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Abstract

The pancreatic islets of Langerhans are multicellular micro-organs integral to maintaining glucose homeostasis through
secretion of the hormone insulin. b-cells within the islet exist as a highly coupled electrical network which coordinates
electrical activity and insulin release at high glucose, but leads to global suppression at basal glucose. Despite its
importance, how network dynamics generate this emergent binary on/off behavior remains to be elucidated. Previous work
has suggested that a small threshold of quiescent cells is able to suppress the entire network. By modeling the islet as a
Boolean network, we predicted a phase-transition between globally active and inactive states would emerge near this
threshold number of cells, indicative of critical behavior. This was tested using islets with an inducible-expression mutation
which renders defined numbers of cells electrically inactive, together with pharmacological modulation of electrical activity.
This was combined with real-time imaging of intracellular free-calcium activity [Ca2+]i and measurement of physiological
parameters in mice. As the number of inexcitable cells was increased beyond ,15%, a phase-transition in islet activity
occurred, switching from globally active wild-type behavior to global quiescence. This phase-transition was also seen in
insulin secretion and blood glucose, indicating physiological impact. This behavior was reproduced in a multicellular
dynamical model suggesting critical behavior in the islet may obey general properties of coupled heterogeneous networks.
This study represents the first detailed explanation for how the islet facilitates inhibitory activity in spite of a heterogeneous
cell population, as well as the role this plays in diabetes and its reversal. We further explain how islets utilize this critical
behavior to leverage cellular heterogeneity and coordinate a robust insulin response with high dynamic range. These
findings also give new insight into emergent multicellular dynamics in general which are applicable to many coupled
physiological systems, specifically where inhibitory dynamics result from coupled networks.
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Introduction

Most biological systems exist as dynamic multicellular structures

where distinct functionalities are generated through cellular

interactions. While important for proper function, the complexity

in network architecture, cellular dynamics, as well as the presence

of heterogeneity, noise and biological variability make the overall

function of multicellular structures difficult to understand.

Approaches to understanding coupled dynamical systems have

handled this complexity by explaining system structure and

function individually [1,2]. These two aspects are both of central

importance when it comes to understanding the way living systems

are organized and how their anatomy supports their function.

Therefore, by employing network theory to inform or predict the

architectural aspects of dynamical system models, we can better

understand how structural properties can impact functional

behaviors. One living system exhibiting complex multicellular

dynamics, yet with a scale tractable for study with these

approaches, is the islet of Langerhans where dysfunction generally

leads to diabetes. As such the islet provides a physiologically

relevant system in which we can examine properties of multicel-

lular dynamical systems and discover behavior that is broadly

applicable.

The islets of Langerhans are multicellular micro-organs located

in the pancreas which maintain glucose homeostasis through the

secretion of hormones such as insulin. Glucose-stimulated insulin

secretion (GSIS) from b-cells within the islet is driven by glucose-

dependent electrical activity. The metabolism of glucose and

increased ATP/ADP ratio inhibits ATP-sensitive K+ (KATP)

channels, causing membrane depolarization. Activation of volt-

age-dependent Ca2+ channels elevates intracellular free-calcium

activity ([Ca2+]i) to trigger insulin granule exocytosis [3,4]. Defects

at several points in this signaling pathway, including the KATP

channel, can cause or enhance the risk of developing diabetes [5–

8]. Despite the importance of this pathway, it is important to

recognize b-cells do not act autonomously. Rather, like many
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tissues, there are extensive cell-cell interactions within the islet that

govern overall function. For example, isolated b-cells exhibit

heterogeneous sensitivities to glucose with a low overall dynamic

range of GSIS [9–11], yet b-cells within the islet robustly release

insulin. Connexin36 (Cx36) gap junctions mediate the electrical

coupling between b-cells [12–14] which coordinates oscillations in

electrical activity and insulin release across the islet, enhancing the

pulsatile release of insulin and glucose homeostasis [13–15]. In the

absence of coupling many cells in the islet also show spontaneous

elevations in [Ca2+]i; likely as a result of heterogeneities in glucose

sensitivity [10,16]. Therefore, another equally important role gap

junctions play is to coordinate a suppression of spontaneous

electrical activity at lower glucose levels [17]. Given that basal

regulation is integral to glucose homeostasis, electrical coupling

and the coordinated electrical dynamics are a critical factor in the

regulation of islet function and in diabetes.

Multicellular electrical dynamics in the islet have been described

as functional networks where synchronized changes in [Ca2+]i

indicate functional connectivity between cells [14,18,19]. Such

network analysis has been applied to examine the dependence of

[Ca2+]i dynamics on the level of coupling and its regulation, and

has indicated that b-cell connectivity is non-homogeneous with a

small subset of connections dominating synchronized behavior. As

part of this analysis, the network of functional connectivity can be

approximated by a Boolean network which quantitatively

describes changes in multicellular behavior, including changes in

coupling strength, network size or network shape [14,20–22].

These studies have generally focused on the synchronization of

[Ca2+]i oscillations, and such synchronized oscillatory/pulsatile

behavior has been similarly examined in other physiological

multicellular systems [23–25]. However, few studies have theoret-

ically examined the suppressive effect of electrical coupling in the

islet and its ability to shape the glucose-regulation of electrical

activity. This is particularly warranted given a recent study that

showed how severe diabetes caused by expression of mutant KATP

channels could be prevented through a modulation in gap junction

coupling [26]. Therefore, details for how the network structure

and composition facilitate a highly sensitive and robust response

from a heterogeneous cell population remain to be determined.

In this study we examine how electrical coupling within b-cell

networks in the islet provide resilience against heterogeneous cell

populations to generate robust network responses. We first develop

quantitative predictions derived from a Boolean approximation of

the b-cell network, where the dependence of [Ca2+]i on variations

in the constituent cellular excitability and coupling is described.

We then test these predictions using two experimental systems

involving transgenic mice that express mutant KATP channels with

increased or decreased ATP-sensitivity [27,28]. This creates

defined populations of cells within the islet which are ‘excitable’

or ‘inexcitable’, and can be further used to examine how our

theoretical predictions and experimental data extend to physio-

logical regulation of glucose homeostasis. We next link the static

Boolean network model predictions and experimental findings

with a dynamic multicellular model of the islet which incorporates

recent understanding of b-cell electrophysiology [29,30]. We

finally extend these experimental and theoretical measurements to

a general case with a continuum of heterogeneous cellular

behavior.

A consistent feature in this study is the emergence of critical

behavior as a result of b-cell electrical coupling, where the islet

exhibits a phase transition between globally active and inactive

states as cellular excitability approaches a critical threshold value.

We discuss how the robust functionality that emerges at the

multicellular level is not only relevant to the islet of Langerhans

and its dysfunction in diabetes, but also to the function of other

multicellular biological systems.

Results

Boolean Network Model Predicts Phase Transition in
[Ca2+]i

Based on prior approximations of heterogeneity in cellular

excitability and coupling, Boolean networks of connectivity were

simulated to predict how general multicellular electrical activity

depends on the relative excitability of the constituent cell

population and the coupling between individual cells [14,20].

Nodes within a cubic lattice had a probability Pexc of being active,

and adjacent nodes were functionally coupled with a ‘coupling

probability’ p (figure 1A), and resultant clusters of coupled nodes

were identified. ‘Inexcitable’ b-cells can suppress activity in

excitable b-cells via electrical coupling [17], with ,30% inexcit-

able cells necessary for this suppression. To simulate this, a logic

rule was used for each cluster of coupled nodes within a given

lattice, where greater than a threshold percentage of inexcitable

cells (Sp) can suppress activity in all other cells in its coupled

network. Simulations of the resultant average network activity

were run with varying values of Pexc, Sp, and p to represent

differing cellular excitabilities and electrical coupling (figure 1B, SI

figure S1).

An increase in electrical activity is predicted as Pexc is increased;

however the functional form is highly dependent on p (figure 1C).

