric identification system needs at least 10 s of data to
guarantee that the system learns the essential information. It was also observed that “off-the-person”
data acquisition led to a better performance over time, when compared to “on-the-person” places.

Keywords: biometric identification; biometric sensing; ECG; data acquisition

1. Introduction

Personal identification is crucial nowadays. However, how to univocally identify
someone is still a concern [1,2]. There are several strategies that may involve passwords
or systems based on biometric data [2]. Usual examples are the fingertips, iris and face.
There is no infallible system; nevertheless, it is intended to find one that may be more
secure. Systems that do not guarantee liveliness, nor need contact with the subject, are
more susceptible to being falsified [2]. This area has been extensively investigated, since
this type of identification offers high security because the measurability is guaranteed, in
most cases, and the evasion and manipulation of the data are more difficult, given the
complexity of an individual manipulating their own physiological signals [1,2]. So, there is
a considerable interest in using physiological signals for biometric identification [1]. The
electrocardiogram (ECG) signal is an example of such systems [1–4]. The ECG possesses an
inter-variability, that is the source of richness that prints the univocal key on ECG, making
it an interesting signal for biometric applications.

The recognition of each individual is valid when the technique used presents some
particularities, such as universality, permanence, singularity, reproducibility, performance
and acceptability of the data. Universality guarantees that the characteristic in question is
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common to the majority of the population. ECG recognition would solve some problems
associated with the acquisition of biomedical signals, since everyone has a heartbeat and its
collection is accessible. For this reason, this method is beneficial in relation, for example, to
identification through the fingerprint, since there are people without upper limbs who do
not have this facility [5]. Permanence ensures that the characteristic collected is constant,
that is, that the properties will not change over time. The uniqueness allows that each ECG
segment is relative to only one individual, and therefore that each person has a unique
ECG. Reproducibility guarantees the ease of data acquisition using similar protocols and
conditions. Another factor that must be taken into account is the performance of the
method. It might be measured using different metrics, with the aim of assessing how close
the method’s predictions are to being correct. Finally, acceptability certifies the viability of
the biometric identification system, where one of the important factors is the computational
cost [1,5].

ECG is affected by external variability and interferences which affect the signal and
its quality. Therefore, to grasp the ECG univocal key, the methods should be robust to
fluctuations. The system should also correctly deal with variability and different sources of
noise—muscle, movement, electrodes placement or pathologies [1,2]. The application of
parameter free methods, such as compression algorithms, have been proved efficient in clas-
sification, since there is no pre-assumption about the premises, allowing true exploratory
data mining [6].

In 2018, we introduced a method for ECG biometric identification, based on relative
compression [4]. Although satisfactory results were obtained, we felt the need to test the
method under as real conditions as possible, taking into account some of the variables that
we were unable to control. The idea behind this method is to estimate the Kolmogorov
complexity of an ECG signal using compression algorithms. However, since the ECG
is not symbolic, we also perform quantization according to a scheme introduced in [7],
which uses the first derivative of the original signal as the input. The method presented
a good performance; nevertheless, the time needed for data acquisition was too high to
be considered with real scenarios. Therefore, it is essential to validate how this system
performs when the data acquisition time is different and more realistic, such as using
one to five second signal segments. Methods can also currently have their performances
conditioned by external non controlled conditions, such as physiological (caused by coffee,
stress and cardiac irregularities, namely, premature ventricular contraction), behavioral
(such as muscle and environmental movement) and contraction, such as the placement of
electrodes and the temperature.

So, in this work, the system performance is tested when data are acquired considering
different premises: dry electrodes and wet electrodes, and data acquired at different body
positions and movements. The main contribution of this paper is to evaluate the impact of
the input’s initial conditions variability on biometric system performance. Moreover, it is
expected that, as the ultimate goal, the achieved results may contribute to the design of
feasible data collection protocols for ECG biometric systems.

