
PROCEEDINGS Open Access

Algorithms for optimizing cross-overs in DNA
shuffling
Lu He1, Alan M Friedman2*, Chris Bailey-Kellogg1*

From ACM Conference on Bioinformatics, Computational Biology and Biomedicine 2011 (ACM-BCB)
Chicago, IL, USA. 1-3 August 2011

Abstract

Background: DNA shuffling generates combinatorial libraries of chimeric genes by stochastically recombining
parent genes. The resulting libraries are subjected to large-scale genetic selection or screening to identify those
chimeras with favorable properties (e.g., enhanced stability or enzymatic activity). While DNA shuffling has been
applied quite successfully, it is limited by its homology-dependent, stochastic nature. Consequently, it is used only
with parents of sufficient overall sequence identity, and provides no control over the resulting chimeric library.

Results: This paper presents efficient methods to extend the scope of DNA shuffling to handle significantly more
diverse parents and to generate more predictable, optimized libraries. Our CODNS (cross-over optimization for DNA
shuffling) approach employs polynomial-time dynamic programming algorithms to select codons for the parental
amino acids, allowing for zero or a fixed number of conservative substitutions. We first present efficient algorithms
to optimize the local sequence identity or the nearest-neighbor approximation of the change in free energy upon
annealing, objectives that were previously optimized by computationally-expensive integer programming methods.
We then present efficient algorithms for more powerful objectives that seek to localize and enhance the frequency
of recombination by producing “runs” of common nucleotides either overall or according to the sequence diversity
of the resulting chimeras. We demonstrate the effectiveness of CODNS in choosing codons and allocating
substitutions to promote recombination between parents targeted in earlier studies: two GAR transformylases (41%
amino acid sequence identity), two very distantly related DNA polymerases, Pol X and b (15%), and beta-
lactamases of varying identity (26-47%).

Conclusions: Our methods provide the protein engineer with a new approach to DNA shuffling that supports
substantially more diverse parents, is more deterministic, and generates more predictable and more diverse
chimeric libraries.

Background
The harnessing of DNA recombination in vitro has trans-
formed protein engineering by enabling engineers, like
nature, to sample sequence space more broadly than is
allowed by point mutagenesis at individual residues.
Recombination produces chimeras comprised of sequen-
tial fragments from parent genes, thereby bringing

together sets of sequences that were previously active in
the parental background, and are thus likely to be less dis-
ruptive than random ones. Chimeragenesis typically pro-
duces combinatorial libraries, and those chimeras with
beneficial properties can be identified by large-scale
genetic screening and selection.
DNA shuffling [1,2], the progenitor of recombination-

based protein engineering, works by randomly digesting
the parent genes into fragments and reassembling the
fragments into new chimeric genes (Figure 1). Recombi-
nation occurs when fragments from different parents are
sufficiently complementary to anneal and prime synthesis
from the 3’ end. DNA shuffling has been called by its

* Correspondence: afried@purdue.edu; cbk@cs.dartmouth.edu
1Dept of Computer Science, Dartmouth College, 6211 Sudikoff Laboratory,
Hanover, NH 03755, USA
2Dept of Biological Sciences, Markey Center for Structural Biology, Purdue
Cancer Center, and Bindley Bioscience Center, Purdue University, West
Lafayette, IN 47907, USA
Full list of author information is available at the end of the article

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

© 2012 He et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:afried@purdue.edu
mailto:cbk@cs.dartmouth.edu
http://creativecommons.org/licenses/by/2.0

developer Pim Stemmer “the most dangerous thing you
can do in biology” [3], due to its power in generating
novel proteins. Indeed, it has been the basis both for
commercial success (Affymax, Maxygen) and the devel-
opment of effective protein variants [4-7].
DNA shuffling is both homology-dependent (recombina-

tion can occur only in runs of similar DNA sequence), and
stochastic (the engineer does not control the recombina-
tion sites). Due to dependence on sequence similarity,
DNA shuffling may fail to generate desirable chimeras (or
any chimeras at all) for diverse parents, as they have only a
few, small regions of DNA similarity, insufficient to gener-
ate many cross-overs. Homology-independent stochastic
methods (e.g., ITCHY [8] and SHIPREC [9]) mitigate the
need for such parental sequence similarity, but at the cost
of generating many more non-viable chimeras.
In contrast with stochastic methods, site-directed