In the absence of coupling (p = 0), a trivial linear response is

obtained where Pexc represents the level of electrical activity. With

increasing p, the activity becomes increasingly non-linear as a

function of Pexc. For higher values of p (0.3 to 1) a sharp transition

between active and quiescent behavior is observed, representing a

phase transition with emerging critical behavior. These higher

values of p lead to network-spanning coupling (figure S1, S2), and

as such the ‘rule’ governing suppression acts over the whole

network. For low values of p (0 to 0.2), the network is composed of

coupled ‘clusters’ (figure S2), and the simulation is close to linear

Author Summary

As science has successfully broken down the elements of
many biological systems, the network dynamics of large-
scale cellular interactions has emerged as a new frontier.
One way to understand how dynamical elements within
large networks behave collectively is via mathematical
modeling. Diabetes, which is of increasing international
concern, is commonly caused by a deterioration of these
complex dynamics in a highly coupled micro-organ called
the islet of Langerhans. Therefore, if we are to understand
diabetes and how to treat it, we must understand how
coupling affects ensemble dynamics. While the role of
network connectivity in islet excitation under stimulatory
conditions has been well studied, how connectivity also
suppresses activity under fasting conditions remains to be
elucidated. Here we use two network models of islet
connectivity to investigate this process. Using genetically
altered islets and pharmacological treatments, we show
how suppression of islet activity is solely dependent on a
threshold number of inactive cells. We found that the islet
exhibits critical behavior in the threshold region, rapidly
transitioning from global activity to inactivity. We there-
fore propose how the islet and multicellular systems in
general can generate a robust stimulated response from a
heterogeneous cell population.

Phase Transitions in Islet Excitability
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without a strong transition. This level of p corresponds to

insufficient coupling to span the network, which is similar to the

critical coupling probability (,0.25) in percolation theory [31]. As

such for p.0.25 there are 3 specific regions of emergent network

behavior: a small (,10%) decrease for Pexc.0.85 (‘pre-critical

state’); a rapid ,75% drop at Pexc = 0.85 (‘critical state’), then a

small linear decrease for Pexc,0.85 (‘post-critical state’). The

critical state emerges when Pexc approaches 1-Sp; with the

sharpness of the transition as well as behavior in the pre- and

post-critical states being dependent on p.

Overall, this transition can be understood by considering the

well-defined threshold for activity (Sp) and the network-spanning

connectivity that occurs above the critical coupling probability (p.

0.25). For values of Pexc,(1-Sp) there is a gradual decrease in

network activity with increasing p (figure 1D), representing the

suppressive effect of coupling. For Pexc.(1-Sp), the network

activity remains high, although a slight drop occurs for low levels

of coupling. Therefore in a general Boolean network, electrical

coupling is predicted to lead to critical behavior, where a phase

transition in the network activity occurs as a function of

constituent cellular activity.

Phase Transition in [Ca2+]i in Kir6.2[DN30,K185Q] Expressing
Islets

To test the Boolean network model predictions, we measured

intracellular free-calcium activity ([Ca2+]i) in islets which had

defined levels of cellular excitability. Islets were isolated from mice

with inducible, b-cell specific expression of a mutant ATP-

insensitive KATP channel subunit (Kir6.2[DN30,K185Q]) under

CreER-recombinase control [27]. Expression of these over-active

KATP channels render b-cells functionally inexcitable, causing an

absence of insulin release, marked hyperglycemia and diabetes

[27]. Tamoxifen induction of CreER controls Kir6.2[DN30,K185Q]

expression levels which can be monitored via GFP co-expression,

leading to both controllable and quantifiable cellular excitabilities

(SI figure S3).

At 20 mM glucose islets show [Ca2+]i which decreased with

increasing expression of GFP and therefore Kir6.2[DN30,K185Q],

similar to model predictions. This showed critical behavior with 3

specific regions (figure 2A): For low GFP expression ,15% (few

Kir6.2[DN30,K185Q] expressing cells), [Ca2+]i was active over the

entire islet with similar behavior to wild-type islets lacking GFP

(GFP = 0) and Kir6.2[DN30,K185Q] (figure 2A, BI–II, ‘pre-critical’

behavior). Oscillations were almost fully synchronous in each case

(not shown). For GFP expression at 10–20% there was a sharp

drop-off in islet [Ca2+]i, where small changes in GFP resulted in

highly disproportionate changes in [Ca2+]i (figure 2A, BIII,

‘critical’ behavior). Activity was focused to clustered areas of

synchronization (not shown). For high GFP expression .25%

(high number of Kir6.2[DN30,K185Q] expressing cells), islets showed

sporadic [Ca2+]i restricted to increasingly smaller clusters (Figur-

e 2DIV, ‘post-critical behavior’). Although islets with ,20% GFP

has similar overall activity compared to wild-type islets (0% GFP),

there was a marked reduction in the plateau fraction in the ,20%

GFP group (15–40%) compared to the wild-type group (50–70%);

indicating that even small numbers of inactive cells impacts global

behavior. In comparison, islets with high levels of GFP (.25%)

had a low plateau fraction (15–20%) in those cells that were active.

GFP+ cells showed similar activity to GFP2 cells albeit with a small

increase in activity, likely due to a few inactive non-b-cells

included in the GFP2 analysis (SI figure S4).

Comparison of experimental data to the Boolean model can be

seen for a number of values of p (figure 2C) and Sp (figure 2D).

Varying p (gap junction coupling) matches the sharpness of the

transition, whereas varying Sp (number of inexcitable cells

required to suppress activity) matches the position of the transition.

A p = 0.3 (95% CI: 0.280–0.311) and Sp = 0.135–0.15 best fits the

experimental [Ca2+]i data (figure 2A,E). The distribution for fitted

p was relatively broad but for Sp was well defined (figure 2E).

These values of p are similar to those found in prior studies

examining the synchronization of [Ca2+]i oscillations, which

indicated a limited level of functional coupling in the islet

Figure 1. Boolean network model predictions. A) Schematic
representation of the network model with limited connectivity. Note
larger connected clusters have a higher probability of containing
inexcitable cells. B) Example false-color maps displaying probability of
activity, generated from a simulated network with p = 0.30 at Pexc = 95%
(top) and Pexc = 60% (bottom). Note substantially increased likelihood of
activity with the higher Pexc. Further description for how this was
generated can be found in figure S1. C) Boolean network model
predictions for the mean percent active cells as a function of proportion
of excitable cells (Pexc) for varying coupling probabilities p, with a
threshold fraction of inexcitable cells Sp = 0.15. D) Boolean network
model predictions for the mean percent active cells as a function of
coupling probability p, for varying proportion of excitable cells Pexc,
where Sp = 0.15.
doi:10.1371/journal.pcbi.1003819.g001

Phase Transitions in Islet Excitability

PLOS Computational Biology | www.ploscompbiol.org 3 September 2014 | Volume 10 | Issue 9 | e1003819



(p = 0.31–0.36) [20]. These values of Sp are also consistent with

experimental studies that suggest between 1 and 30% of inactive

cells can suppress activity in other cells [17,20].

Therefore, introducing inexcitable cells into the islet experi-

mentally generates critical behavior which quantitatively agrees

with a Boolean network model and predicts the importance of

electrical coupling in regulating multicellular excitability.

Phase Transition in Physiological Parameters
b-cell [Ca2+]i drives insulin release to regulate glucose

homeostasis. Given that the behavior in [Ca2+]i following varied

expression of over-active KATP channels, we next tested whether

this also occurred in downstream physiological parameters.

Averaged over each mouse, similar [Ca2+]i was observed in

wild-type islets lacking GFP and islets with low-level GFP (,20%,

‘pre-critical’), while both were significantly greater than [Ca2+]i in

islets with high GFP expression (.20%, ‘post-critical’) (figure 3A).

Plasma insulin also showed a similar transition, with pre-critical

(GFP,20%) plasma insulin being significantly greater than post-

critical (GFP.20%) plasma insulin (figure 3B). However mice

lacking GFP did show significantly greater insulin than mice with

low-level GFP, correlating with the reduced plateau fraction

observed. Insulin reduces glucose levels, and as expected pre-

critical mice (GFP,20%) had normal glucose levels (figure 3C),

while post-critical mice (GFP.20%) demonstrated elevated

glucose levels. Glucose-stimulated insulin secretion from isolated

islets showed similar behavior to that of plasma insulin

(figures 3D–F), where again islets lacking GFP showed significant-

ly greater GSIS than islets with low level GFP.

Therefore insulin dynamics and blood glucose levels follow

similar behavior as the driving [Ca2+]i following varied expression

of Kir6.2[DN30,K185Q], demonstrating a physiological link in the

critical behavior in [Ca2+]i activity as a function of Pexc,.