2. Dataset

The effectiveness of recognizing an individual through his ECG depends, amongst
other things, on the conditions to which he is exposed during the acquisition process.
Therefore, it is extremely important to assess the impact that certain changes have on
the biometric identification results. This dataset was built with the purpose of analyzing
the influence of changes—such as movement, day of data collection and location of the
body on which the electrodes are placed, as well as the time of signal acquisition—on the
performance of biometric identification.

This study was approved by the ethics council of the University of Aveiro. Given that
the application is biometric identification, two mandatory prerequisites were to perform
ECG collections from different individuals and to have more than one session per partici-
pant. Data were collected from twenty healthy participants (nine females and eleven males),
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all between the ages of 20 and 23 years (20.85 ± 0.91 years). All participants were healthy,
without any relevant pathology. Two of the participants were smokers. The participants,
recruited at the University of Aveiro, gave their written consent, after the purpose of the
data collection was explained to them, as well as how the data would be used. It was also
mentioned to them that the data were confidential and that they could withdraw from the
experiment at any time.

Electrodes are responsible for measuring the electrical activity of the heart, recorded in
potential difference, across the surface of the skin [8]. These consist of a metallic surface and
an electrolyte in contact with the skin, thus creating two interfaces: the metal–electrolyte
and the skin–electrolyte. Ideally, it is intended that the electrodes have excellent contact
with the skin so that the impedance is minimal, as well as the sensitivity to the impact of the
action. However, ECG is a vital signal, which can be affected by factors such as the skin and
the type of electrodes used [9]. For this reason, two types of electrodes were used: dry ones,
produced by BITalino and gel ones, manufactured by Ambu®, both of the Ag/AgCl type.

The biomedical device used to collect the ECG was the Vital Jacket®, a scientifically
validated biomedical device developed by a technological company called Biodevices SA,
in partnership with researchers from IEETA, a research unit at the University of Aveiro.
The data were collected at 500 Hz, using an Android application called DroidJacket, which
allowed the collection of data from different devices and their redirection to a storage
location [10].

The Ag/AgCl type gel electrodes that were used have a gel that improves conductivity
and reduces the impedance of the skin–electrode interface. However, dry electrodes were
placed on the fingers with the aim of making this study the closest to reality. In daily life,
the ideal would be to use dry electrodes in an easily accessible area, without the need to
place gel electrodes, since the latter have a more complex placement process and they are
also subject to the drying of the gel, leading to a drastic decrease in the quality of the signal,
especially when dealing with long acquisition processes [11].

The ECG signals were acquired through a rigorous placement of each electrode in
different regions of the body: fingers from both hands, wrists and chest (shown in Figure 1).
In each region of the body from which the ECG signal was collected, three electrodes were
placed. Their placement was uniform, since for each of the body locations and for each of
the participants, the exact same placement protocol was followed. These electrodes were
attached to the end of the wires with different colors, facilitating the process. The red and
yellow color electrodes were always placed on a high blood flow region, on the right and
left sides, respectively. The third electrode, called neutral, was always placed on the right
side of the body—in a place with less blood flow. In this way, it was possible to collect
signals from different collection places simultaneously.

Figure 1. Example of electrode placement on both hands, wrists and chest.
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Two data acquisition sessions took place. In both collections, each participant under-
went an initial survey with the main objective of evaluating some factors that, according to
the literature, can alter the biometric identification “signature” [2]: their levels of anxiety
and stress, their last intake of coffee and also if they had any disease. Afterwards, partici-
pants watched a documentary, which showed a neutral feeling, thus not introducing any
specific emotion. At the end of each collection, a satisfaction survey was completed.

In the first data collection session, each participant was asked to remain at rest for
ten minutes. After this period of time, they were asked to perform movements with their
hands, feet and torso, for two minutes each, with a pause of one minute between them. In
the second session, participants were asked to stay for five minutes at rest while signals
were being collected.

The two collections carried out had a time spacing of two weeks. This period was
rigorously chosen to assess the impact of the temporal distance of data collection for
biometric identification.

