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Associations between influenza infection and psychosis have been reported since the
eighteenth century, with acute “psychoses of influenza” documented during multiple
pandemics. In the late 20th century, reports of a season-of-birth effect in schizophrenia
were supported by large-scale ecological and sero-epidemiological studies suggesting
that maternal influenza infection increases the risk of psychosis in offspring. We examine
the evidence for the association between influenza infection and schizophrenia risk, before
reviewing possible mechanisms via which this risk may be conferred. Maternal immune
activation models implicate placental dysfunction, disruption of cytokine networks, and
subsequent microglial activation as potentially important pathogenic processes. More
recent neuroimmunological advances focusing on neuronal autoimmunity following
infection provide the basis for a model of infection-induced psychosis, potentially
implicating autoimmunity to schizophrenia-relevant protein targets including the N-
methyl-D-aspartate receptor. Finally, we outline areas for future research and relevant
experimental approaches and consider whether the current evidence provides a basis for
the rational development of strategies to prevent schizophrenia.

Keywords: infection, epidemiology, autoimmunity, neurodevelopment, maternal immune activation (MIA),
influenza, schizophrenia
INTRODUCTION: WHAT IS THE EVIDENCE FOR AN
ASSOCIATION BETWEEN INFLUENZA AND SCHIZOPHRENIA?

Schizophrenia risk is associated with a variety of environmental and genetic factors (1), including
those associated with immunity and inflammation (2). Genome-wide association studies (GWAS)
implicate loci at the major histocompatibility complex (MHC) which encodes multiple genes
involved in immunity such as the human leukocyte antigen (HLA) genes (3–6) and complement
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component 4 (C4) (7), among others, and enhancers related to
B-lymphocyte lineages (CD19 and CD20 lines) involved in
acquired/adaptive immunity (8). Overall there is strong
evidence supporting the involvement of specific immune
variants in schizophrenia risk (7), some evidence of
convergence across genomics, transcriptomic, and methylomic
processes (9), but conflicting evidence for both (i) enrichment of
specific immune cell types or pathways (10) and (ii) for genetic
overlap between SZ and specific immune diseases (11, 12).

Substantial epidemiological evidence exists suggesting that
maternal, perinatal, childhood, and adult infection may all
increase the risk of schizophrenia diagnosis (13–19). While
many organisms and infection types have been implicated in
schizophrenia risk, the influenza virus has special status: not only
is maternal influenza infection the most well-replicated infective
risk factor for schizophrenia, but the history of schizophrenia
research has been shaped at crucial points by observations
concerning the apparent, sometimes surprising, role of
influenza as an exposure. This review aims to present the
current state of knowledge on mechanisms by which influenza
infection may confer schizophrenia risk, along with the
implications of this understanding for future research,
prevention, and treatment.

Before the focus of this review moves to schizophrenia and
related psychotic disorders, it should be noted that some of the
associations that will be discussed are now thought not to be
specific to schizophrenia risk. The late winter/spring season of
birth effect has also been reported in bipolar disorder (BD) (20),
but the evidence for a link between BD and influenza is
somewhat mixed (21) and addressed in limited studies (22).
Influenza (including serologically documented infection) has
been reported as a risk factor for BD with psychotic features
but not nonpsychotic BD [reviewed in (22–24)]. Furthermore,
some evidence suggests an association between maternal
infection and autism spectrum disorders (ASD) [reviewed in
(25)]. A substantial body of work from Scandinavian (largely
Danish) health register studies supports the notion that clinically
diagnosed maternal, childhood, or adulthood infection is a
pluripotent risk factor for the subsequent development of
Frontiers in Psychiatry | www.frontiersin.org 2
psychiatric disorder, with effects observed across diagnostic
boundaries (13–16, 26, 27). Therefore, while the focus of this
review is on schizophrenia and psychosis, the potential
transdiagnostic relevance of some of the mechanisms reviewed
here should not be ignored.

Currently, influenza is regarded predominantly as a
respiratory illness, but before the last century a far broader
conceptualisation existed. As early as a 1732 epidemic,
clinicians made note of the nervous sequelae of infection, with
manifestations including neurasthenia, melancholy, hysteria,
mental prostration, and insanity (28). According to the
historian of medicine Mark Honigsbaum: “in the mid-1890s
British medical journals were full of tales of Victorian
professionals driven to the brink of madness and beyond by
the nervous sequelae of influenza… for some 30 years, from the
first epidemics of Russian influenza in the 1890s through to the
‘Spanish’ influenza of 1918–19, the ‘psychoses of influenza' were
a widely recognised psychiatric phenomenon” (29). In 1919, Karl
Menninger published a now-classic paper reporting the
characteristics of 100 patients with mental disturbances
associated with influenza infection admitted in a 3-month
period to the Boston Psychopathic Hospital. Of 80 on whom
full data were available, 16 were diagnosed with delirium, 25 with
“dementia praecox,” 23 with “other psychoses,” and 16 were
unclassified (30). Interestingly, two-thirds of the “dementia
praecox” patients were reported to have fully recovered at 5-
year follow up (31). A further historically important strand
of evidence came from von Economo's (32) research on
encephalitis lethargica (EL), a still poorly understood
inflammatory CNS condition featuring psychotic and catatonic
symptoms, which was broadly contemporaneous with and
potentially aetiologically related to the 1918-1919 Spanish
influenza pandemic. Table 1 provides an overview of historical
influenza pandemics that have been linked to the occurrence
of psychosis.

While suggestive, these reports do not provide evidence of a
causal link between influenza infection and psychotic disorders.
Renewed interest in the second half of the 20th century shifted
focus towards maternal infection, following consistent findings
TABLE 1 | Influenza pandemics and their relationships to psychosis.

Name of influenza pandemic Dates Influenza strain
involved

Relationship to psychosis References

1889–1892 influenza pandemic (Russian
influenza)

1889–1892 H2N2 psychosis, suicidal thoughts, paranoia following infection (29, 33, 34)

1918 Spanish influenza pandemic 1918–1920 H1N1 delirium, dementia praecox, acute psychosis (35); encephalitis
lethargica (32) following infection

(31, 32, 35)

Asian influenza pandemic 1957–1958 H2N2 acute psychotic manifestations: anxiety, confusion, restlessness,
paranoia, abnormal electroencephalography 2-10 days after
influenza onset, (36); excess of female births with an increased
schizophrenia risk five months after the onset of the 1957
epidemic (37); however, no significant excess of schizophrenia
cases in births in the 1959 epidemic (37);

(33, 36–43)

2009 influenza pandemic (swine flu) 2009–2010 H1N1 encephalitis, psychosis, including depressive-type psychosis and
repetitive transient psychosis in children following infection

(44, 45)
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of an increased risk for schizophrenia in late winter/spring
season births (20, 46), raising the possibility of winter-borne
infection as a plausible mechanism. Beginning with Mednick et
al.'s 1988 study of a Finnish population exposed to the 1957
influenza A2 pandemic, epidemiological studies in the 1980s–
1990s, of an ecological nature, described increased risk for
schizophrenia in children who were in utero during an
influenza epidemic (37–41). These studies are comprehensively
reviewed in (47). Frequently, rates were highest for second
trimester exposures, although the first trimester appeared also
to be a period of increased risk. Some subsequent studies
however—often with more accurate case ascertainment and
larger samples—were not able to replicate these initial findings
[e.g. (48, 49)]. While estimates of risk varied greatly and
heterogeneity in methodology somewhat limits generalisability,
a 2010 review calculated that maternal influenza exposure
increased schizophrenia risk with an odds ratio of 3.0 and a
population attributable proportion of 14% (47).