Coupling Dependent Suppression in Kir6.2[AAA]

Expressing Islets
The Boolean model accurately predicts the impact of variable

cellular excitabilities (Pexc) on [Ca2+]i suppression at elevated

glucose through expression of over-active KATP channels

(Kir6.2[DN30,K185Q]). However, the Boolean model also predicts

Figure 2. Experimental data showing how Boolean network model describes phase transitions in islet [Ca2+]i. A) Percent cells showing
[Ca2+]i elevations as a function of number of excitable cells, as determined by lack of GFP and thus Kir6.2[DN30,K185Q] expression (i.e. Pexc = 1-%GFP),
together with Boolean network model fit. Filled squares indicate experimental data, solid line represents mean of simulations that best fit data with
p = 0.30 and Sp = 0.15 (x2 = 1.38), dashed lines represents 95% confidence intervals of the simulation fit. B) Representative [Ca2+]i data for islets
indicated in A, from regions of wild-type (I), ‘pre-critical’ (II), ‘critical’ (III) and ‘post-critical’ (IV) levels of Pexc. Left: Areas of activity are highlighted in red
and scale bars represent 50 mm. Right: Representative time-courses of normalized FuraRed calcium dye fluorescence for cells within each islet, where
vertical scale bar indicates 20% change in fluorescence. Red time-courses are determined to be active, black time-courses are determined to be
inactive. See SI for Movies S1, S2, S3, S4 of these data. C) Experimental data with Boolean network simulations for varying connectivity p. D) As in C for
varying threshold of inactive cells Sp. E) Probability distribution of fitted p (linear scale) and Sp (log scale) parameters to data in A, along with heat
map of 2D x2 distribution (log scale).
doi:10.1371/journal.pcbi.1003819.g002

Phase Transitions in Islet Excitability
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how [Ca2+]i suppression varies as a function of gap junction

coupling (p) (Figure 1D). To test this, we measured [Ca2+]i in islets

from mice with b-cell specific mosaic expression of an inactive

KATP channel subunit (Kir6.2[AAA]). This was combined with a

knockout of Cx36, yielding 100% (Cx36+/+), 50% (Cx36+/2) or

0% (Cx362/2) gap junction coupling, as well application of the

gap junction inhibitor 18-a-glycyrrhetinic acid [10]. Expression of

inactive KATP channels render b-cells constitutively (glucose-

independent) active, yet islets which have a majority (but not all) of

their cells expressing inactive KATP channels show glucose-

dependent electrical activity similar to wild-type islets [17]. GFP

co-expression indicates ,70% of b-cells express inactive KATP

channels (SI figure S3) such that Pexc = 0.7. With increasing gap

junction coupling [Ca2+]i progressively decreased until residual

activity was observed at full coupling, similar to that in the post-

critical state upon Kir6.2[DN30,K185Q] expression. There was strong

agreement between experimental measurements and the Boolean

Network model, with a p at normal (Cx36+/+, 100%) gap junction

coupling of 0.38 (95% CI: 0.372–0.394) and a suppression

threshold Sp = 0.15 giving the best fit (figure 4A). This is similar

to p, Sp derived in the first experimental system (figure 2). Varying

Sp affects the gap junction dependence in [Ca2+]i, with little effect

between 0.05–0.2, but strong divergence above 0.2 (figure 4B).

Therefore the Boolean network model can accurately predict

behavior in a different experimental model with defined levels of

cellular excitability (Pexc) and gap junction coupling (p).

Phase Transition in a Dynamical Model of b-Cell
Networks

The Boolean network model accurately describes how [Ca2+]i

critically depends on cellular excitability and coupling. Neverthe-

less it is a static framework of a dynamical system and does not

Figure 3. Link between phase transitions in [Ca2+]i and
physiological parameters. A) Percent cells showing [Ca2+]i elevations
averaged over islets from each Kir6.2[DN30,K185Q]-expressing mouse as a
function of Pexc (100%-%GFP). Right: Mean(6s.e.m.) for data binned to
wild-type, pre- and post-critical ranges as determined by %GFP.
*indicates significant difference (p,0.0001) between data as indicated.
B) Plasma insulin levels from each mouse as a function of Pexc. Right:
Mean(6s.e.m.) for data binned as in A. *indicates significant difference
(p,0.05) between data as indicated. C) Time-averaged blood glucose
levels from each mouse as a function of Pexc. Right: Mean(6s.e.m.) for
data binned as in A. *indicates significant difference (p,0.0001) between
data as indicated. D) Insulin secretion from isolated islets at 20 mM
glucose (left) and 2 mM glucose (right), averaged over each mouse as a
function of Pexc. E) Mean(6s.e.m.) for data in D binned as in A. *indicates
significant difference (p,0.01) between data, ‘ns’ indicates no significant
difference (p.0.05) as indicated. F) Mean(6s.e.m.) of islet insulin content
averaged over each mouse. Solid lines in A,B,D represent Boolean model
fit (p = 0.3) from experimental data in Figure 2C.
doi:10.1371/journal.pcbi.1003819.g003

Figure 4. Boolean network model describes [Ca2+]i suppression
as a function of coupling conductance. A) Percent cells showing
[Ca2+]i elevations in islets from Kir6.2[AAA]-expressing mice as a function
of gap junction conductance, together with Boolean network model fit.
Filled squares indicate mean(6s.e.m.) experimental data, solid line
represents mean of simulations that best fit data for wild-type coupling
value p0 = 0.38 and Sp = 0.15 (x2 = 0.416), dashed lines represents 95%
confidence intervals of simulation fit. Gap junction conductance for
each data point was normalized to the wild-type conductance and
scaled by the fitted p0. B) Mean(6s.e.m.) experimental data with
Boolean network simulations for varying threshold of inactive cells Sp.
doi:10.1371/journal.pcbi.1003819.g004

Phase Transitions in Islet Excitability
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take into account limit-cycle behavior. To investigate whether

similar behavior exists in a coupled dynamical oscillator model of

the islet, we generated a multi-cellular version of a recent b-cell

model which includes a comprehensive description of b-cell

electrophysiology [30]. Our model also included a more realistic

quasi-spherical architecture, heterogeneity in gap junction cou-

pling [14,32], and heterogeneity in endogenous cellular activity

[11,14]. To model KATP-overactivity resulting from

Kir6.2[DN30,K185Q] expression, a defined fraction of cells with

reduced ATP-inhibition of KATP activity was introduced to render

them inexcitable.

As with the Boolean network model and experimentally

measured [Ca2+]i, a clear phase transition was observed at

20 mM glucose in the coupled oscillator model with ,15%

KATP-overactivity (figure 5A). Again critical behavior manifested

in three regimes. Simulated islets without KATP over-activity

showed [Ca2+]i dynamics closely matching previously published

models (figure 5BI) [30]. Simulated islets with low KATP-overac-

tivity (,15%) showed a linear decrease in activity with a reduced

plateau fraction as experimentally observed (figure 5A, BII, ‘pre-

critical’ behavior), while maintaining near-full synchronization.

Simulated islets with KATP-overactivity at 10–30% again showed a

sharp drop-off in [Ca2+]i, with small changes in KATP-overactivity

leading to highly disproportionate changes in [Ca2+]i (figure 5A,

BIII). Simulated islets with high KATP-overactivity (.30%)

showed only sporadic low level [Ca2+]i (Figure 5A, BIV, ‘post-

critical’ behavior). A physiological mean gap junction conductance

of 120 pS [14,32] was found to best describe experimental data

(figure 5A,C). The sharpness and position of the phase transition

was highly dependent on the mean coupling conductance, with

increasing conductance leading to a sharper transition occurring at

lower KATP-overactivity (figure 5C).

The islet is commonly modeled as a cubic lattice or other

regular geometry [14,21,33]. A spherical islet-like structure which

has a heterogeneous number of cell-cell connections

(mean,SD = 5.3,1.7) generated a less-sharp transition compared

to a regular cubic geometry, and this better matched experimental

data (SI figure S5). Similarly, a heterogeneous level of coupling

conductance generated a less-sharp transition (SI figure S6A). This

indicates the importance of coupling heterogeneity, in terms of

connection geometry, connection number and connection

strength. The endogenous heterogeneity in cellular activity did

not significantly impact the phase-transition indicating the

dominating effect of Kir6.2[DN30,K185Q] expression (SI figure

S6B). A similar phase-transition was also observed for simulations

run at 11 mM glucose (not shown).

Therefore critical behavior also emerges in a dynamic coupled

b-cell oscillator model with quantitative agreement with experi-

mental measurements and a static Boolean network model.

Phase Transition Resulting from Endogenous
Heterogeneity and Coupling

We have examined how the coupling between heterogeneous

cells leads to critical behavior by introducing defined mutant

populations of inexcitable cells (Kir6.2[DN30,K185Q]) or excitable

cells (Kir6.2[AAA]). However, endogenous b-cells are themselves

highly heterogeneous under physiological ranges of glucose,

showing a continuum of excitabilities rather than being constitu-

tively excitable/inexcitable [9–11].