3. Methods

In order to perform biometric identification of an individual, several steps are required.
In this section, we explain which methods were used for the main steps of the workflow.
We start explaining how the data was pre-processed. Afterwards, we introduce the finite-
context models, the basis for the compressors used. We then finish the section with the
definition of the Normalized Relative Compression and how it was used to compute
relative similarities, as well as some definitions that are necessary to understand why they
make sense from a theoretical perspective.

3.1. Pre-Processing Steps

When working with non-symbolic data, it is usual to perform a preprocessing step
of sampling and/or quantization before any data compression is done. In this work, we
decided to use the original sampling rate of the data (500 Hz). Since the ECG signal
suffers from baseline wander, we have also chosen to operate on its consecutive differences,
instead of on the original signal, and use a Lloyd–Max quantization scheme on top of
the signal—both on the training and testing data separately, avoiding data leakage from
training to test [12]. More details on this quantization method can be found in [7], but
the basic idea is that the quantizer learns breakpoints so that each symbol on the output
will have approximately the same number of samples, meaning that regions with higher
probability will be lower in interval range and vice versa. The quantizer then replaces each
of the original samples with the symbol corresponding to the interval it belongs to, meaning
that a sequence of floating numbers becomes a sequence of symbols (in our implementation
(the source code for the quantizer was implemented from scratch using Python 3.7 and we
made it openly available on https://github.com/joaomrcarvalho/diffquantizer), capital
letters). An example of such a quantization can be seen in Figure 2.

3.2. Compressing Using Finite-Context Models

Finite context models (FCMs) have been useful in very different pattern recognition
tasks, namely, using DNA sequences [13], text [14], images [15] and ECG signals [4,7,16–19].
Recent work has shown that they have the ability to measure similarity/dissimilarity,
relying on the data algorithmic entropy [20].

An FCM complies to the Markov property, that is, it estimates the probability of
the next symbol of the information source using the k > 0 immediate past symbols
(order-k context) to select the probability distribution. Therefore, assuming that the k past
outcomes are given by xn

n−k+1 = xn−k+1 · · · xn, the probability estimates, P(xn+1|xn
n−k+1),

are calculated using symbol counts that are accumulated while the information source is
processed, with

P(s|xn
n−k+1) =

v(s|xn
n−k+1) + α

∑a∈A v(a|xn
n−k+1) + α|A| , (1)

https://github.com/joaomrcarvalho/diffquantizer
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where A = {s1, s2, . . . s|A|} is the alphabet that describes the objects of interest, v(s|xn
n−k+1)

represents the number of times that, in the past, symbol s ∈ A was found having xn
n−k+1 as

the conditioning context. The parameter α allows balancing between a maximum likelihood
estimator and a uniform distribution—it can also be seen as a smoothing factor over the
possible outcomes.

Figure 2. Quantization scheme example on two seconds of ECG signal. The ECG signal is represented
by a blue line and the red dashes represent the breakpoints learned by the Lloyd–Max quantizer for
this two second interval. The colors on the right are merely illustrative to help visualise the different
intervals. Each interval represents a different symbol used after the quantization is done, i.e., when
each sample on the signal is replaced by the corresponding symbol from the quantization interval it
belongs to.

After processing the first n symbols of x, the total number of bits generated by an
order-k FCM is given by

−
n

∑
i=1

log2 P(xi|xi−1
i−k). (2)

For compressing the first k symbols of a sequence, we do not have enough symbols
to represent a context of length k. For that reason, we always assume that the sequence is
circular [21]. For long sequences, such as a previously quantized ECG signal, this should
make a negligible difference in terms of the number of bits required to perform the relative
compression. The software used for that purpose is publicly available for download (the
source code was implemented using Python 3.6 and is publicly available under the GPL v3
license at https://github.com/joaomrcarvalho/xafcm).

3.3. Computing Relative Similarity with the Normalized Relative Compression (NRC)

The Kolmogorov complexity of a binary string of finite length x, K(x) is the length
of a shortest binary program x∗ that computes x in a universal Turing machine and halts.
Therefore, K(x) = |x∗|, the length of x∗, represents the minimum number of bits from
which x can be computationally retrieved [22].