Partly because of the manifold methodological problems
involved in imputing precisely who was exposed to influenza,
these ecological studies were followed by so-called “sero-
epidemiological” studies, in which infection was verified using
archived biological specimens: in one such early study first
trimester maternal exposure was associated with a sevenfold
increase in offspring schizophrenia risk, with threefold increase
in risk associated with early-to-mid gestation exposure (50).

Other studies explored whether other viral and bacterial
infections are associated with differential schizophrenia risk. A
meta-analysis found that childhood viral infection was associated
with a nearly twofold increased risk of adult nonaffective
psychosis and that of all childhood infections, viral infections
in particular, were associated with a nearly twofold increased risk
of adult schizophrenia (18). However, bacterial infections were
not associated with risk for psychosis, suggesting that risk may be
specific for childhood viral infections.

Some controversy persists as to whether the evidence for
maternal influenza as a schizophrenia risk factor is sufficient. A
recent review of studies of schizophrenia risk in relation to the
1957 influenza pandemic criticised the serological studies for
using strain-specific antibody titres that were too low to be
specific for recent infection and so were insufficient as proxy
measures of recent infection; furthermore, a pooled meta-
analysis of eight ecological studies and one serological study
found no overall increased risk of schizophrenia in children of
influenza-exposed mothers (51). This review was in turn
criticised as inappropriate given the heterogeneity of methods
used in the pooled studies (52); furthermore it appeared to omit
some relevant serological data [e.g. (39, 40)] and as it focuses on
the 1957 pandemic only, it does not include studies on other
strains of influenza infection and psychosis.

Complicating interpretation of ecological/epidemiological and
serological studies is the fact that obstetric complications are more
likely following influenza or influenza-like illness, and that obstetric
complications are an independent risk factor for the subsequent
development of psychotic disorders and/or symptoms (53–55).
Frontiers in Psychiatry | www.frontiersin.org 3
Reconciling Maternal Infection With
Influenza With the Neurodevelopmental
Hypothesis of Schizophrenia
The la te 1980s and 1990s saw the emergence of
neurodevelopmental theories offering mechanistic accounts of
how schizophrenia develops. The neurodevelopmental
hypothesis (56, 57) posits that schizophrenia results from a
pathological disruption of normal brain development which
commences many years before schizophrenia onset (58).
Infection and other insults could disrupt developmental
processes such as cell proliferation, cell migration, arborisation,
and myelination (59) with resulting brain structural alterations
[e.g. ventricular enlargement, grey matter reductions, and white
matter disruption; (60)]; activation of pathologically developed
brain systems in adolescence or young adulthood then manifests
in schizophrenia symptoms (59).

Amongst other criticisms, the theory fails to account for later-
onset schizophrenia [45 years or older; (61)] and postadolescence
changes (62). Extended neurodevelopmental models posited
further “hits,” e.g., genetic and environmental factors first
predisposing to schizophrenia prenatally and then later in life
[“three-hit” model, (63); multiple hit theory, (64)]. Infection is a
possible “hit”; for instance, human endogenous retrovirus
infections, activated by viruses including influenza, were
suggested as late “hits” (64). This theory is consistent with
evidence that maternal infection contributes to later increased
offspring risk for childhood infections, which in turn contribute
to schizophrenia development (65).

There is no clear evidence that genetic liability to schizophrenia
increases the likelihood of influenza infection or predisposes to a
disrupted immune response to influenza, or that influenza genetic
risk loci are implicated in schizophrenia. In terms of genetic risk for
influenza infection, while significant genetic effects accounting for
the antibody level in influenza A and B (66, 67) have been reported
with h2 (heritability) range of 0.20–0.27 and c2 (shared
environnment) = 0.19 for influenza A and B (66), results for
discrete serostatus (seropositive/seronegative) were significant for
influenza B only. However, another GWAS of IgG response to
viruses identified HLA class II residues as causal variants and found
an overlap between variants affecting the humoral response to
influenza A and variants linked to influenza-related autoimmune
disorders including narcolepsy (68). Neither of these studies nor any
others to date have directly addressed the issue of overlap between
genetic risk for schizophrenia and specific risk for influenza
infection, although this has been explored for other pathogens
(69–71). A UK population-based cohort study of 7,921 mothers
found no association between schizophrenia polygenic risk score
(PRS) and perinatal infection (using a single “any infection”
category) (72). Similarly, a case-control study by Benros et al.
explored an association between schizophrenia PRS and a history
of hospital contacts for viral infections, including influenza infection:
PRS for schizophrenia did not account for the association between
hospitalisation for infection and subsequent schizophrenia risk,
indicating that schizophrenia risk does not increase proneness to
such severe infections (73).
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THE INFLUENZA VIRUS AND POTENTIAL
PATHOLOGICAL MECHANISMS
UNDERLYING THE ASSOCIATION
BETWEEN SCHIZOPHRENIA AND
INFLUENZA INFECTION

Influenza: Structure and Pathophysiology
The influenza virus is an enveloped RNA virus from the family
Orthomyxoviridae, with three genera, influenza A, B, and C (74).
Given that influenza type A is responsible for pandemics (75)
historically linked to schizophrenia and psychotic symptoms (see
Table 1), we will focus on this alone. Influenza A viruses are
classified into subtypes based on the antigenic properties of their
envelope glycoproteins (see Figure 1), hemagglutinin, and
neuraminidase. The viral envelope is a lipid membrane derived
from plasma membrane of an infected host cell. Influenza strain
targets also differ. Notably, the H5N1 virus and other avian-
derived strains are neurotropic while H1N1 is thought not to be
(76–78).

For infection to be successful, hemagglutinin binds the
influenza virus to its receptors, sialyloligosaccharides, on the
host cell surface. The viral envelope and the host cell membrane
fuse giving the viral RNA access to the host cell (74, 79).
Neuraminidase facilitates virus release (74, 75). Following the
production of viral particles in the nucleus of the host cell, the
host cell lyses and dies (75). Protective immune responses from
the cell occur; the viral hemagglutinin, neuraminidase, and
matrix 2 (M2) proteins are targeted by antibodies; matrix 1
(M1) proteins are targeted by T cells (80); and nucleoproteins are
targeted by T cells (80) and nonneutralizing antibodies (81).