methods enable the engineer to explicitly choose break-
point locations so as to optimize expected library quality
(e.g., by employing structural information [10], or by
minimizing predicted disruption [11,12], library diversity
[13], or both factors [14]). We have developed a site-
directed method employing planned ligation of parental
fragments by short overhangs [15]. We have coupled this
approach to robotic implementation in order to generate
specific chimeras in defined experimental vessels [16].
Such highly-directed methods of chimera generation are
most useful when screening represents a significant
effort. In those situations where screening or genetic
selection is readily available, then stochastic approaches,
with less overall cost, might prove preferable.
We present here methods for extending stochastic

experiments by optimizing DNA shuffling (Figure 2),
yielding an approach that is less dependent on parental
DNA sequence similarity (parents can be more diverse)
and more deterministic (cross-overs are more predictable),
and which is amenable to library optimization. Our
approach, which we call CODNS (cross-over optimization
for DNA shuffling), employs efficient (polynomial-time)
dynamic programming algorithms to select a globally opti-
mal set of codons for the parental amino acids, allowing
for a fixed number of substitutions. While Moore and

Maranas have also studied the problem of codon optimi-
zation for shuffling [17], their eCodonOpt method
employs computationally-expensive integer programming
to select codons. We present dynamic programming
recurrences for the two crossover-maximization objective
functions of eCodonOpt: overall DNA sequence identity
and overall free energy of annealing as approximated by a
nearest-neighbor potential. We then develop recurrences
for two more powerful objectives that seek to maximize
crossovers by promoting DNA sequence identity within
contiguous runs, optimizing either the overall number of
runs or the diversity of the chimera library resulting from
breakpoints in the contiguous runs.
We demonstrate the effectiveness of CODNS in sev-

eral case studies. We first optimize the GAR transformy-
lases previously optimized by eCodonOpt [17]. We then
show that CODNS can optimize two DNA polymerases
(Pol X and Pol b) that are sufficiently diverse (15%
amino acid sequence identity) to previously require the
development and application of the SCOPE method
[10], instead of direct application of DNA shuffling.
Finally, we study the impact of parental sequence iden-
tity by considering pairs of beta-lactamase parents of
differing diversity levels.

Methods
We take as input the amino acid sequences of the par-
ent proteins to be shuffled, aligned to a length of n
(amino acids and gaps) based on sequence and/or struc-
ture. For simplicity of exposition, we present our meth-
ods for the most common case of shuffling two parents,
a1 and a2. Our methods readily extend to creating
equivalent sites for recombination in multiple parents,
and it remains interesting future work to allow for non-
uniform shuffling (i.e., where different cross-overs are
possible between different pairs of parents).
To optimize the shuffling experiment, we select a

codon for each amino acid for each parent, yielding DNA
sequences d1 and d2 of length 3n (maintaining gaps for
those in the amino acid sequences). To expand the pool
of codons being considered at a particular position, we
may choose to make an amino acid substitution. Thus we

Figure 1 Basic steps in gene shuffling protocol (following [30]). (1) Parental genes are stochastically fragmented. (2) The fragments are
denatured, and strands with sufficient complementarity are annealed and extended. Cross-overs are formed when the complementary strands
are from different parents and can be extended to complete fragments. The process is repeated for multiple rounds, generating additional
fragments and cross-overs. (3) Ultimately a chimeric library is generated, some of whose members represent full-length genes, as shown.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 2 of 14

take as additional input a specification of the allowed
substitutions for each residue position for each parent,
along with a number m of them to make. The allowed
substitution specification may be derived from sequence
and/or structural analysis of the parents, including
general amino acid substitution matrices [18], position-
specific amino acid statistics from related proteins [19],
and ��G◦

fold fold predictions for possible substitutions
[20]. The results presented below determine allowed sub-
stitutions under the BLOSUM62 substitution matrix,
considering only “conservative” substitutions which score
no more than 4 worse than wild-type [15].
In describing the algorithms, we use possible codon sets