To examine how gap junction coupling leads to critical

behavior in the presence of endogenous heterogeneity, we applied

a ‘ramp’ of increasing diazoxide concentrations to uniformly

promote KATP channel opening. At 11 mM glucose, [Ca2+]i in

wild-type islets at 0 mM and 50 mM diazoxide was similar, but at

100 mM there was a rapid ,60% drop (figure 6A), where only a

few remaining cells were active (figure 6B). Similar low-level

[Ca2+]i was observed at 250 mM. In islets from mice lacking Cx36

gap junction coupling, similar [Ca2+]i was observed to wild-type

islets at 0 mM diazoxide, albeit with no synchronization. Upon

increasing diazoxide, a more gradual decrease in [Ca2+]i was

observed, with less [Ca2+]i observed at 50 mM diaozixde but more

[Ca2+]i remained at 100 mM diazoxide (figure 6A,B).

These data were also well described using the coupled dynamic

oscillator model. In the presence of endogenous heterogeneity at

11 mM glucose, a uniform reduction in ATP-sensitive KATP

inhibition led to a clear phase transition in islet [Ca2+]i in the

presence of normal coupling (120 pS) (figure 6C,D). However, in

the absence of coupling a more gradual change occurred in good

agreement with experimental measurements (figure 6C,D); where

[Ca2+]i was elevated in the absence of coupling over a certain

range of uniform KATP inhibition. As such, ,50 mM diazoxide lies

in the ‘pre-critical’ regime, .100 mM diazoxide lies in the ‘post-

critical’ regime, and the transition lies at 50–100 mM.

In experiments with mutant KATP subunit expression, cells were

considered ‘inexcitable’ if they showed GFP and

Kir6.2[DN30,K185Q] expression. In this case of endogenous hetero-

geneity, for a given concentration of diazoxide, we can consider a

cell is ‘inexcitable’ if it is quiescent in the absence of electrical

coupling. By plotting activity in the presence of coupling

Figure 5. Coupled dynamical oscillator model describes
experimental islet phase transitions. A) Percent cells showing
[Ca2+]i elevations in simulated islets as a function of fraction of excitable
cells (Pexc), as set by the % cells lacking ATP-insensitivity. Solid line
represents mean of simulation results generated from 5 random
number seeds, dashed lines represents 95% confidence intervals of
simulations. B) Representative simulated [Ca2+]i time-courses for
parameters indicated in A, from regions of wild-type (I), ‘pre-critical’
(II), ‘critical’ (III) and ‘post-critical’ (IV) behavior, as in figure 2. Vertical
scale bar indicates 20% change in simulated [Ca2+]i. Red time-courses
are determined to be active, black time-courses are determined to be
inactive. See SI for Movies S5, S6, S7, S8 of these data. C) Percent cells
showing [Ca2+]i elevations in simulated islet as a function of number of
excitable cells (Pexc) for varying mean gap junction conductance values.
Filled squares indicate experimental data from Kir6.2[DN30,K185Q]-
expressing islets in figure 2.
doi:10.1371/journal.pcbi.1003819.g005
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(representing the resultant activity) against activity in the absence

of coupling (representing intrinsic cellular excitability) similar

phase-transitions are apparent; with quantitative agreement

between experimental data, dynamic coupled oscillator model

and static network model (figure 7A–C). The phase transition in

the dynamic coupled oscillator model was dependent on how

heterogeneity was generated, where heterogeneity in multiple

factors rather than any one factor was required for agreement with

experimental data (SI figure S7). Therefore critical behavior can

occur more generally from the coupling between heterogeneous

cellular populations within the islet, as exemplified here experi-

mentally and theoretically.

Figure 6. Coupling-dependent phase transitions upon uniform KATP inhibition resulting from endogenous heterogeneity. A)
Mean(6s.e.m.) percent cells showing [Ca2+]i elevations at 2 mM glucose and at 11 mM glucose with 0, 50, 100, 250 mM of the KATP activator
diazoxide, for wild type islets (Cx36+/+, solid squares) and islets lacking gap junction coupling (Cx362/2, empty circles). *, ** indicate significant
difference (p,0.05, p,0.005) between activity in Cx36+/+ and Cx362/2 islets at treatments indicated. B) Representative [Ca2+]i time-courses for
Cx36+/+ and Cx362/2 islets at 11 mM glucose with 0 mM or 100 mM diazoxide. Red time-courses are determined to be active, black time-courses are
determined to be inactive. Vertical scale bar indicates 20% change in fluorescence. C) Percent cells showing [Ca2+]i elevations in simulated islet as a
function of a uniform increase in the fraction of ATP-insensitivity of KATP channel activation (a) across cells of the islet. Mean simulation data is
presented for zero gap junction conductance (0 pS) and wild-type gap junction conductance (120 pS). D) Representative simulated [Ca2+]i time-
courses for wild-type gap junction conductance (120 pS) and zero gap junction conductance upon indicated levels of uniform KATP activation. Red
time-courses are determined to be active, black time-courses are determined to be inactive. Vertical scale bar indicates 20% change in simulated
[Ca2+]i.
doi:10.1371/journal.pcbi.1003819.g006

Figure 7. Phase transitions in endogenous b-cell network activity, as shown by the activity in a fully-coupled islet system as a
function of the activity in the uncoupled islet system; where the latter represents the intrinsic excitability of the constituent cells. A)
Experimentally measured transition from global activity to quiescence in wild-type islets treated with varying diazoxide concentrations, showing
phase transition in activity as constituent cellular activity is reduced B) Simulated transition from global activity to quiescence upon normal gap
junction conductance as KATP is uniformly activated across the islet in the dynamical oscillator model. C) Modelled transition from activity to
quiescence within the Boolean lattice resistor network model as Pexc is reduced, for p = 0.3 and Sp = 0.5. Note in all cases; for islets lacking gap
junction coupling, with zero gap junction conductance and for p = 0, the transition is trivially linear (blue dashed).
doi:10.1371/journal.pcbi.1003819.g007
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Discussion

The islet of Langerhans shows unique functional properties that

result from the underlying network interactions between constit-

uent cells. One important property is that b-cells within the islet

show globally quiescent behavior at lower levels of glucose despite

showing a heterogeneous range of glucose sensitivities when in

isolation. A proposed mechanism underlying this behavior is that

at a given glucose stimulation, inactive cells suppress cells that

otherwise would be active, via gap junction coupling. We applied

predictive mathematical models to quantify this behavior and

determined the relative role of KATP channel activity (controlling

cellular excitability) and gap junction activity (controlling cellular

coupling) in shaping this islet response. We then experimentally

verify predicted behavior using two independent experimental

models.

Critical Behavior in Islets and Theoretical Models
In line with previous work describing coupled electrical

dynamics, we showed that the structure and function of the islet

cellular network can be described through principles of network

theory [20,21]. Both the Boolean network and dynamic oscillator

models predict the emergent behavior upon coupling between a

heterogeneous cell population. The islet rapidly transitions

between globally coordinated active and inactive states upon

disproportionally small changes in the excitability of the constit-

uent cells as they approach a critical ‘threshold’ excitability. This

occurs under both conditions of b-cell heterogeneity we examined:

the imposed bimodal b-cell populations achieved through

expression of Kir6.2[DN30,K185Q] or Kir6.2[AAA] mutations; and

endogenous b-cell heterogeneity with diazoxide activation of

KATP.

The Boolean model reveals that there is an imbalance in the

ability of excitable and inexcitable cells to respectively propagate

stimulation or suppression. A low Sp in the model indicates a

preference for excitable cells to be suppressed by inexcitable cells.

This describes how gain-of-function Kir6.2[DN30,K185Q] expressing

cells (which are glucose-unresponsive) suppress activity in coupled

normal cells at high glucose, and how loss-of-function Kir6.2[AAA]

expressing cells are suppressed by normal cells at low glucose

(figure 2, 4). The role of p (gap junction coupling) determines the

spatial extent over which suppression occurs. As shown in figure

S1 and S2, a low p results in coupled behavior restricted to a few

cells and therefore inactive cells are unlikely to couple to many

active cells and mediate suppression. When p exceeds the critical

coupling probability (,0.25) then coupling spans the whole

network and inactive cells can couple to and suppress most active

cells in the network. The sharp transition that emerges upon p.

0.25 can be understood by considering that the threshold for

activity (Sp) is well defined with a sharp cutoff for the Pexc which

determines whether the cluster is active or inactive. The

agreement with experimental data indicates that there is little

variability between cells in this threshold for suppression, as also

supported by the distributions of fitted Sp (figure 2E).