Experimental Paradigms of
Maternal Infection
While maternal infection is reported to be a risk factor for
schizophrenia, controversy remains concerning which
biological processes underlie this risk. There is scant evidence
for transplacental passage and persistence of the influenza virus
in the offspring brain (82). More likely to be relevant are the
effects of infection-induced maternal immune activation (MIA)
on the developing brain (83).
Frontiers in Psychiatry | www.frontiersin.org 4
MIA cannot be easily modelled in humans and longitudinal,
prospective research on effects of infection during pregnancy on
human development is scarce (84). Hence, translational animal
models of MIA have been developed: these models have been
critical in providing causality to the epidemiological data and are
starting to provide clues as to the cellular and molecular
mechanisms that may underlie the associations (83). Rodents
in gestational periods are exposed either directly to a pathogen
such as influenza, or more commonly to nonvirulent immune-
activating agents such as the viral mimetic polyriboinosinic-
polyribocytidilic acid (poly(I:C)) or the bacterial endotoxin
lipopolysaccharide (LPS), the inflammatory agent turpentine,
or specific proinflammatory cytokines (83, 85). These
animal models of MIA provide evidence for behavioral,
neurochemical, neuroanatomic, and neurophysiologic
disruptions in the offspring which map onto endophenotypes
observed across human psychiatric disorders with a
neurodevelopmental onset (83, 86). Such translational research
complements the insights from human epidemiology by
establishing causal relationships, identifying cellular and
molecular mechanisms and offering the potential to explore
therapeutic interventions (85, 86). Frequently, these
aforementioned deficits in the MIA model demonstrate a
maturational delay, such that they are not evident before
young adulthood, and many studies have sought to mitigate
these deficits with treatments (e.g., pharmacological,
immunological, behavioral) (83). Another important etiological
advance for such animal models is to recapitulate a “two-hit”
approach, in which pathology becomes evident in MIA-exposed
offspring only after a second hit, such as unpredictable
psychological stress (87).

MIA may lead straightforwardly to damage to the foetal brain
during the early stages of neurodevelopment (82), but may also
provide entry into a deviant trajectory of neural development
which predisposes offspring to behavioral deficits depending on
the intensity of the infection and when in gestation it occurs
[early vs. late—and potentially as late as the lactation stage (88)].
MIA-associated abnormalities have been described, sometimes
inconsistently, for multiple brain cell types, all of which are
implicated across psychiatric disorders from postmortem data
and genetic studies to a greater or lesser extent: Schwann cells
(89), astrocytes and microglia (90, 91), hippocampal GABAergic
cells (92, 93), dopaminergic neurons (94), and parvalbumin
interneurons (95, 96).

Notably, most rodent (and primate) MIA models use a dose
of poly(I:C) which models a high intensity, acute and transient
(<24 h) infection, the physiological relevance of which could be
questioned. Furthermore, factors such as the source, molecular
weight, and endotoxin contamination of experimental poly(I:C)
may be unrecognised sources of variability in foetal outcomes
(97). Although MIA models specifically using pathogens as the
immune activating stimulus have become rarer in recent years,
primarily due to increasingly stringent safety frameworks around
the use of potentially virulent pathogens (98), a series of MIA
studies using human H1N1 influenza infection by the group of S.
Hossein Fatemi are particularly valuable in elucidating potential
mechanisms of psychosis risk. Broadly, maternal human H1N1
FIGURE 1 | Structure of the influenza virus.
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infection has been demonstrated to cause abnormalities, within
the offspring, of the following [summarized in (99) and (59)]:

Gene Expression: the breadth of gene expression changes was
greater the later in embryonic development infection occurred;
for example embryonic day 16 or 18 (E16 or E18) infection
disrupted more genes, across more brain regions, than did E7
infection. Furthermore, infection at later embryonic stages
disrupted expression of genes involved in myelination and
implicated in schizophrenia risk.

Protein Expression: increase in production of potentially
harmful neuronal nitric oxide synthase (nNOS), reduction of
reelin expression indicating abnormal neuronal migration and
decreased synaptic plasticity, and downregulation of myelin
basic protein.

Brain Structure: reduced cerebral cortical volume; increased
total brain volume after early embryonic infection, decreased
total brain volume after late infection.

Behavior: decreased prepulse inhibition (PPI), increased head
twitch response.

Neurotransmitter Levels: reduced serotonin and taurine levels.
Placental Development: increased cytoarchitectural

disorganisation, increased presence of immune cells, presence
of variously sized thrombi, and dysregulation of placental
gene expression.

Additional selected studies, focused on models of infection
with influenza virus, are presented in Table 2.

Other animal studies have demonstrated associations
between maternal influenza infection and schizophrenia-related
neurotransmitter dysfunction including elevated serotonin 5-
HT2A receptor expression in the frontal cortex (121),
reductions of cerebellar serotonin levels at postpartum days (P)
14 and P35 (111, 115), downregulation of the metabotropic
glutamate receptor 2 in the frontal cortex (121), and decrease
in dopamine levels at P14 and P56 (115). Changes following poly
(I:C) MIA exposure included subtle metabolic perturbations of
postnatal prefrontal cortex maturation (124), and dynamic
changes in volumes of multiple brain structures (125),
including adult changes which can be prevented by
periadolescent administration of antipsychotic medication (at
nonantipsychotic dose equivalents) (126). Supporting the
translational relevance of these studies, there is an emerging
parallel literature in humans suggesting that early immune
activation affects subsequent brain development and behavior:
for example, maternal IL-6 levels during pregnancy predicted
greater neonatal amygdala volumes and connectivity, which in
turn predicted poorer impulse control at two years of age (127);
complementary results for amygdala connectivity and
internalizing behaviors have been reported for maternal
cortisol levels (128).

An important mediator of the maternal immune response to
infection is likely to be disruption of cytokines regulating brain
development. Notably maternal infection could dysregulate
cytokine networks either by direct transplacental transfer of
cytokines to the foetus, by placental cytokine production or by
increased foetal production of cytokines, including within the
CNS (129). Cytokine dysregulation can result in perturbations of
both proinflammatory and antiinflammatory cytokines. The
Frontiers in Psychiatry | www.frontiersin.org 5
deleterious or protective effects of any individual cytokine are
likely determined by its context within a network of
proinflammatory and antiinflammatory mediators, dynamically
responding to external and endogenous challenges with
differential expression in different brain regions over time
(130). For example, macrophage-driven expression of
antiinflammatory IL-10 in a mouse model can attenuate the
long-term effects of prenatal viral infection, but in the absence of
inflammatory stimulus, IL-10 itself precipitates offspring
behavioral abnormalities (131).

Cytokines are induced in response to inflammation by
neurons, astrocytes, and microglia, with the role of activated
microglia in schizophrenia pathogenesis being the object of
much recent attention (132). MIA exposure leads to alterations
of the microglial transcriptome, with an initial shift to a more
reactive state proximal to the MIA insult, followed by a delay in
the maturation of brain microglia, as compared to controls (133).
Alterations in the microglial transcriptome also lead to
phagocyt ic funct ion abnormal i t ies and behaviora l
abnormalities in the adult MIA offspring (134). Results from
the MIA literature are heterogenous with regards to microglial
activation in offspring (91). Some studies report increased
microglial density [e.g. (135)], morphology [e.g. (136)] or
expression of activation markers [e.g. (137)], while other
studies using late MIA have failed to demonstrate long-term
changes in microglia density, morphology, or activation (138).
Inference regarding the translational relevance of these findings,
too, has been limited by a lack of clarity around the utility of the
putative human markers of microglial activation such as
translocator protein (TSPO), bound by ligands in Positron
Emission Tomography (PET) studies, and of microglial
markers used in post-mortem studies; notably, in addition to
microglia, both astrocytes and vascular endothelial cells show
dynamic changes in TSPO expression in response to
inflammatory stimuli, and in a mouse model schizophrenia-
relevant behavioral abnormalities and increased inflammatory
cytokine expression were associated with reduced, rather than
increased, prefrontal TSPO levels (139).