representing the codons allowed at each position in the
wild-type and under the allowed substitutions. For posi-
tion i, set C1[i] contains the possible codons for a1[i],
pairing each with an indication of whether or not it
requires a substitution, e.g., {(TTT, 0), (TTC, 0), (TGG, 1)}
for an F that could potentially be mutated to W. Set C2[i]
is defined similarly for the second parent. We note that
these may readily be used to restrict where to employ
mutations (e.g., masking based on structural analysis, as
discussed by Moore and Maranas [17]), by allowing only
wild-type codons (or amino acids) in some positions.
We consider four types of objective function, targeting

common nucleotides (at aligned positions), nearest-neighbor
approximation to change in free energy of annealing (from
dinucleotide pairs), common nucleotide runs (in contiguous
strings), or library diversity (among resulting chimeras).
We develop increasingly more complex dynamic program-
ming algorithms to optimize these objectives.

Common nucleotide optimization
In this most basic optimization for DNA shuffling, the
goal is to maximize the number of identical nucleotides
at common positions:

ont =
3n∑
i=1

I{d1[i] = d2[i]} (1)

where I is the indicator function (1 for true, 0 for
false).
With no substitutions allowed, each residue position is

independent of each other one. Thus we simply select
for each position a pair of codons (one for each parent)
with a maximal number of common nucleotides. When
substitutions are allowed, we need to allocate them for
optimal impact. While several approaches are possible,
we develop here one based on dynamic programming,
to serve as the basis for the more complex objective
functions we pursue in subsequent subsections.
In our dynamic programming matrix, one dimension

represents an aligned residue position (i.e., we have opti-
mized the sequences up to that point), and the other
represents a number of substitutions (i.e., we have made
that many thus far). Let N[i, s] denote the number of
common nucleotides within the first i residues, using
exactly s substitutions. The value of N[i, s] extends the
value of N[i - 1, s - (t1 + t2)] with the additional number
of common nucleotides obtained by selecting a pair of
codons for position i while making t1 + t2 additional
substitutions (0 or 1 for each parent). Optimal substruc-
ture holds, since the optimal value of N[i, s] depends on
the optimal value of N[i - 1, s - (t1 + t2)]. The recur-
rence is

N [0, 0] = 0 (2)

N [0, s] = −∞ s > 0 (3)

N [i, s] = max
(c1,t1)∈C1[i],
(c2,t2)∈C2[i]:

t1 +t2≤s

(N [i − 1, s − (t1 + t2)] + g(c1, c2)) i > 0, s > 0
(4)

Figure 2 Schematic overview of CODNS. Here our method CODNS is applied to choose codons in a portion of two parental genes so as to
produce a 9 nt “run” of common nucleotides, likely to be sufficient for a cross-over between complementary strands. To achieve the run, we
use a combination of silent DNA substitutions (underlined) as well as a conservative amino acid substitution (boxed). The implications of these
choices can be global; e.g., TTC for F and CTC for L would end the current run at 7 nt, but provide the first 2 nt of a new one. Our dynamic
programming algorithm finds the globally optimal solution.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 3 of 14

where g gives the number (0-3) of common nucleo-
tides for a pair of codons.
After filling in the dynamic programming table, we

trace back from N[n, m] to generate an optimal pair of
DNA sequences. The matrix is of size n * m and each
cell takes constant time to compute.

�G◦
nn optimization

While it is hard to directly model the process of DNA
shuffling [21-23], it is driven by the change in free
energy upon annealing of the different parental nucleo-
tide strands (coding of one with non-coding of the
other; see Figure 1). We want to minimize the free
energy change, so that it is favorable to cross over.
Since the free energy change is very hard to compute, a
common approach is to approximate it by decomposing
the free energy into the sum of contributions from pairs
of dinucleotides, the nearest-neighbor approximation
[24]:

onn =
3n−1∑
i=1

�G◦
nn(d1[i] · d1[i + 1], d2[i] · d2[i + 1]) (5)