While the coupled dynamic oscillator model also predicts and

describes the phase transitions present, the Boolean model

describes the essential features that govern multicellular regulation

of islet excitability. Results suggest that the islet may fundamen-

tally behave in a binary fashion in terms of gap junction coupling

and KATP-regulated excitability. Given the proportion of cells that

intrinsically (i.e. in the absence of coupling) show activity at a given

glucose stimulation and the level of coupling, the overall response

of the islet can be approximated through this reductionist model.

Of course dynamical features are missing from the Boolean model

which is only described by the coupled dynamic oscillator model:

including the altered oscillatory characteristics in the pre-critical

state. The low p (0.30–0.38) required for the Boolean network

model to quantitatively describe experimental data points to

incomplete coupling present; and this can explain the residual

activity in the post-critical state (figure 1C). Recent studies of

coordinated [Ca2+]i oscillations and waves in the islet have

indicated a ‘backbone’ of a few strong connections dominate

coupled [Ca2+]i dynamics, which is equivalent to a similarly low p
[19,20]. The ability of the coupled dynamic oscillator model to

also describe the transition between globally active and inactive

states, suggests that the dynamics of the islet may behave

according to general principles of coupled dynamical systems.

Further work is needed to examine this critical behavior in more

detail, including power law scaling and its dependence on network

parameters and cellular properties.

The phase-transition behavior can also be explained through a

mean-field theory analogy (SI figure S8). Cells expressing the

mutant Kir6.2[DN30,K185Q] are intrinsically inexcitable (figure

S8A). In the ‘pre-critical’ regime the number of these cells is

below a critical threshold and insufficient to suppress glucose-

stimulated activity via coupling; therefore all cells are recruited to

elevate [Ca2+]i. When the number of these inactive cells

approaches the critical threshold (Sp = 0.15 for Kir6.2[DN30,K185Q]

expression) critical behavior emerges and coupling mediates

suppression of other active cells. In normal islets treated with

diazoxide, endogenous b-cell heterogeneity leads to variable

intrinsic excitabilities and we expect diazoxide renders cells less

glucose sensitive to be inexcitable (figure S8B). In the absence of

coupling these are observed to be inactive (figure 6). Low

concentrations of diazoxide (,50 mM) render only a few cells

inexcitable, which is below the critical threshold (Sp,0.5) and

insufficient to suppress [Ca2+]i. At higher concentrations of

diazoxide (.100 mM) more cells are rendered inexcitable, and

when this number exceeds the critical threshold, coupling

mediates suppression of other normally excitable cells. We predict

that observed glucose-dependent activity and the coupling

dependence can also be explained in this way (see below).

The Sp for endogenous heterogeneity is higher than that for an

imposed biomodal distributions (i.e. diazoxide treatment versus

Kir6.2[DN30,K185Q] or Kir6.2[AAA] expression) suggesting a more

even balance between the ability of excitable and inexcitable cells

to respectively propagate stimulation or suppression in wild-type

islets (figure 6, 7). This balance may arise from the different

distribution of heterogeneity present, but a phase-transition still

emerges in the presence of coupling indicating a more general

regulation of multicellular excitability.

Therefore through limited coupling of heterogeneous popula-

tions of cells, critical behavior emerges in the islet dynamical

system where large changes in activity result from small changes in

the constituent cellular excitabilities.

Applicability to Physiology and Diabetes
Gap junctions impact islet behavior in two main ways. At high

glucose (KATP channel-closure), gap junctions coordinate oscilla-

tory dynamics of membrane depolarization and [Ca2+]i to

generate a robust pulsatile insulin secretion [13,14,32]. A number

of recent studies have examined this aspect, including multicellular

modelling and quantitative analyses [14,18,19,21]. Equally

important however is that at lower glucose (KATP channel-

opening), gap junctions mediate a suppression of membrane

depolarization, [Ca2+]i, and insulin secretion [10,13,17]. The

mechanisms involved in mediating suppression are not well

characterized, and several experimental perturbations have
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yielded unexpected results or have not been well described

theoretically [17,34,35]. Here, we were able to quantitatively

describe suppressive behavior resulting from coupling, which

yields a more complete understanding for how the islet functions

under conditions of KATP channel opening.

At 6–7 mM glucose, the islet sharply transition between global

quiescence and globally synchronized [Ca2+]i oscillations. In the

absence of coupling, the progressive elevation in the number of

cells showing [Ca2+]i elevations is gradual [10]. This follows the

same behavior as variable Kir6.2[DN30,K185Q] expression and

diazoxide concentration (figures 2,6). At ,6 mM glucose, global

suppression is equivalent to .15% Kir6.2[DN30,K185Q] expression

or .100 mM diazoxide; whereas at .7 mM glucose global activity

is equivalent to ,15% Kir6.2[DN30,K185Q] expression or ,50 mM

diazoxide. The 6–7 mM glucose transition is therefore equivalent

to behavior at ,15% Kir6.2[DN30,K185Q] expression or 50–

100 mM diazoxide. As such, we propose results from the Boolean

model, as illustrated by the mean-field theory analogy, have

greater implications by describing physiological glucose-dependent

islet electrical activity (figure S8C). Coupling heterogeneity and

islet architecture lead to variability in the number and strength of

connections, impacting the phase transition. These factors may

therefore play a role in shaping the physiological regulation of

glucose-stimulated [Ca2+]i and insulin secretion (Figures S5,S6).

At 11 mM glucose, heterogeneity leads to a small population of

b-cells (,10%) remaining inactive in the absence of coupling [10].

In the presence of coupling there is global activity with a lower

plateau fraction compared to higher glucose levels (e.g. 20 mM)

[36]. This matches the behavior at 5–10% Kir6.2[DN30,K185Q]

expression or 50 mM diazoxide in the respective absence and

presence of coupling. Therefore an alternative view for how

oscillatory dynamics are shaped at an islet-wide level is that less-

active cells within the b-cell network have a modulatory effect on

overall oscillation waveform, rather than oscillations being shaped

by purely intrinsic properties of the b-cells. Importantly, the

reduced plateau fraction of [Ca2+]i bursts at 5–10%

Kir6.2[DN30,K185Q] expression correlates with a significant decrease

in insulin secretion (figure 3). A decrease in burst duration has

previously been suggested to reduce insulin release [37], as

supported by these results. Thus subtle alterations in the balance of

constituent cell excitabilities have a strong physiological effect on

islet function.

Our results also have implications for neonatal diabetes mellitus

(NDM), where the majority of cases result from mutations to

Kir6.2 or SUR1 KATP channel subunits [8,38]. Kir6.2[DN30,K185Q]

expression models this disease [27]. Our results show that NDM

mutations gives rise to a disproportionate suppression in [Ca2+]i

and insulin release, thereby causing diabetes due to the critical

behavior that emerges from coupling and network dynamics. This

also explains how an absence of coupling elevates [Ca2+]i and

insulin release (figures 1, 6) to prevent the progression of diabetes.

This was experimentally demonstrated in a recent study [26], and

the rescue of diabetes can only be understood mechanistically at

the multicellular level. Clearly in human diabetes, mutations are

not expressed mosaically. However, the diazoxide results which

depend on a continuum of heterogeneity (figure 6) demonstrate

that critical behavior exacerbates NDM upon uniform KATP

channels overactivity. Other monogenic diabetes causing muta-

tions that affect b-cell excitability, such as Glucokinase [6], may

also have similar effects on islet excitability and lend themselves to

analysis by the Boolean model and coupled oscillator model.

Mutations causing NDM are functionally equivalent to .15%

Kir6.2[DN30,K185Q] or .100 mM diazoxide, effectively residing in a

post-critical state suppressing global [Ca2+]i. There exists a

spectrum of KATP channel mutations linked to diabetes, where

weaker mutations to Kir6.2 and SUR1 elevate the risk of type2

diabetes [39–41]. These mutations likely have a more subtle effect

on islet excitability and as a consequence we predict that islets

residing in the pre-critical state (,15% Kir6.2[DN30,K185Q] or ,

50 mM diazoxide) would still be susceptible to diabetes following

metabolic stress. Further, while gap junction reduction recovers

insulin release and glucose control in the post-critical regime (i.e.

NDM), we predict a gap junction increase would be beneficial in

the pre-threshold regime (i.e. type2 diabetes).

Converse to this, results from Kir6.2[AAA] islets show how

critical behavior provides the islet with a resilience to over-

excitable b-cells. Given the ,85% threshold of excitable cells

required to elevate [Ca2+]i, with ,70% over-excitable Kir6.2[-

AAA]-expressing cells, many of the ,30% normal b-cells would

also need to be active (e.g. .50% at ,5.5 mM glucose [10]). This

explains only the minor shift in glucose-stimulated [Ca2+]i that

occurs following KATP inactivity and highlights the role electrical

coupling plays in protecting islets against hyper-excitability [17].