Both neurotropic and nonneurotropic influenza strains can
cause microglial activation and potentially contribute to
inflammation (76, 77). Innate immune training against
influenza confers protection against infection with antiviral
interferon-stimulated defence genes, including MXA (prevents
nuclear import of the virus), IFITM3 and other IFITM proteins
(block host-virus cell membrane fusion), and viperin [blocks
influenza virus release; (140)]. Innate immune training also
promotes disease tolerance of host tissues (140) and previous
activation primes microglia to respond strongly to a new
stimulus (141). Previous neuropathology potentially attunes
microglia to respond more strongly to systemic inflammation
(142), including inflammation by chronic mild stress in
periadolesence following MIA (86). Consequently, infection
could prime microglia towards heightened activation,
potentially increasing the risk of developing psychotic
symptoms (143); alternatively, the opposite could be true, i.e.,
that the microglia become tolerant and as such cannot respond
flexibly to new stimuli.
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TABLE 2 | Summary of selected behavioral and pathological outcomes following influenza infection in rodents.

Study Year Influenza
virus type

Animal Animal
infected

Age of animal at
assessment

Behavioral
and physical
outcomes

Pathological outcomes

Cotter
et al. (100)

1995 A/
Singapore/
1/57
(H2N2)

Mice Mice between
day 9-16 of
pregnancy

Offspring 21 days
postpartum

N/A No excess pyramidal cell disarray when compared
with influenza-free, age-matched controls. Cell disarray
greater among mice exposed on day 13 of pregnancy

Fatemi
et al. (101)

1998 A/WSN/33
(H1N1)

Mice Mice on day 9
of pregnancy

Neonate pups at
postnatal day 0 (P0;
day of delivery)

N/A Increased expression of membrane protein
synaptosome-associated protein 25 kDa [SNAP-25), a
presynaptic neuronal marker in the neonatal brain:
40%–347% over control in most septal–dorsal
hippocampal layers; 10%–114% over control in all mid
septo-temporal hippocampus layers, except for the
hippocampal plate; but SNAP-25 expression was
reduced in all temporal–ventral levels, infected layers
by 21%–33% below control except for mild increases
of 8.8% and 10% in subplate and hippocampal plate
layers

Fatemi
et al. (102)

1999 A/WSN/33
(H1N1)

Mice Mice on day 9
of pregnancy

Neonate pups at P0 N/A Changes influencing levels of reelin, a protein
responsible for normal lamination of the brain.
Significant reductions in reelin-positive cell counts in
layer I of neocortex and other cortical and
hippocampal layers. Layer I Cajal–Retzius cells
produced significantly less reelin. Decreases in
neocortical and hippocampal thickness

Fatemi
et al. (103)

2000 A/WSN/33
(H1N1)

Mice Mice on day 9
of pregnancy

Adolescent offspring
(P35) and young
adults (P56)

N/A Changes in the levels of neuronal nitric oxide synthase
(nNOS) involved in synaptogenesis and excitotoxicity:
increase of 147% in nNOS levels in the brain at P35,
with an eventual 29% decrease on P56. Reductions in
nNOS in middle and caudal brain areas on P35 and
P56.

Aronsson
et al. (104)

2001 A/WSN/33
(H1N1)

Mice Four-week-old
Tap1 (antigen
peptide
transporter 1)
gene knockout
mice

7 days and 10, 12,
and 17 months p.i.

N/A Viral RNA encoding the nonstructural NS1 protein was
detected in sections at midbrain levels in most
animals. Negative-strand genomic RNA and positive-
strand RNA, including mRNA, were found. RNA
encoding nucleoprotein and polymerases, which form
the replicative complex of the virus, were detected in
fewer brains. RNA encoding envelope proteins were
found only in occasional brains. No viral cDNA could
be identified

Aronsson
et al. (82)

2002 A/WSN/33
(H1N1)

Mice Mice on day 14
of pregnancy

Foetuses at
pregnancy day 17;
offspring 10, 20, 35,
60, and 90 days of
age

N/A Viral RNA encoding matrix and/or nucleoprotein
detected in a proportion of foetal brains and lungs,
viral RNA detected in some placentas. RNA persisted
for at least 90 days of postnatal life

Fatemi
et al. (105)

2002 A/WSN/33
(H1N1)

Mice Mice on day 9
of pregnancy

Offspring at P0, P14
and P35

N/A Altered expression of glial fibrillary acidic protein
(GFAP), a marker of gliosis, neuron migration, and
reactive injury: increases in GFAP-positive density in
exposed cortical and hippocampal cells; ependymal
cell layer GFAP-IR cell counts showed increases with
increasing brain age from P0 to P14 and P35 in
infected groups. The GFAP-positive cells in showed
‘hypertrophy' and more stellate morphology

Fatemi
et al. (106)

2002 A/WSN/33
(H1N1)

Mice Mice on day 9
of pregnancy

Neonates at P0 and
14-week-old
offspring

One exposed group with
deficient prepulse inhibition
(PPI), one group did not
show abnormal PPI

The rate of pyramidal cell proliferation per unit area
decreased from birth to adulthood in both control and
exposed groups, nonpyramidal cell growth rate
increased only in the exposed adult mice

Shi et al.
(107)

2003 A/NWS/
33CHINI
(H1N1)

Mice Mice on day 9.5
of pregnancy

Adult offspring Deficient PPI; deficient
responses to acute
administration of clozapine,
chlorpromazine and
ketamine; deficient
exploratory behavior in
open-field and novel-object

N/A
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TABLE 2 | Continued

Study Year Influenza
virus type

Animal Animal
infected

Age of animal at
assessment

Behavioral
and physical
outcomes

Pathological outcomes

tests; deficient social
interaction

Asp et al.
(108)

2005 A/NWS/33
(H1N1)

Mice Mice on day 14
of pregnancy

Offspring sampled at
E17 and sex-
matched animals on
P35, P60, and P90

N/A Levels of transcripts encoding neuroleukin and
fibroblast growth factor 5 were significantly elevated in
the brains of the virus-exposed offspring at 90 and
280 days of age, but not at earlier time-points. For
neuroleukin, this difference could also be observed at
the protein level

Fatemi
et al. (109)

2005 A/NWS/33
(H1N1)

Mice Mice on day 9
of pregnancy

Newborn offspring N/A Significant upregulation of 21 genes and
downregulation of 18 genes in brains of day 0
exposed offspring, including genes involved in signal
transduction/cell communication, solute transport,
protein metabolism, energy metabolism, nucleic acid
metabolism, immune response, and cell growth and
maintenance

Asp et al.
(110)

2007 A/NWS/33
(H1N1)

Mice Newborn
offspring
infected on P3

Newborn offspring
on P3; whole brains
were sampled at:
embryonal day (E)17
and P7, P13, and
P24. From two
animals, the
hippocampus,
cortex, and
cerebellum were
dissected from
freshly prepared
brains at P3, P10,
P15, and P27