where�G◦
nn(d1[i] · d1[i + 1], d2[i] · d2[i + 1]) is the free

energy change associated with annealing dinucleotide d1
[i]·d1[i + 1] with dinucleotide d2[i]·d2[i + 1]. These values
can be computed from enthalpic ΔH (kcal/mol) and
entropic ΔS (cal/mol·K) nearest-neighbor parameters
compiled at 37°C and [Na+] = 1.0 M [24], including both
pairs of complementary strands. To actually estimate the
change in free energy, there are additional constant
terms such as the average initiation energy contribution;
we omit them as they do not affect the optimization.
While the underlying �G◦

nn parameters are defined on
pairs of dinucleotides, we abuse notation a bit in our for-
mulation below and use �G◦

nn for 4-mers to mean the
sum over the constituent dinucleotides.
We now develop a dynamic programming formulation

to optimize this objective more efficiently (in polynomial
time) than the integer linear programming of eCodo-
nOpt [17], while still ensuring global optimality. In
order to compute the �G◦

nn contributions from a
selected codon, we must also know the final nucleotide
of the previous codon, as it forms a dinucleotide with
the first nucleotide of the current codon. Thus we
extend the common nucleotide dynamic programming
table to keep track of this information. Figure 3 (left)
illustrates the dependency; the recurrence is

A [0, 0, b1, b2] = 0 (6)

A [0, s, b1, b2] = ∞ s > 0 (7)

A [i, s, b1, b2] = min
(c1,t1)∈C1[i],
(c2,t2)∈C2[i]:
b1=c1[3],b2=c2[3],

t1+t2≤s

min
b′

1, b′
2

(A [i−1, s−(t1+t2), b′
1, b′

2]+�G◦
nn(b′

1·c1, b′
2·c2)) i > 0, s > 0

(8)

where b·c indicates the concatenation of base b onto
codon c, and �G◦

nn estimates the change in free energy,
as described in the text. Cell A[i, s, b1, b2] holds the
best score for the first i positions, using exactly s substi-
tutions, with third nucleotides b1 (first parent) and b2
(second parent) for position i. As with common nucleo-
tide optimization, if a codon pair makes t1 + t2 substitu-
tions at position i, then A[i, s, b1, b2] extends the
solution to a cell for position i - 1 with s - (t1 + t2) sub-
stitutions, considering any of the third nucleotides b′

1
and b′

2 at position i - 1.
The table is of size n × m × 52 for 2 parents, since

there are only (4 + 1)2 combinations of single nucleotide
pairs for two parents (four nucleotides and a gap each).
Each cell can be computed in constant time. In practice,
we construct a 2D table (over i and s), with each cell
maintaining a list of scores for the (b1, b2) pairs that
actually occur.

Run optimization
Moore and Maranas argued that the nearest-neighbor
approximation to change in annealing free energy is a bet-
ter objective for shuffling optimization than the number of
common nucleotides [17]. Intuitively, since the nearest-
neighbor approximation considers adjacent nucleotides
together rather than treating them independently, it is
more likely to yield sufficient complementarity between
fragments and thereby promote recombination. Here we
go even further and explicitly optimize for contiguous
complementary regions, since annealing is driven by suffi-
ciently long (anecdotally 6 nt or more) such regions.
We define a common nucleotide run as a maximal-

length substring appearing at aligned positions in the
DNA sequences d1 and d2, and use as our objective
function:

orun =
∑
R

f (|R|) (9)

where f, which must be non-decreasing, indicates the
value for DNA shuffling of a run of length |R|, and the
sum is taken over all runs. We have implemented and
tested several different scoring functions; the results use
the following two functions:

f1(r) =
{

0 r < θ

r r ≥ θ
(10)

f2(r) =

⎧⎨
⎩

0 r < 6
9/4 ∗ (r − 5) 5 ≤ r < 9
r r ≥ 9

(11)