Therefore we describe the emergence of critical behavior linking

multiple levels including molecular and cellular behavior, multi-

cellular behavior, in-vivo physiology, disease and treatment.

Implications for General Dynamical Systems
This study also has implications for general understanding of

physiological systems composed of coupled dynamic units.

Previous theoretical studies have shown how the introduction of

non-oscillatory elements above a critical level in a generalized

coupled oscillator system can lead to cessation of global oscillations

with phase transitions [42,43]. Our study experimentally and

theoretically demonstrates this in a disease relevant system.

Further, prior studies theoretically demonstrated that the fraction

of excitable elements (i.e. Pexc) and coupling strength (i.e. p) exist in

a phase plane where increased coupling decreases the number of

inactive elements required for suppression [43,44]. We demon-

strated this experimentally and theoretically, with

Kir6.2[DN30,K185Q] and diazoxide-induced suppression. While

strong coupling promotes robust synchronization, it will increase

suppression from non-oscillatory inexcitable units. Given a small

population of inactive b-cells exists as a result of cellular

heterogeneity, these generalized theoretical studies imply inappro-

priate elevations in coupling would be deleterious, by reducing

glucose-stimulated [Ca2+]i. As such the level of coupling is likely at

an optimal level to balance global synchronization and suppres-

sion.

The strong link between dynamical b-cell networks and

generalized coupled oscillators implies similar behavior can be

expected in other physiological systems. In the heart, electrical

activity is initiated by pacemaker cells and propagates to excite

contractile myocytes. In culture, non-excitable fibroblasts propor-

tionally reduced cardiomyocyte wave propagation bursts frequen-

cy with Cx43 dependence [45]. No activity was reported for .

30% fibroblast penetrance and modulation of action potential

frequency occurred at ,30% fibroblast penetrance (implying

Sp = 0.3). While the mechanisms of coupling-dependent suppres-

sion are very different compared to our study, global responses are

similar implying similar governing principles. Similarly, pacemak-

er cells exhibit dominance over myocytes at an optimal gap

junction conductance [46]; where high coupling leads to

arrhythmias and low coupling leads to poor synchronization

[47]. Neurons also display intrinsic oscillatory behavior, and the

effects of coupling and presence of inhibitory and excitatory

neurons on synchronization and phase modulation is an active

area of research [48–53]. Critical dynamics have been described
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theoretically to emerge from excitatory and inhibitory units in

neuronal networks [54], and a computational study which

introduced ‘contrarian elements’ into neural coupled oscillator

networks found that a similar threshold of 15% suppressed global

dynamics [49].

We also anticipate that critical behavior resulting from coupling

of heterogeneous units may be considered a general regulatory

mechanism. Many systems respond to a stimulus by transitioning

between inactive and active states (e.g. contractile, hormone-

secretory). Our study implies that constituent cellular units need

not themselves have a uniform or robust response to generate a

robust multicellular response. Rather, a robust response can

emerge from coupling a heterogeneous collection of cells; where

coupling and architecture need only have sufficient strength and

connection number on average. This makes the overall system

robust against noise and variability, and loosens the requirement

for tight regulatory mechanisms within the constituent cells.

Similarly, given a constant stimulus, a robust transition between

globally active and inactive states could be achieved by remodeling

connectivity with a small number of inhibitory units. For example,

down-regulating connections from ,20% to ,5% inhibitory cells

would transition the system from inactive to active requiring

minimal system remodeling. This also suggests how inappropriate

changes in coupling or constituent cells may lead to global non-

responsiveness and disease. We speculate these principles may

apply to other neuroendocrine cell systems such as GH-cells or the

adrenal medulla, where functional remodeling elevates hormone

secretion upon physiological stimuli [18,55]. Indeed many of these

principles have been linked with GnRH neuron function during

development [56,57]. Therefore we suggest that new and robust

functionalities can be generated at the multicellular level from the

coupling of non-robust constituent cell function, requiring minimal

system resources compared to the requirements were cells to act

autonomously.

Conclusions
Any living system cannot avoid deterioration through mutation

or other pathological insult. This study experimentally and

theoretically demonstrates that if the fraction of inactive elements

exceeds a coupling-dependent threshold, the global activity of the

system can be abolished. In the case of the islet this explains how

inactive cells can suppress the activity of other cells, thereby

preventing the secretion of insulin. In the case of KATP mutations,

this quantifies the threshold of inexcitable cells required for

pathogenic symptoms and explains how coupling can eliminate

the emergence of diabetes or exacerbate it. Overall, this gives a

new understanding for how emergent properties of the islet as a b-

cell network are generated; as well as for understanding islet

dysfunction in diabetes and novel ways to overcome dysfunction.

More broadly, this generates insight into emergent behavior of

multicellular systems in general.

Methods

Ethics Statement
All experiments were performed in compliance with the relevant

laws and institutional guidelines, and were approved by the

University of Colorado Institutional Biosafety Committee (IBC)

and Institutional Animal Care and Use Committee (IACUC).

Animal Care
The generation of Rosa26-Kir6.2[DN30,K185Q] (‘gain-of-func-

tion’ KATP subunit with GFP co-expression), Pdx-CreER (b-cell

specific inducible Cre), Kir6.2[AAA] (‘loss-of-function’ KATP

subunit with GFP tag), and Cx362/2 (Connexin36 global

knockout) have been described previously [27,28,58,59]. Expres-

sion of variable Kir6.2[DN30,K185Q] was achieved in b-cells by

crossing Rosa26-Kir6.2[DN30,K185Q] and Pdx-CreER mice, and

inducing Kir6.2[DN30,K185Q] expression in 8–16 week old mice by

1–5 daily doses of tamoxifen (50 mg/g body-weight). Littermates

lacking Rosa26-Kir6.2[DN30,K185Q] and/or Pdx-CreER were used

as controls.

In-Vivo Measurements
Blood glucose was measured daily and averaged over day 27–29

post tamoxifen induction using a glucometer (Ascensia Contour,

Bayer). Plasma insulin was measured at day 29 from blood samples

centrifuged for 15 minutes at 13,900RCF, and assayed using

mouse ultrasensitive insulin ELISA (Alpco).

Islet Isolation and Insulin Secretion
Islets were isolated by collagenase injection into the pancreas

through the pancreatic duct; the pancreas was harvested and

digested, and islets were handpicked [23]. Islets were maintained

in RPMI medium (Invitrogen) supplemented with 10% FBS,

11 mM glucose, 100 U/ml penicillin, 100 mg/ml streptomycin, at

37uC under humidified 5% CO2 for 24–48 hours prior to study.

For insulin secretion measurements, islets (5/column, duplicates)

were pre-incubated in Krebs-Ringer buffer (128.8 mM NaCl,

5 mM NaHCO3, 5.8 mM KCl, 1.2 mM KH2PO4, 2.5mM

CaCl2, 1.2 mM MgSO4, 10 mM HEPES, 0.1% BSA, pH 7.4)

plus 2 mM glucose; then incubated for 60 minutes in Krebs-

Ringer buffer plus 20 mM glucose. After incubation, the medium

was sampled and insulin concentration assayed using mouse

ultrasensitive insulin ELISA. To estimate insulin content, islets

were lysed in 1% TritonX-100 and frozen at 220uC overnight.

Calcium Imaging
To measure [Ca2+]i dynamics, isolated islets were loaded with

4 mM FuraRed-AM (Invitrogen) in imaging medium (125 mM

NaCl, 5.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 10 mM

Hepes, 2 mM glucose, and 0.1% BSA, pH 7.4) at room

temperature for 90–120 minutes and held in polymdimethylsilox-

ane (PDMS) microfluidic devices [17]. FuraRed fluorescence was

imaged on a spinning-disk confocal microscope (Marianas, 3I)

with a 4061.3NA Plan-NEOFluar oil-immersion objective (Zeiss)

maintained at 37uC. Images were acquired at 1 frame/sec using a

488 nm diode laser for excitation and a 580–655 nm long-pass

filter for emission. Time-courses were acquired 10 minutes after

change in glucose concentration, diazoixide or 18-a-glycyrrhetinic

acid application. Time-courses are displayed as normalized to the

average fluorescence.