N/A Increased levels of transcripts encoding Gcm1 and
syncytin B, but not syncytin A, in NIH-3T3 cells as well
as in mouse primary neurons or glia. Overexpression
of human GCM1 in NIH-3T3 cells resulted in increased
levels of transcripts encoding syncytin B
but not syncytin A. Systemic administration of
neurotropic influenza A virus
resulted in a neuronal infection and increased levels of
Gcm1-encoding transcripts in brains of young mice

Fatemi
et al. (111)

2008 A/NWS/33
(H1N1)

Mice Mice on day 18
of pregnancy

Male offspring tested
at birth (P0),
childhood (P14),
adolescence (P35),
and young adulthood
(P56)

N/A Altered gene expression of Sema3a, Trfr2 and Vldlr
and altered protein levels of Foxp2. Embryonic day 18
mother infection led to significant gene alterations in
frontal, hippocampal and cerebellar cortices of
developing offspring. Significant atrophy in several
brain areas and white matter thinning in corpus
callosum. Altered levels of serotonin (P14, P35), 5-
Hydroxyindoleacetic acid (P14) and taurine (P35)

Fatemi
et al. (112)

2008 A/NWS/33
(H1N1)

Mice Mice on day 9
of pregnancy

Offspring tested at
birth (P0), childhood
(P14), adolescence
(P35), and young
adulthood (P56)

N/A Changes in mRNA and protein levels of nucleolin,
aquaporin 4, and connexin 43 (markers involved in
ribosomal RNA transcription, potentially viral
replication, water transport, and changes in brains of
subjects with autism): nucleolin mRNA and aquaporin
4 significantly decreased in neocortex at P0 and P35.
Protein levels were significantly upregulated at P35
and P56 in neocortex and P56 in cerebellum
Microcephalin mRNA was significantly decreased in
neocortex at P56 and protein levels were significantly
decreased at P56 in the cerebellum

Fatemi
et al. (113)

2008 A/NWS/33
(H1N1)

Mice Mice on day 16
of pregnancy

Offspring at P35 and
P56

N/A Twofold or greater upregulation of 103 genes and
downregulation of 102 genes in cerebellum at P35.
Twofold or greater upregulation of 27 genes and
downregulation of 23 genes in the cerebellum at P56.
Genes with their regulation disrupted are involved in
cell growth and/or maintenance, channel proteins,
membrane receptors, signalling, and transcription
regulation, among other functions

Holtze
et al. (114)

2008 A/NWS/33
(H1N1)

Mice Mice infected at
infected at P3
or P4

Whole brains from
both sexes sampled
at P7, P13, or P24

N/A Altered levels of transcripts encoding several key
enzymes of the kynurenine pathway observed in the
brain on P7 and P13 but not on day P24. On P13,
infiltrating T lymphocytes and increased levels of
kynurenic acid in the brains of the infected animals
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TABLE 2 | Continued

Study Year Influenza
virus type

Animal Animal
infected

Age of animal at
assessment

Behavioral
and physical
outcomes

Pathological outcomes

Winter
et al. (115)

2008 A/NWS/33
(H1N1)

Mice Mice on day 16
of pregnancy

Male offspring tested
at P0, P14, P35, and
P56

N/A A significant decrease in serotonin levels in the
cerebella of offspring of virally exposed mice at P14.
No differences in dopamine levels between exposed
and control mice. A significant decrease in dopamine
at P14 and P56 compared to P0

Asp et al.
(116)

2009 A/NWS/33
(H1N1)

Mice Wild-type mice
and Tap1 gene
knockout mice
infected at P3
or P4

3–4-months-old
male mice

Infected Tap1 gene
knockout mice, but not
wild type mice, exhibited
deficits in working memory,
increased rearing activity,
and anxiety

Reduced levels of type III Nrg1 transcripts in the
medial prefrontal cortices of Tap1 gene knockout mice
were observed. The lack of CD8+ T cells appeared to
contribute to a more pronounced glia response in
Tap1 gene knockout mice than in wild-type mice

Shi et al.
(117)

2009 A/NWS/
33CHINI
(H1N1)

Mice Mice on day 9.5
of pregnancy

Adult offspring and
offspring 11 days of
age

N/A Purkinje cells deficit in the cerebellum

Fatemi
et al. (118)

2009 A/NWS/33
(H1N1)

Mice Mice on day 16
of pregnancy

Male offspring tested
at P0, P14, P35, and
P56

N/A Altered expression of myelination-related genes,
including Mbp, Mag, and Plp1, and altered levels of
proteins Mbp, Mag, and DM20. Significant atrophy in
cerebellum at P14, reduced fractional anisotropy in
white matter of the right internal capsule at P0,
increased fractional anisotropy in white matter in
corpus callosum at P14 and right middle cerebellar
peduncle at P56

Fatemi
et al. (119)

2009 A/NWS/33
(H1N1)

Mice Mice on day 16
of pregnancy

Male offspring tested
at P0, P14, P35, and
P56

N/A Altered gene expression in the hippocampus at P0,
P14, and P56 including Aqp4, Mbp, Nts, Foxp2,
Nrcam, and Gabrg1. Downregulation of myelination
genes Mag, Mog, Mobp, Mal, and Plp1 at P0.
Reduction in hippocampal volume at P35

Asp et al.
(120)

2010 A/WSN/33
(H1N1)

Mice Wild-type mice
and Tap1 gene
knockout mice
infected at P3
or P4

Male mice at age 5–
6 months tested for
PPI; whole brains of
the Tap1 gene
knockout mice
sampled at P7, P13,
and P24 to explore
the kynurenine
pathway

Tap1 gene knockout mice,
but not wild-type mice,
exhibited a reduction in PPI
at 5–6 months of age

Levels of several transcripts in the kynurenine pathway
altered at P7, P13 and P24. Transcripts encoding
indoleamine-pyrrole 2,3-dioxygenase (IDO), degrading
tryptophan in the first step of the kynurenine pathway
were consistently up-regulated

Moreno
et al. (121)

2011 A/WSN/33
(H1N1)

Mice Mice on day 9.5
of pregnancy

Adult offspring (10–
12 weeks of age)

Increased head-twitch
response to hallucinogens,
diminished antipsychotic-
like effect of the glutamate
agonist

In frontal cortex, the upregulated 5-HT(2A) receptor
and the downregulated mGlu(2) receptor. The cortical
5-HT(2A) receptor-dependent signalling pathways
altered, showing higher c-fos, egr-1, and egr-2
expression in response to the hallucinogenic drug DOI

Landreau
et al. (94)

2012 A/New
Caledonia/
20/99-like
(H1N1) (A/
NC-L/99),
A/Sydney/
5/97-like
(H3N2) (A/
Sy-L/97),
A/WSN/33
(H1N1)

Rats
and
mice

Primary cultures
of rat
mesencephalon
infected after
day 14 of
pregnancy;
mothers on day
9–11 of
pregnancy

Neurons from rat
embryos recovered
at day 14 of
pregnancy; offspring
of mice infected in
pregnancy tested at
30 and 90 days of
age