In 1998, Bennett et al. [23] proposed the Information Distance (ID) as well as the
Normalized Information Distance (NID), its normalized version. These metrics are defined
in terms of the Kolmogorov complexity of the strings involved, as well as the complexity

https://github.com/joaomrcarvalho/xafcm
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of one when the other is provided. The limitation of this approach is that the Kolmogorov
complexity of a string is generally not computable. An approximation (upper bound) for
it can be used by means of a compressor, which explores the possible redundancies of a
string. Let C(x) be the number of bits used by a compressor to represent a binary string
x. In this work, we used a measure called the Normalized Relative Compression (NRC),
based on the notion of relative compression [14], denoted by C(x||y), which represents the
compression of x relative to y.

This measure complies with these rules:

• C(x||y) ≈ 0 iff string x can be built efficiently from y;
• C(x||y) ≈ |x| iff K(x|y) ≈ K(x).

Based on the previous rules, the NRC of string x relative to string y is defined as

NRC(x||y) = C(x||y)
|x| , (3)

where |x| denotes the length of the string x.

4. Results

The aim of this work was to evaluate how different variables from the data acquisition
protocol interfered in the biometric identification task. For that purpose, the first step car-
ried out was to choose the parameters for the preprocessing steps, namely, the quantization,
as well as for the models used to compute the number of bits needed for the compression.
Several tests were carried out for that purpose. For the preprocessing of the data, we tried
both a Butterworth low-pass filter of order eight at 40 Hz cutoff frequency and no filtering
whatsoever. For the quantization, we decided to use a fixed alphabet of 20 symbols, as
in a previous study [4]. Finally, regarding the finite context models used, we performed
experiments both using cooperative models (mixtures of finite context models [24]) and
single k value models. The single models were more accurate in general, so we opted to
use them for the rest of the experiments.

After analyzing the results from these experiments, the parameters were chosen for
performing filtering using the Butterworth filter mentioned, to use a single finite context
model with order k = 20 and α was set to ‘auto’ (see [17] for more details). These parameters
were used in all the experiments shown in this section.

The biometric identification of an individual using physiological signals can be affected
by external variabilities such as the movement an individual makes during the data
collection, the session (or sessions) where the data collection took place, amongst other
factors, such as the noise present on the signal [25] and the duration of acquisition [26]. In
order to study the impact of different changes during collection, it was decided to carry
out different tests for which external variability was introduced.

4.1. Measuring the Influence of Movement

As a first approach, the impact of moving hands, feet and chest was assessed. For
this study, we used two minutes of data for testing different movements and we trained
the model with participants at rest for eight minutes, during the same session. According
to the results presented in Table 1, the movement of the wrists causes the biggest error in
biometric identification, followed by the movement of the fingers. On the other hand, the
movement of the chest has almost no impact on the performance of the method. These
results can be justified by the distance from the electrodes to the heart. It is important to
mention that both the training and test data from Table 1 contain segments from the same
session. This was done with the intent of controlling some variables, since the objective
was to study the impact of the variability caused exclusively by the source of movement. If
that did not happen, the expected error would be higher. The reason for this can be easily
seen in the results shown in Figure 3.
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Table 1. Evaluation of accuracy, error, sensitivity, specificity and F1score for each electrode placement,
subject to a certain type of movement, using ECG signals from the same session.

Movement Electrode Placement Accuracy Error SEN SPEC F1score

Hands

Fingers 0.96 0.40 0.60 0.98 0.50

Wrists 0.94 0.65 0.35 0.97 0.31

Chest 1.00 0.00 1.00 1.00 1.00

Feet

Fingers 0.99 0.10 0.90 0.99 0.87

Wrists 0.98 0.20 0.80 0.99 0.75

Chest 1.00 0.00 1.00 1.00 1.00

Chest

Fingers 0.98 0.25 0.75 0.99 0.69

Wrists 0.97 0.35 0.65 0.98 0.60

Chest 1.00 0.05 0.95 1.00 0.93

Fingers Wrists Chest
0

0.2

0.4

0.6

0.8

1

F 1
sc

or
e

Same session Different session

Figure 3. Histogram of the accuracy values, for the same and different sessions in every single kit.