Data Analysis
All images were analyzed using custom MATLAB (Mathworks)

routines or using Slidebook (3I). To calculate islet activity, images

were smoothed using a 565 average filter. The variance of pixel

time-courses was first calculated for a quiescent reference cell;

manually selected from an area which displayed no fluctuations in

intensity over time compared with image noise. A pixel was

considered ‘active’ if its time-course showed a variance .2

standard deviations above the variance of the quiescent reference

cell [10,20]. Photobleaching was accounted for through a linear fit,

and time-courses were rejected if excessive motion artifacts

occurred. The area of active cells in terms of pixels, was

determined for each condition and expressed as a fraction of total

islet pixel area as defined by mean FuraRed fluorescence. GFP+
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regions were defined as having a mean pixel fluorescence intensity

above that measured in GFP2 wild-type cells. The area of active

cells in GFP+ regions was expressed as a fraction of the total GFP+

area. Information describing activity is represented as a false-color

HSV image where Hue is set to 1 (red), Saturation is set to 1 for

active cells and 0 (no color) for inactive cells, and Value (intensity)

is set to the average FuraRed fluorescence. Data are presented as

mean6SEM. For comparison of two means, Student’s t-test was

utilized. For comparison of multiple means, ANOVA was utilized

along with Tukey’s HSD test.

Boolean Network (Percolation) Model of Suppression
Bond percolation is a sub-model of percolation theory [31,60]

which can be used to simulate the islet [14,20,21]. For a lattice of

nodes (cells) in a given geometry, adjacent nodes are connected

with a ‘coupling probability’ p, or not connected with a probability

(1-p). Connected nodes are considered ‘functionally coupled’,

where activity is synchronized at high glucose and suppression

mediated at low glucose. We implemented simulations of bond

percolation lattices (figure S1) as previously described [20]. Briefly,

cubic lattices with alternating node and bond sites (length L = 11)

were generated. Probabilities were assigned to each bond site with

a uniform distribution (0 to 1). Neighboring nodes were coupled if

the bond site probability was less than or equal to the coupling

probability p. Clusters of coupled nodes were identified and

potential bond sites removed to establish a matrix of identified

coupled nodes (figure S1A).

Coupling-mediated suppression is based on the principle that a

threshold fraction of non-responsive (‘inexcitable’) cells can

suppress all other cells to which they are coupled [17,20]. Within

a cluster of coupled nodes, if the fraction of inexcitable cells is

greater than a threshold fraction (Sp), then all cells within the

cluster are inactive. Experimental studies indicate this threshold is

,30% [17] and has been modelled to be ,15% for MIN6

aggregates [20]. The probability Pexc defines the fraction of cells

within the islet that are intrinsically excitable; where in the absence

of coupling they would be active. Within each cluster of coupled

nodes a binomial distribution was used to estimate the probability

of there being a threshold number of inactive cells to lead to

suppression. Given a threshold number of inactive cells required

for suppression (k), a total number of cells in a cluster (n), and the

fraction of inactive cells (q); the probability that a coupled cluster is

active (Pr) is:

Pr(X~k)~
n

k

� �
qk(1{q)n{k ð1Þ

where

n

k

� �
~

n!

n{kð Þ!k!
ð2Þ

The cumulative distribution for k to n, P(X#k), represents the

probability of suppression (sufficient inexcitable cells) in a coupled

cluster. To obtain the resultant % activity, P(X#k) was averaged

over all clusters within the islet, weighted by the number of cells n
in each cluster. ‘k’ normalized to ‘n’ gives the fraction of

inexcitable cells required for suppression (Sp). ‘1-q’ gives the

fraction of excitable cells (Pexc). 500 simulations were run for each

Pexc = [0 1] and p = [0 1], at 0.01 increments for given values of

Sp. The p and Sp parameters that generated the best fit for the

simulation mean to experimental data were determined by a chi-

squared minimization. To determine the probability distribution

for p and Sp, 4000 simulations were run and each simulation was

separately fitted for p and Sp by chi-squared minimization.

Coupled Dynamical Model
The islet model was based on the Cha-Noma b-cell model

[29,30], itself based on the Fridlyand b-cell model [61,62], and

adapted to include cell-cell coupling. We also included further

aspects of cell-cell coupling and altered KATP channel function. A

list of parameters used in the model is included in SI Table S1.

The membrane potential (Vi) of each b-cell i is related to the total

transmembrane current as:

{C
dVi

dt
~ICaV zITRPMzISOCzIbNSCzIKDrzIKCa(SK)

zIKCa(SK)zIK(ATP)zINaKzINaCazIPMCA

ð3Þ

Where the kinetics of each current is described in [29,30].

To simulate gap junction coupling and a multicellular islet,

multiple ‘cells’ were simulated with a coupling current between

each neighboring cell. The membrane potential for each cell i was

modified to account for coupling to j neighboring cells:

{C
dVi

dt
~Iiz

X
j

g(i,j)
coup(Vi{Vj) ð4Þ

Heterogeneity in coupling was introduced by randomly

assigning the gap junction conductance g(i,j)
coup between cells i and

j, according to an experimentally measured distribution [unpub-

lished data], with SD/mean = 70%. To more accurately model b-

cell coupling architecture, random cell lattices were created using

a position- and availability-based sphere-packing algorithm

(mean,SD number of cell-cell connections = 5.3,1.7) [63] (figure

S3).

IK(ATP) was described in [29,30] as:

IK(ATP)~�ggK(ATP)
:poK(ATP)

:(V{VK ) ð5Þ

Where �ggK(ATP) is the open channel conductance and poK(ATP)

represents the mean open probability which is given by:

poK(ATP)~

0:08 1z
2½ADP�

0:01

� �
z0:89

½ADP

0:01

� �2

1z
½ADP�
0:01

� �2

1z
0:45½ADP�

0:026
z
½ATP�
0:05

� � ð6Þ

Endogenous heterogeneity was modelled by randomizing all

parameters indicated in TableS1 between cells about a mean value

according to a Gaussian distribution with SD/mean = 10%. To

generate heterogeneity in electrical responses equivalent to

experimental measurements, the open channel conductance

�ggK(ATP) was randomized between cells about a mean value

according to a Gaussian distribution with SD/mean = 25%. This

heterogeneity achieves variability in activity that matches exper-

imental measurements in islets lacking Cx36 [10,14].

To model Kir6.2[DN30,K185Q] expression, the open probability

poK(ATP) was modified in a proportion (Pexc) of simulated cells:
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poK(ATP)Mut~c(poK(ATP))z(1{c)(poMut) ð7Þ

where c is a constant representing the fraction of ATP-insensitive

current (poMut~1), and was set to 0.5.

To model diazoxide treatment, the fraction of ATP-insensitive

current was increased in all cells uniformly according to:

poK(ATP)0~a(poK(ATP))z(1{a)(poMut) ð8Þ

such that a= 1 represents an untreated islet, and a= 0.5 is

equivalent to 100% expression of Kir6.2[DN30,K185Q].

All simulations were initially written and verified in MATLAB,

then rewritten in C++ and simulated on the University of

Colorado JANUS supercomputer. The model was solved using a

constant time-step Euler integration scheme (Boost C++ Libraries)

with 100 ms step-time and 100 ms sampling-time. Rendering

simulations was performed with Mathematica 9.0 (Wolfram

Research).

Supporting Information

Figure S1 Description for how the Boolean network model is

constructed and how the network parameters p, Pexc affects

network activity. A) Generation of coupled network and

identification of connected clusters within the network. A 3

dimensional array of nodes (cells) are generated (in this case an

L = 11 lattice). Bond sites between neighboring nodes are

populated according to the coupling probability p, and nodes

that belong in connected clusters identified. The number of nodes

in each connected cluster of the network is then recorded. B)

Histogram for the density of nodes as a function of identified

cluster sizes for different values of p. Below ,0.25 only very small

clusters are present. Above ,0.25 a single large connected cluster

emerges to which the majority of cells belong. Data are averaged

over 5000 simulations. C) Dependence of cluster activity on the

cluster size for two different values of Pexc, where Sp = 0.15. When

Pexc,(1-Sp) increasing cluster size leads to reduced activity,

whereas when Pexc.(1-Sp) increasing cluster size leads to

increased activity. This explains the respective low and high

activity in figure 1B. Data are averaged over 5000 simulations.

Overall, the coupling probability p (representing gap junction

strength) determines the distribution of connected cluster sizes

within the islet network. The Pexc value (representing cellular

excitability) then determines how active each connected cluster is

depending on its size. The combination of these 2 factors then

determines the overall network activity.

(TIF)

Figure S2 The effect of functional coupling parameter p on the

activity of simulated Boolean networks and comparison with

percolation theory, see [Hraha, T.H., et al., Biophys J, 2014.