The A/WSN/33 strain
associated with greater
behavioral impairment
(exploration, novel objects,
and spontaneous activity)
than A/NC-L/99.
Offspring of mother
infected with both influenza
virus strains showed
behavioral abnormalities in
exploration, anxiety and
working memory.
Behavioral alterations
emerged in different
neurodevelopmental stages
depending on the strain,
appearing in adult life in
offspring of mothers
infected with A/NC-L/99

Selective loss of dopaminergic neurons. H1N1 strains
had the greatest affinity for dopaminergic neurons, an
H3N2 strain induced apoptosis preferentially in other
cell types and did not result in NFkB activation.
Only following the H1N1 strains infection a selective
loss of dopaminergic neurons in substantia nigra pars
compacta and ventral tegmental area of the offspring.
Loss of dopaminergic neurons more pronounced in
the adult offspring of mothers infected with the
neuroadapted A/WSN/33 than with the respiratory
strain A/NC-L/99
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In terms of potential downstream consequences of such foetal
microglial activation, there is an emerging literature implicating
the role of microglia in shaping brain development, including the
potential for synaptic pruning via the full or partial engulfment
[phago- or trogocytosis (144)] and putative degradation of
synaptic inputs, a process mediated at least in the rodent visual
thalamus in a complement and activity-dependent manner (145),
whichmay also involve other molecular mediators such as TREM2
for example or the fractalkine receptor [CX3CR1; (146)] [potential
mechanisms are reviewed in (147)]. Given the well-replicated
finding of reduced dendritic spine number in schizophrenia
(148), and evidence that patient-derived microglia-like cells are
capable of synapse elimination at least in vitro (149), it is plausible
also that maternal infection-induced foetal microglial activation
could lead to later psychopathology through upregulation of
synaptic pruning mechanisms (or conversely, loss of them: for
example, early in development, microglia contact of neurons
actually stimulates dendritic spine formation (150) suggesting
the underexplored possibility that different pathologies play out
in a potentially time- and region-specific manner).

Additionally, influenza infection may lead to placental
abnormalities that result in hypoxia and/or nutritional
deficiency or foetal brain growth restriction (122). Brain
abnormalities may also stem from the maternal immune
response whereby maternal autoantibodies are transported via
the placenta and interact with foetal brain antigens to disrupt
brain development [the teratogenic antibody hypothesis of
schizophrenia; (151–153)]. The concept of infection-induced
brain autoimmunity is explored in the next section.
INFLUENZA AND AUTOIMMUNITY

Research on autoimmune disorders and schizophrenia dates to
the 1950s, when schizophrenia was found to be protective against
Frontiers in Psychiatry | www.frontiersin.org 9
the development of rheumatoid arthritis (154, 155).
Subsequently, the cooccurrence of schizophrenia with celiac
disease was noted [e.g. (156)]. Recent meta-analysis suggests a
positive association between nonneurological autoimmune
disorders and psychosis (157). The risk for developing
schizophrenia in people with autoimmune disorders was found
to increase in association with increasing number of
hospitalisations for infections (158), suggesting a synergistic
effect. Drawing on the clinical observation that patients with
autoantibody-mediated encephalitis frequently presented with
psychosis (159), serological research has reported the presence of
these same autoantibodies against cell surface neuronal antigens
in some patients with schizophrenia [e.g. (160, 161)]. An
extensive literature also focuses on markers of previous
infection (usually IgG antibodies to specific pathogens,
including influenza) in adults with psychotic disorders, with
exposure to several organisms associated with increased
schizophrenia risk or risk for a specific psychosis symptom
profile (e.g. impaired cognition) (17, 162).

Viral infection, Neuronal Surface
Autoantibodies and Psychosis: Anti-
NMDAR Encephalitis as a Model of
Autoimmune Psychosis With Potential
Infective Antecedents
Autoimmune encephalitis (AE) frequently presents with acute
psychosis in adults (163, 164). Autoantibodies to a variety of
CNS cell surface antigens (neuronal surface autoantibodies;
NSAbs) have been implicated in AE, including the NMDAR
and more rarely LGI1, CASPR2, AMPAR, GABAAR, GABABR,
D2R, DPPX, mGluR5, and GlyR (165–169). Of the autoimmune
encephalitides associated with the above antigens, NMDAR
encephalitis presents most frequently with psychosis. The
typical pattern includes prodromal malaise, or influenza-like
symptoms, before the emergence of psychiatric symptoms. 4%
TABLE 2 | Continued

Study Year Influenza
virus type

Animal Animal
infected

Age of animal at
assessment

Behavioral
and physical
outcomes

Pathological outcomes

Fatemi
et al. (122)

2012 A/WSN/33
(H1N1)

Mice Mice on day 7
of pregnancy

Placentae of
pregnant mice; male
offspring tested at
P0, P14, P35, and
P56

N/A Upregulation of 77 genes and significant
downregulation of 93 genes in placentas. Changes in
gene expression in prefrontal cortex (6 upregulated
and 24 downregulated at P0; 5 upregulated and 14
downregulated at P56) and hippocampus (4
upregulated and 6 downregulated at P0; 6
upregulated and 13 downregulated at P56) of
exposed offspring. Placentas from infected mice with
morphological abnormalities including presence of
thrombi and increased presence of immune cells. No
H1N1 viral-specific genes for M1/M2, NA, and NS1 in
placentas of infected mice and brains of exposed
offspring

Fatemi
et al. (123)

2017 A/NWS/33
(H1N1)

Mice Mice on day 16
of pregnancy

Male offspring tested
at P0, P14, P35, and
P56

N/A Changes in proteins FMRP, VLDLR, GAD65, and
GAD67 in cerebella of exposed offspring on specific
postnatal dates which implies disrupted FMRP,
glutamatergic, and Reelin signalling leading to
developmental abnormalities
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of patients show isolated psychotic episodes at presentation or
relapse (170) and behavioral and cognitive impairments
including psychosis are predominant early symptoms (171).
The psychosis reported in anti-NMDAR encephalitis is
distinctive, polymorphic (with significant affective elements)
and does not correspond clearly to currently existing categories
of psychotic disorder in mainstream psychiatric use (172). Anti-
NMDAR encephalitis is caused by IgG antibodies directed
against an epitope on the N-terminal domain of the NR1
subunit of the NMDA glutamate receptor (173, 174), with
intrathecal antibody production by B lymphocyte descendants
thought to be essential for pathogenesis.

Anti-NMDAR encephalitis is associated with ovarian teratoma
in under a third of cases. An intriguing association between
infection and the development of the disorder became apparent
when it was observed that a number of patients experiencing
“relapses” following herpes simplex virus (HSV) encephalitis had
cerebrospinal fluid (CSF) NMDAR antibodies, suggesting that
these “relapses” were in fact a postinfectious AE, rather than the
result of reinfection or viral reactivation (175). Subsequent work
has established that NMDAR antibody production can occur
following HSV encephalitis even in the absence of clear “relapse”
or encephalopathy (176), and that nonencephalitic HSV infection
is also more common in patients with anti-NMDAR encephalitis
(177). Other viral pathogens—including Epstein Barr Virus,
Human Herpesvirus 6, cytomegalovirus, adenovirus and HIV—
have been implicated in this and other autoimmune
encephalitides [including those characterized by antibodies to
the GABAA and GABAB receptors, the AMPA receptor and the
dopamine D2 receptor; reviewed in (178)].