4.2. Comparing the Influence of Using Different ECG Acquisition Placement

The majority of publicly available ECG databases contain ECG collected on the chest.
Notwithstanding, when a biometric identification system is planned for real practice,
data collected on the chest may not be the more appropriate or comfortable setup. The
underlined question is: how does the system perform in these conditions? Therefore, it is
important to quantify the impact of the use of ECG collected on the chest in the training of
the biometric system, when the system is planned to be used with off-the-person sensors.

To obtain comparable results, data in this experiment were collected simultaneously
at three points: chest, wrists and fingers. The model was designed with eight minutes of
resting chest ECG data, and tested with two minutes of resting condition data taken from
the wrists and fingers. An error of 95% was obtained in both, showing that it is not feasible
to compare ECG segments from different acquisition points. The reliability of the method
decreases, indicating a bias of the model to the body region where data were collected.

4.3. Measuring the Influence of Same/Different-Sessions

Temporal separation between biometric evaluations may influence the system’s per-
formance. This influence was studied by the evaluation of ECG segments from the
same/different sessions. The model was built with eight minutes of rest period from the first
session, and was evaluated on two minutes of rest condition from both sessions, separately.
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Figure 3 shows a histogram with the F1score values obtained when testing ECG
segments with the participant at rest, both from the same session (and from different
sessions of the training) for each of the collection kits. Based on the histogram, it can be
seen that there is a decrease in performance when the sessions are different, except when
the signal is collected on the fingers.

According to both the histogram and Table 2, it is possible to infer that the signal
acquired on the fingers shows greater stability in the long term. On the other hand, the
point of acquisition that presents the greatest decrease in performance is the chest. This
verified that the instability when the data are collected on the chest may be due to the
location of the electrodes. Since the placement area is broader, this leads to an increase in
placement error, given that the electrodes may not always be placed in the exact same area.
As for the fingers, the area is always the same, since it is much more restricted and there is
less margin for error. These results show an enormous potential for the use of electrodes
“off-the-person”, such as, for example, the electrodes placed on the fingers, to the detriment
of the placement “on-the-person”, which makes the entire data acquisition system more
intrusive when it comes to biometric identification methods.

Table 2. Evaluation of accuracy, error, sensitivity, specificity and F1score for each electrode placement,
when the method is tested and trained with segments from the same session and different sessions.

Session Electrode Placement Accuracy Error SEN SPEC F1score

Same session
Fingers 0.99 0.10 0.90 0.99 0.87

Wrists 0.98 0.25 0.75 0.99 0.70

Chest 1.00 0.05 0.95 1.00 0.93

Different session
Fingers 0.99 0.15 0.85 0.99 0.80

Wrists 0.97 0.30 0.70 0.98 0.65

Chest 0.96 0.45 0.55 0.98 0.47

The analysis performed indicated that, when the model is trained with the eight
minute rest condition from session 1 and evaluated with the two minute rest condition
from session 2, there is an increase in error, as shown in Figure 3. This increase in error
can be justified, since it is known that the ECG undergoes circadian changes, associated
with the person’s condition. Even a small difference in the electrode’s position can alter the
morphology of this wave.

4.4. Impact of the Acquisition Time

Finally, tests were carried out in order to assess the impact of the duration of the ECG
segment under study on the biometric identification’s performance. Initially, segments
from the same data collection are evaluated, that is, both the training and the test belong to
the first ECG acquisition session. Next, we study the impact that the duration of the test
segments has when trying to recognize an individual with an ECG sample from a different
data collection session other than the one used to train the model. To study the impact of
acquisition time, the previously used two minutes’ resting ECG segments were divided
into the desired time intervals, namely, 60, 30, 15, 10, 8, 6, 4 and 2 s. In this case, segments
from different sessions were used because they represent a more realistic situation for a
biometric identification system.

As we can see in Figure 3, the performance of the method decreases as the temporal
interval between sessions increases. Tests with different duration segments were performed,
both from the same session as well as from different sessions. Globally, the performance
of the model with segments from the same session was better than when segments from
different sessions were analyzed.