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 4 of 14

In f1, we count the total number of nucleotides in a
run, but only if the run exceeds a given length (we
empirically evaluated several thresholds). This assumes
that cross-overs are impossible for runs with fewer than
θ common nucleotides, and become increasingly likely
with additional nucleotides beyond θ. In f2, we consider
cross-overs impossible for fewer than 6 nucleotides and
very likely for 9 nucleotides or more (scoring the total
number of nucleotides as in f1), and we ramp up from
the impossible score of 0 at 5 nt to the likely score of 9
at 9 nt, thereby counting the partial benefit that may be
provided by runs between 6 and 9 nucleotides.
We must extend our dynamic programming table with

an additional dimension to keep track of the current run
length. Thus we have a table in which cell R[i, s, r]
holds the best score for the first i positions, using
exactly s substitutions, such that the final nucleotide in
the codons chosen for position i is the rth in a run (0 if
mismatch). Again, if we make t substitutions at position
i, then R[i, s, r] extends the solution to a cell for posi-
tion i - 1 with s - (t1 + t2) substitutions. Now we must
also account for the preceding run length; there are sev-
eral cases (Figure 3, right): the codons chosen for the
current amino acid position may continue a run from
the previous position, may end that run, and may start a
new run. In any case, the current r and possible codon
pair determines the preceding r’ at which to look, and
optimal substructure still holds. The recurrence is thus

R [0, 0, 0] = 0 (12)

R [0, s, r] = −∞ s > 0 or r > 0 (13)

R[i, s, r] = max
(c1,t1)∈C1[i],
(c2,t2)∈C2[i]:

t1+t2≤s

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R[i − 1, s − (t1 + t2), r − 3] + f (r) − f (r − 3) c1 = c2, r ≥ 3
max

r′

(
R[i − 1, s − (t1 + t2), r′]

+f (r′ + a(c1, c2)) − f (r′) + f (r)
)

r = z(c1, c2) < 3
−∞ otherwise

i > 0 (14)

where a(c1, c2) and z(c1, c2) give the lengths of the long-
est common prefix and suffix, respectively, of a pair of

codons. The first case handles a common codon, while
the second case handles an unequal codon pair, which
may end and/or begin a run. The score depends on that
from the related cell, with an increment in f(·) accounting
for any extension in run length and initiation of a new
run. (See again Figure 3, right.) When there is a tie, we
prefer the codon pair with the most common nucleo-
tides, even if that has no impact on run score. This
choice increases overall sequence identity, to promote
better annealing of strands from different parents.
The matrix is of size n * m * (3n + 1), since the run

length potentially ranges from 0 to the entire DNA
sequence length (3n). However, in practical cases, most
run lengths are not attainable. Furthermore, for r1 < r2,
if R[i, s, r1] + f(r2) - f(r1) < R[i, s, r2], then the r2 cell
“dominates” the r1 one–the r1 one cannot be part of the
optimal solution. Thus we modify the usual dynamic
programming algorithm slightly, to avoid filling in cells
with unattainable or dominated run lengths. We per-
form the standard nested loop over i (residue position)
and s (number of substitutions). Then for each i and s
we determine which run lengths are attainable and
undominated and fill in only those entries. Rather than
keeping a 3D table, we keep a 2D table in which each
cell has a list of run lengths and their scores. Note from
the structure of Eq. 14 that we can determine the run
lengths for i, s from the possible codons at i and the
run lengths that were attained and undominated for i -
1 and s, s - 1, and s - 2 (depending on the numbers of
substitutions required for the codons).

Diversity optimization
We have previously developed methods for optimizing
the diversity of libraries of chimeras produced by site-
directed recombination [13,14]. We showed that the
total number of mutations in a library is a constant
determined only by the parents, but that by assessing
the squared-differences in the numbers, we can optimize

Figure 3 Examples of dynamic programming recurrences. The top part of each example shows relationships in the table and the bottom part
the score differences. (left)�G◦

nn optimization, a nearest-neighbor approximation to the change in free energy of annealing, summing adjacent
nucleotide pairs. We must keep track of the third nucleotides of the codons for position i - 1 in order to compute the�G◦

nn contribution. (right)
Run optimization cases: common codon; common codon after substitution; continue and end a run; continue and end one run and start a new
one; end one run and start a new one. The run score contribution is computed based on the pattern of nucleotide matches.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 5 of 14

for a relatively uniform sampling of sequence space. In
the case of two parents, we define the diversity variance
over a library as:

odiv =
1

2λ(2λ − 1)
∗

2λ−1∑
i=1

2λ∑
j=i+1

(m(Hi, Hj) − m̄)2 (15)

where l is the number of fragments, m(Hi, Hj) is the
mutation level (number of amino acid differences)
between a pair of chimeras Hi and Hj, and m is the average
of m over the library. (We drop a constant factor of 2,
which doesn’t affect the optimization.) To mitigate the
effect of neutral mutations, rather than using literal equal-
ity we measure m using one of the standard sets of amino
acid classes. The goal is to minimize the variance, seeking
to sample sequence space as uniformly as possible.
The objective function is defined in terms of the chi-

meras in the library. In the context of DNA shuffling, we
assume that a sufficiently large run of common nucleo-
tides (with respect to a threshold θ as in Eq. 10) results in
a breakpoint, and thus that the (full-length) chimeras are
well-defined as all combinations of fragments between
the breakpoints. Breakpoints resulting from smaller runs
only add to the diversity of the resulting library.
For an efficient algorithm, we must be able to com-

pute the objective function during the optimization,
without enumerating the exponential number of chi-
meras. In our previous site-directed work [13], we devel-
oped a recursive formulation relating the diversity
variance for a library to that of a sub-library with one
fewer breakpoint. That formulation took as given the
total number of breakpoints, which isn’t available in the
DNA shuffling context. However, similar algebraic
manipulations (omitted due to lack of space) yield a
related formula without requiring pre-knowledge of the
number of breakpoints.
Claim 1 The diversity variance d(l, k) of a library from

parent sequences Pa and Pb with kth breakpoint is at
residue l can be computed from the diversity variance d
(l’, k - 1) for a library with (k - 1) st breakpoint at resi-
due l’ < l by the following formula:

d(l, k) =
2k − 2
2k − 1

∗ d(l′, k − 1) + E(l, l′, k) (16)

where

E(l, l′, k) =

22(k−1)

2k(2k − 1)

(
m(Pa[1, l′], Pb[1, l′]) ∗ m(Pa[l′ + 1, l], Pb[l′ + 1, l])

+ m(Pa[l′ + 1, l], Pb[l′ + 1, l])2)

+
2k − 2
2k − 1

∗ 2 ∗ m(Pa[1, l′], Pb[1, l′])2 ∗ 22k−6

(2k−1 − 1)2

− 2 ∗ m(Pa[1, l], Pb[1, l])2 ∗ 22k−4

(2k − 1)2

and we use notation P[i, j] to indicate the substring
from position i to j, inclusive.
Based on Eq. 16, we further extend our run-length

optimization dynamic programming recurrence to opti-
mize for diversity:

D [0, 0, 0, 0, 0] = 0 (17)

D [0, s, r, l, k] = 0 s > 0 or r > 0 or l > 0 or k > 0 (18)

D[i, s, r, l, k] = min
(c1, t1) ∈ C1[i],
(c2, t2) ∈ C2[i] :

t1 + t2 ≤ s

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D[i − 1, s − (t1 + t2), r − 3, l, k]
−E(i − 1, l, k + 1) + E(i, l, k + 1)

min
r′ + a(c1, c2) ≥ θ ,

l′ < i − 1

2(k+1) − 2
2(k+1) − 1

D [i − 1, s − (t1 + t2), r′, l′, k − 1]

+E(i, i − 1, k + 1)

min
r′+a(c1,c2)<θ

D [i − 1, s − (t1 + t2), r′, l, k]
−E(i − 1, l, k + 1) + E(i, l, k + 1)

∞

c1 = c2, r ≥ 3

r = z(c1, c2) < 3, l = i − 1

r = z(c1, c2) < 3, l < i − 1
otherwise

i > 0

(19)

We add two more dimensions, to keep track of k, how
many runs of length θ we have seen (i.e., confidently
yielding breakpoints), and l, where the last one was, as
in the claim. Intuitively these two additional dimensions
are necessary since the number of breakpoints affects
the size of the library and thus the diversity variance,
and since the additional diversity induced by a run
depends on the nucleotides between the previous break-
point and the new one. Note that in Eq. 16, k is the
number of breakpoints, with the last breakpoint always
at the end of the current position l; however, in Eq. 19,
k is the number of previous runs, or k + 1 when substi-
tuted into Eq. 16. As with run optimization, our imple-
mentation avoids filling in the table for run lengths that
are unattainable (though the notion of dominated
entries does not carry over).