A potential association between anti-NMDAR encephalitis
and influenza is supported by reports of at least five patients who
developed the disorder following influenza vaccination (179–
182)—although in none of these cases can causation be proven. A
phylogenetic relationship has been suggested between
microRNAs related to anti-NMDAR encephalitis and the
H1N1 influenza virus, with some authors suggesting a
theoretical basis for the possibility that anti-NMDAR
encephalitis could be induced by influenza vaccination [(183);
see also next section].

Anti-NMDAR encephalitis shares clinical features with EL in
children, and indeed NMDAR antibodies have been reported in
children with contemporary EL (184). When considered in the
light of classic research on EL following the 1918-1919 Spanish
influenza pandemic (32), this suggests a potential relationship
between influenza infection, NSAbs and psychosis in anti-
NMDAR encephalitis. [The association between influenza and
EL is, however, highly controversial, not least because of
temporal and geographical discrepancies between the start of
the pandemic and the first recorded EL cases, as well as studies
on post-mortem tissue which have frequently failed to find
evidence of influenza virus; but given historical issues with case
ascertainment and storage of biological samples potentially
undermining efforts at viral detection, the association remains
a plausible hypothesis for some authors (185)].

This interpretation is supported by findings that anti-
NMDAR encephalitis may be seasonal, with a peak in
Frontiers in Psychiatry | www.frontiersin.org 10
incidence during winter (186), potentially converging with
seasonality of influenza. Recent research found that Māori and
Pacific Island populations have higher incidence and potentially
more severe outcomes of anti-NMDAR encephalitis, a finding of
significance given that population's apparent increased
susceptibility to severe influenza infection (187, 188).

NMDAR antibodies are of interest in schizophrenia because
of their links to the glutamate/NMDAR hypofunction hypothesis
of psychotic disorders: NMDAR antibodies found in patients
with schizophrenia can disrupt NMDAR dynamics in vivo (189,
190) providing prima facie support for the NMDAR
hypofunction hypothesis. Crucially, Hammer et al. (191)
reported the presence of influenza virus A or B IgG was
significantly associated with NMDAR antibody seropositivity
in a large cohort of adult patients with psychotic disorders and
disease and healthy controls, a finding that was subsequently
replicated in an independent cohort (192).

Acquired Neuronal Autoimmunity and Its
Relevance to the Maternal Exposure Model
As described above, infection-induced neuronal autoimmunity
may have relevance for some acute psychoses. However neuronal
autoimmunity also has relevance in the context of maternal
transmission. Maternal-foetal transfer of pathogenic antibodies
has long been proposed as a potential mechanism in the
development of ASD and, to a lesser extent, for schizophrenia
also (153). Although not formally regarded as part of the MIA
paradigm, recent animal models have had some successes in
recapitulating neurodevelopmental phenotypes in immunisation
paradigms whereby maternal antibodies are transferred to the
offspring, resulting in neuropathological and behavioral
abnormalities (193–195). Two of these studies used CASPR2
antibodies, cell surface IgG antibodies which have been
implicated in encephalitis and a variety of peripheral nerve
manifestations. Intriguingly, a study by Coutinho et al. found
that NMDAR antibodies were more frequent in mothers of
children with neurodevelopmental disorders, who themselves
(i.e. the mothers) subsequently developed psychosis. This finding
was not replicated in another cohort in which the mothers did
not go on to develop psychosis, but clearly mandates attempts at
replication (196). A recent animal study has shown that
maternal-foetal transfer of recombinant NMDAR NR1
antibodies—at levels that did not affect the behavior of the
pregnant mother—resulted in impaired neurodevelopmental
reflexes, reduced anxiety, motor hyperactivity, and impaired
sensorimotor gating, the latter two of which were regarded as
psychosis-like phenotypes (197) (but see section “Experimental
paradigms of maternal infection” for transdiagnostic relevance of
these behaviors).

Influenza and Molecular Mimicry
The association between influenza infection and NMDAR
autoantibody status may have structural molecular basis. The
influenza A M2 channel and NMDAR share a ligand, the
antiviral compound amantadine (198), suggesting putative
structural homology which could form the basis for NMDAR
autoimmunity occurring after infection. In molecular mimicry,
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there is sharing of sequences, such as linear amino acid
sequences, by molecules from dissimilar genes or their protein
products. In infection, if the virus shares cross-reactive epitopes
for B or T cells with the host, the host immune cells can target
both the infecting agent and the host itself, potentially inducing
autoimmune disease (199). The processes involved include Tc

cells damaging self-tissue by lysis or Th cells releasing cytokines.
Cytokines in turn activate macrophages or stimulate secretion of
antibodies, and antibodies bind to cross-reactive epitopes on the
surface of tissues, triggering further cytokine production by
macrophages (200). Damaged tissues can also release new self-
epitopes which activate autoantigen-reactive T and B cells,
recognising those self-epitopes [epitope spreading; (201)].

There are multiple strands of evidence that influenza
infection may have an aetiological role in systemic
autoimmunity, including in Henoch-Schonlein purpura, type 1
diabetes mellitus and antiphospholipid syndrome [reviewed in
(202)]. In one study, influenza vaccination induced
autoimmunity (primarily antiphospholipid antibodies) in
apparently healthy volunteers (203). H1N1 infection in rabbits
has also been shown to induce brain-reactive antibodies,
including to a 37kDa target also present in humans (204).
Precedent for the role of influenza exposure initiating
neurological disorder, potentially via molecular mimicry, exists
for Guillain-Barre syndrome (205) and narcolepsy, in which
hypocretin-producing neurons could be an autoimmune target
due to molecular mimicry between H1N1 virus-derived antigen
and a neuronal autoantigen in HLA-DQB1*06:02 positive
patients (206, 207); see (208) for an example model of
narcolepsy. This association is supported by epidemiological
findings of an increased risk of narcolepsy in children
following the H1N1 vaccination, Pandemrix (209, 210), and by
serological findings that antibodies to influenza nucleoprotein
might cross-react with hypocretin receptor 2 in patients with
Pandemrix vaccination [(211), although see (212–214)].