In a real situation, we want to be able to identify an individual based on his ECG,
independently of the training data collection time. Based on these observations, we
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conclude that it will be more advantageous to study the influence of the duration of the
ECG signal acquisition time when testing segments of the second data collection, using
only the first session’s data as training. In this database, a segment of eight minutes of rest
from the first data collection was used to train the model.

Since the experiment using different sessions portrays a more realistic circumstance, it
was decided to increase the number of different acquisition durations to be tested, including
shorter segments. Therefore, the impact of the duration was studied, with samples from
two seconds up to one minute, as can be seen in Figure 4.

In the literature, it is predicted that the shorter the duration of the ECG segment used,
the lower the performance obtained by the system [2]. This behavior was observed, in
general, in all kits. However, this conclusion may not always be valid from a certain point
onwards, as more data might just introduce redundancy to the system [26].

Nevertheless, it is considered that using approximately ten seconds is the ideal time for
a balanced compromise between time and performance, for a system that aims at biometric
identification in real time; this was already shown in [26]. In the following graph it can
be seen that the decrease in performance observed from six seconds to eight seconds is
minimal; 0.01 for the fingers and chest, and this remains the same for the wrists. In the time
intervals of eight and ten seconds, increases in the performance of the method of 0.06 and
0.04 are observed, in the fingers and wrists, respectively, remaining constant in the chest.
The performance of the system when segments larger than 10 s are used presents a different
profile if data were collected on the chest, wrists or fingers. These different behaviors may
be due to three combined reasons: the method evaluates relative similarity between two
segments and it may be more difficult to evaluate the similarity when the ECG segments
are larger, as a small variation along a small portion of the testing sample might affect the
final result; the stochastic characteristics of the sample may influence this result, since the
statistical representation of the data may vary through time; and the electrodes used on the
fingers are dry electrodes, while on the wrists and chest wet electrodes were used.

0 10 20 30 40 50 60
0.4

0.6

0.8

1

Time(s)

F 1
sc

or
e

Fingers
Wrists
Chest

Figure 4. Plot of F1-score as a function of the duration time of the ECG segments from different sessions.

5. Final Remarks

This study aimed to understand the impact of some variables from the data acquisition
protocol of an ECG signal in the biometric identification process. This way, we can provide
some guidelines when building a dataset for biometric identification.

After studying some of the determining factors that have an impact on the performance
of a biometric identification system, we concluded that one of the most important ones
is the fact that training and testing data should never be from the same session, as that
leads to overoptimistic results, which may not be useful in practice. We have also shown
that movements further away from the electrode placement area have less impact on the
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biometric identification performance than those near it. This is consistent with common
sense, but provides scientific validity and should be taken into account when developing
an ECG data acquisition protocol—for example, having participants fill surveys while ECG
is being collected from their wrists should be avoided. In this study, the impact of the
movement and different data collection sessions were accessed independently, since it was
intended to quantify the sources of variability controlling other variables. Nevertheless,
from our analysis, a combination of changes in the data may represent a larger decrease of
the system’s performance than by the evaluation of each change independently.

We also established the need to build and test datasets using the same electrode
placement for training and testing a biometric identification system. This might seem
obvious. However, some studies for ECG biometric identification use publicly available
databases that have been collected for clinical purposes, such as the MIT–BIH Arrhythmia
Database or the PTB Diagnostic ECG Database from Physionet [27], amongst others. In
those databases, wet gel electrodes were placed on the chest to acquire the signals. It makes
sense to use those databases for research and compare results with other state-of-the-art
methods, but it is important to understand that the models learned using these datasets
might not work as intended with a real application, which should use a less intrusive
protocol, such as dry electrodes on the fingers.

Regarding the acquisition time, the results show that around 10 s of signal are enough
to test the identity of an individual. After this period of time, the gains in performance are
not substantial.

This analysis allowed us to understand and prove that the biometric identification sys-
tems should be adaptable to the context, in order to maximize their usability and performance.
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