106(1): p. 299–309]. A.) Percent activity of L = 11 lattices was

simulated for Pexc = 70% for p = 0.1 (p,pc = 0.2488 for cubic

lattice, i.e. sub-critical coupling) and p = 0.3 (p.pc, i.e. supra-

critical coupling). B.) Three-dimensional false color maps of

network activity in representative L = 31 lattices for p = 0.1 and

p = 0.3, for Pexc indicated in A. C) Mean size of largest connected

clusters as a fraction of 3D network in simulated networks as a

function of p. D.) Three-dimensional false color maps showing

distinct ‘clusters’ of coupled cells in simulated Boolean networks

with p = 0.2 (p,pc) and p = 0.3 (p.pc), as indicated in C. Note for

p = 0.1, the majority of clusters approach single nodes (cells).

(TIF)

Figure S3 Penetrance of Kir6.2[DN30,K185Q] and Kir6.2[AAA].

Representative GFP images showing the presence of mutant

Kir6.2 expressing cells as indicated by GFP co-expression (for

Kir6.2[DN30,K185Q]) or a GFP tag (for Kir6.2[AAA]). GFP tagged

cells are constitutively inactive (inexcitable) in the case of

Kir6.2[DN30,K185Q] and constitutively active for Kir6.2[AAA]. As

such Pexc which represents the number of excitable cells is equal to

100%-%GFP upon Kir6.2[DN30,K185Q] expression and is equal to

%GFP for Kir6.2[AAA] expression. For Kir6.2[DN30,K185Q] ex-

pressing islets, controlled expression is induced through variable

doses of tamoxifen injections, for which representative images are

shown for wild-type (GFP = 0%, Pexc = 100%), pre-critical

(GFP = 10%, Pexc = 90%), critical (GFP = 20%, Pexc = 80%), and

post-critical (GFP = 55%, Pexc = 45%), conditions of islet activity.

Conversely, Kir6.2[AAA] expressing islets show on average ,70%

penetrance, such that Pexc = 70%.

(TIF)

Figure S4 [Ca2+]i in Kir6.2[DN30,K185Q] expressing and non-

expressing cells within the islet as indicated by GFP coexpression.

A) Percent cells showing [Ca2+]i elevations in GFP positive or GFP

negative cells as a function of Pexc (100-%GFP). Green diamonds

indicate those cells expressing GFP whereas black squares indicate

those cells lacking GFP. B) Mean(6s.e.m.) percent cells showing

[Ca2+]i elevations in GFP positive or GFP negative cells for data

binned to wild-type, pre- and post-critical ranges, as determined

by %GFP. *indicates significant difference (p,0.05) between data

as indicated.

(TIF)

Figure S5 Effects of islet architecture on phase transition

behavior. A) Schematic representations of the cubic lattice, and

B) representative example of the quasi-spherical sphere packing

architectures used for simulating the dynamical oscillator model.

C) Comparison of simulated islet activity as a function of percent

excitable cells (Pexc) for cubic and sphere packing architectures in

the dynamical model for physiological wild-type gap junction

conductance.

(TIF)

Figure S6 Effects of endogenous cellular heterogeneity and

coupling heterogeneity on phase transition behavior. A) Simulated

islet activity as a function of percent excitable cells (Pexc) in the

presence and absence of heterogeneous distributions of gap

junction coupling conductance in the dynamical model. B.)

Simulated islet activity as a function of percent excitable cells

(Pexc) in the presence and absence of heterogeneous distributions of

cell physiology parameters in the dynamical model.

(TIF)

Figure S7 Dependence of phase transitions in b-cell network

activity on the origin of endogenous b-cell heterogeneity in simulated

islets. A) Left: Percent cells showing [Ca2+]i elevations in simulated

islet as a function of a uniform increase in the fraction of ATP-

insensitivity of KATP channel activation (a) across cells of the islet.

Heterogeneity is present in all parameters described in Table S1 and

as used elsewhere in this study. Mean simulation data is presented for

zero gap junction conductance (0 pS) and wild-type gap junction

conductance (120 pS). Right: activity of fully-coupled islet system as a

function of activity in the uncoupled islet systems which represents the

excitability of the constituent cells, with heterogeneity present in all

parameters. For islets lacking gap junction coupling, with zero gap

junction conductance, the result is trivially linear (dashed). B) As in A

for heterogeneity solely in KATP channel activity. C) As in A for

heterogeneity solely in glycolytic flux.

(TIF)
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Figure S8 Mean-field theory analogy of b-cell network activity.

The excitability of constituent units (i.e. their glucose sensitivities)

and the resulting network activity takes into account coupling and

different experimental perturbations. A) Cells of wild-type islets are

inexcitable at low glucose (2 mM) and all excitable at high glucose

(20 mM), therefore wild-type islets are respectively fully inactive and

fully active. Cells expressing Kir6.2[DN30,K185Q] are glucose-

insensitive and constitutively inexcitable. When Kir6.2[DN30,K185Q]

penetrance is ,15% (Pexc.0.85) there are insufficient inexcitable

cells to suppress global activity, and so coupling leads to inexcitable

cells being recruited to be active. However, when Kir6.2[DN30,K185Q]

penetrance rises above ,15% (Pexc,0.85), global quiescence ensues

where the majority of normally excitable cells are rendered inactive.

B) For low diazoxide (,50 mM), there are fewer excitable cells

compared to untreated, however if coupling exists then all cells are

recruited to be active. However, in the absence of coupling the

resulting activity is the same as the composition, which results in

lower activity. In the case of higher diazoxide treatments (.100 mM)

the proportion of inexcitable cells exceeds the threshold for

suppression. If coupling exists then all cells are rendered inactive.

However in the absence of coupling the resulting activity is the same

as the composition and some cells remain active. C) This mechanism

can also explain how the islet maintains a robust well-defined

glucose-stimulated response, but not in the absence of gap junction

coupling. As glucose is increased more cells become excitable, but in

the presence of coupling if the excitable fraction is less than a critical

threshold (e.g. at ,5 mM glucose), all cells are rendered inactive and

the islet is quiescent. At a glucose level where the excitable fraction

exceeds the critical threshold (e.g. ,11 mM glucose) all cells are

recruited to be active. However in the absence of coupling the

activity again reflects the excitability composition within the islet:

under conditions where normal coupling leads to quiescence greater

activity occurs, but under conditions where normal coupling leads to

global activity reduced activity occurs.

(TIF)

Movie S1 Representative movie of experimentally measured

[Ca2+]i for control conditions. Data is equivalent to that in

figure 2B, panel I. Note decreases in FuraRed fluorescence are

equivalent to [Ca2+]i increases. Movie played at 620 speed.

(AVI)

Movie S2 Representative movie of experimentally measured

[Ca2+]i for ‘pre-critical’ conditions. Data is equivalent to that in

figure 2B, panel II. Note decreases in FuraRed fluorescence are

equivalent to [Ca2+]i increases. Movie played at 620 speed.

(AVI)

Movie S3 Representative movie of experimentally measured

[Ca2+]i for ‘critical’ conditions. Data is equivalent to that in

figure 2B, panel III. Note decreases in FuraRed fluorescence are

equivalent to [Ca2+]i increases. Movie played at 620 speed.

(AVI)

Movie S4 Representative movie of experimentally measured

[Ca2+]i for ‘post-critical’ conditions. Data is equivalent to that in

figure 2B, panel IV. Note decreases in FuraRed fluorescence are

equivalent to [Ca2+]i increases. Movie played at 620 speed.

(AVI)

Movie S5 Representative movie of simulated [Ca2+]i for control

conditions. Data is equivalent to that in figure 5B, panel I. Movie

played at 610 speed.

(AVI)

Movie S6 Representative movie of simulated [Ca2+]i for ‘pre-

critical’ conditions. Data is equivalent to that in figure 5B, panel

II. Movie played at 610 speed.

(AVI)

Movie S7 Representative movie of simulated [Ca2+]i for ‘critical’

conditions. Data is equivalent to that in figure 5B, panel III.

Movie played at 610 speed.

(AVI)

Movie S8 Representative movie of simulated [Ca2+]i for ‘post-

critical’ conditions. Data is equivalent to that in figure 5B, panel

IV. Movie played at 610 speed.

(AVI)

Table S1 Table of new and revised parameters for the dynamic

oscillator model, where all nomenclature is consistent with the

previously published single cell b-cell model, see [29]. *Hetero-

geneity is based on Gaussian variability about the mean value with

standard deviation set as percentage of the given value.

(PDF)
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