Further evidence for molecular mimicry as a bridging link
between influenza infection, the adaptive immune response and
neurodevelopmental risk for schizophrenia comes from gene
sequence overlap between the H5N1 virus and genes abnormally
regulated in schizophrenia (215). Furthermore, the H1N1
influenza antiviral protein hemagglutinin was found to share
peptide structure with a variety of human axon guidance
proteins; the majority of proteins identified as containing
homologous sequences are involved in processes which, if
disrupted, could lead to deviant neurodevelopmental
trajectories. The observed peptide matches were conserved
across influenza strains and frequently involved experimentally
validated hemagglutinin epitopes (216). Finally, the NMDAR 2A
subunit was found to share peptides with several pathogens,
including the influenza A virus (217). The findings suggest that
anti-pathogen immune responses to the influenza A virus may
cross-react with multiple schizophrenia-related proteins. This
reaction could potentially trigger processes which may ultimately
lead to schizophrenia. Work from our group has confirmed the
higher-than-expected overlap between the influenza proteome
and schizophrenia-relevant proteins, additionally identifying
hemagglutinin as contributing, amongst influenza proteins, the
Frontiers in Psychiatry | www.frontiersin.org 11
most extensive peptide sharing [Kepinska et al., in submission;
see also (218)].
CONCLUSION AND FUTURE DIRECTIONS

Converging evidence demonstrates that infection with the
influenza virus has a multiplicity of effects on prenatal and
postnatal processes which, when disrupted, could result in
increased risk of the development of schizophrenia or acute
psychoses in adulthood. Figure 2 outlines potential prenatal and
postnatal pathogenic contributions. Nonetheless, it is important
to emphasise that infection has been linked with increased risk of
several psychiatric disorders (see Introduction). It is therefore not
clear to what extent the mechanisms discussed in this review are
schizophrenia-specific, or whether, as is highly likely, other
factors may shape the clinical expression of disease.

Outstanding questions and possible future experimental
approaches are summarized in Box A. Future immunity-
focused research on schizophrenia and influenza should
further explore the relationship between infection and the
innate and adaptive immune response in schizophrenia using
animal models and large-scale serological studies in patients at
different stages of disease. To date, MIA models typically include
very little deep immunophenotyping, and discussion of the
adaptive immune response in these models has been almost
entirely lacking. Standardised and more sensitive testing
technologies are required, including improved noninvasive
methods to assess central neuroinflammation in humans and
nonhuman animals (222, 223).

Recent developments in stem cell technology suggest the
possibility of using induced pluripotent stem-cell (iPSC)
microglia-like cells [as per (149)] to assess how influenza
infection affects the phenotype of these cells. Potentially, iPSC-
derived cerebral organoids [so-called ‘mini brains’ (224)] could
offer a window into the effects of influenza infection on relevant
aspects of neurodevelopment.

While this paper reviews limited case studies and series
indicating that in some instances influenza vaccination has
been linked to CNS-directed autoimmunity, there is currently
no evidence demonstrating a clear association between influenza
vaccination and the development of schizophrenia or other
psychotic disorders. The limited reported cases constitute a
weight of evidence which is far weaker than the many
epidemiological studies supporting the association between
maternal influenza infection and schizophrenia. Influenza
vaccination—both pandemic and seasonal—has saved and
continues to save countless millions of lives worldwide, with an
overwhelming evidence base supporting its efficacy. Within this
context, influenza vaccination may nonetheless represent an as-
yet underutilised opportunity for epidemiological and
mechanistic explorations of potential influenza-psychosis
associations. For example, healthy volunteers having the
vaccination could be assessed using immunophenotyping,
brain imaging, and behavioral measures to further characterize
the acute response to influenza exposure [analogous to similar
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human studies of the acute response to LPS or typhoid vaccine
administration (219–221)].

From the perspective of prevention of psychosis, consideration
has been given to the potential use of antiviral medication in at-risk
pregnant women. Although human studies are lacking, pilot studies
in mice suggest that giving oseltamivir to pregnant mice can prevent
Frontiers in Psychiatry | www.frontiersin.org 12
some influenza-induced changes in the offspring (99). And while
oseltamivir is regarded as having a favourable profile in pregnancy,
there are no data on the long-term effects on neurodevelopment in
human children.

Consideration has also been given to the potential role of
influenza vaccines prior to, or during, pregnancy as a preventive
measure to limit the prenatal teratogenic influence of viruses
(225–227). The seasonal influenza vaccine has established
efficacy in preventing maternal infection, as well as partially
preventing the infant through passive immunity, and its
administration remains best practice for protection of mother
and child, with the World Health Organisation recognising
pregnant women as a priority vulnerable group. In addition,
educating pregnant women to contact their healthcare provide if
they have a fever is recommended in order to expedite
administration of antiviral medication and supportive care
(228). Some authors consider the fact that influenza
vaccination is not recommended in the first trimester in
some countries as cause for concern, leaving women and
the developing foetus vulnerable during a cri t ica l
neurodevelopmental window (228). Epidemiologically, first
trimester (or any other trimester) pandemic influenza
vaccination does not appear to be associated with increased
childhood morbidity (229). Although neurodevelopmental
outcome data are largely lacking, some mouse models
suggested that influenza vaccination early in pregnancy can
indeed promote behavioral function and neurogenesis in the
offspring, and confer protection from the effects of MIA with LPS
(230, 231). One note of caution has been raised by a cohort study
of nearly 200,000 children in California which reported a small
but statistically significantly increased risk of ASD following first
February 2020 | Volume 11 | Article 7
FIGURE 2 | Potential interactions between mechanisms related to influenza infection and development of schizophrenia or other psychotic disorders. Arrows indicate possible
directions of interaction. Boxes represent different factors or changes which mediate processes possibly leading to the development of psychosis or schizophrenia.
Box A | Outstanding questions for future research.

- Do influenza MIA models, or models of adulthood influenza infection,
demonstrate an antibody response to brain antigens including, for example,
the NMDAR?

- Is there an epidemiological association between influenza vaccination
(maternal, childhood or adulthood; seasonal or pandemic) with differential
risk of subsequent development of psychotic disorder?

- Is antiviral use in pregnancy associated with a reduced risk of psychotic
disorders in offspring?

- Is the acute response to influenza infection or vaccination in healthy
individuals instructive for understanding the development of psychosis?
Relevant approaches could include neuroimaging and behavioral testing
following vaccination, similar to paradigms using LPS or typhoid vaccine
administration (219–221).

- Will next generation viral metagenomic sequencing reveal differential
presence of virus in biofluids from patients with psychotic disorders?

- Can an in silico approach be used to assess the plausibility of the
molecular mimicry hypothesis, potentially assessing linear or structural
overlap between viral proteome and schizophrenia-relevant proteins?
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trimester vaccination (232); unsurprisingly the report was
controversial, with ensuing disagreement concerning
interpretation of the findings and whether the correct statistical
measures were used (233, 234).

Given that the vast majority of children of mothers who
experience an infection do not develop psychiatric disease, recent
consideration has been given to maternal and foetal mechanisms
of resilience to perinatal infection and inflammation: these
include maternal nutritional status, the microbiome, and a
variety of postnatal environmental factors (235). In terms of
interventions within the MIA paradigm that have potential
widespread relevance, dietary supplementation with omega-3
polyunsaturated fatty acids (PUFAs) may represent an
attractive preventative strategy (236, 237).

An increase in our understanding of neuro-immune
interactions has enabled a fuller understanding of the
mechanistic underpinnings of the neurodevelopmental
hypothesis of schizophrenia and have contributed to a more
nuanced picture of schizophrenia pathogenesis which can
accommodate the influence of influenza infections after the
perinatal period. Our understanding of both influenza and
schizophrenia has changed immensely since the 1918-1919
pandemic. The development of next-generation genetic,
immunological and bioinformatic technologies may bring a
resolution of the centuries-old puzzle of the relationship
between influenza and psychosis.
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