Codon usage
In order to promote better protein expression, we follow
the GeneDesigner protocol [25] in employing organism-
specific codon usage tables. A codon usage table for an
organism [26] encodes the frequency with which each
codon has been observed in a sequence database; differ-
ent organisms display different “preferences” [27]. In a
preprocessing step, we disallow rare codons that make
up less than 10% of the occurrences for their amino
acid. Then when computing one of the recurrences, we
use the codon usage table to resolve cases where multi-
ple possible codons give the same score (i.e., they have
the same implications for continuing, ending, and begin-
ning runs). In such cases, we selecting among the possi-
ble codons with probability according to their usage
frequency.

Results and discussion
We use three case studies to demonstrate the effective-
ness of CODNS in optimizing DNA shuffling experi-
ments. The first two case studies are a pair of
glycinamide ribonucleotide (GAR) transformylases

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 6 of 14

(previously optimized by eCodonOpt [17]) and a pair of
distantly related DNA polymerases (previously recom-
bined by SCOPE [10]). We optimize shuffling plans using
from 0 to 10 mutations under each of the objective func-
tions, abbreviated in the figures as cn (common nucleo-
tides), ΔG (nearest-neighbor approximation to change in
free energy of annealing), f1 (runs under f1 scoring), f2
(runs under f2 scoring), and dv (library diversity).
We examine particular plans optimized under different
objectives, in order to see how they differ in allocating
mutations and producing homologous runs suitable for
cross-overs. We then study the overall trends in optimiz-
ing the objectives and in producing runs. We also con-
sider the diversity of the chimeras that would result by
recombination under different run-optimal plans. Com-
parisons with what would result eCodonOpt [17] can be
made by noting that it optimizes cn and ΔG (though we
use an efficient dynamic programming algorithm to do
so). In a third case study, we evaluate the effects of wild-
type sequence identity on the optimization, using differ-
ent pairs of beta-lactamases.

GAR transformylases
The parents for our first case study are a GAR transfor-
mylase from E. coli and one from humans. Previous
work showed that DNA shuffling crossovers are extre-
mely rare without codon optimization [17]. We obtained
the (gapless) alignment from the supplementary material
of [17], and transcribed it to 201 amino acids with 82
(40.8%) in common. The wild-type DNA sequences had
47% nucleotides in common [17], with only two runs of
length 7 and no runs longer than 7 nt.
Figure 4 illustrates some optimal plans, showing runs

of length ≥ 9, a relatively confident threshold for cross-
overs (analogous observations can be made with other
thresholds, not shown to save space). In some cases,
many plans may be tied for optimal under the objective.
We extended our dynamic programming back-trace to
generate the tied solutions [28]; for common nucleo-
tides, we enumerated all, but for �G◦

nn, we stopped after
1000 were generated. The figure then shows the tied-
for-optimal plans with the most nucleotides in runs (at
a threshold of 9). All objectives yield the same run pat-
terns with 0 mutations. However, with more mutations,
run and diversity optimization methods focus their
efforts on regions that are sufficiently similar to allow
formation of runs with well-placed mutations and well-
chosen codons, while choices made by common nucleo-
tide and �G◦

nn optimization are not as productive.
Diversity optimization produces the same number of
runs as f1 optimization, but places the runs more evenly
throughout the entire sequence so that crossing over at

those sites would yield chimeras comprised of more uni-
formly-sized fragments better sampling the sequence
space spanned by the parents. ("Size” in diversity optimi-
zation refers to residues at which the parents differ, not
just the total number of amino acids [13].)
We next analyzed the overall ability of CODNS to

select codons and allocate mutations to meet the differ-
ent optimization goals. Figure 5 illustrates the objective
score trends with increasing numbers of mutations. All
of the plots are quite linear (recall that �G◦

nn is to be
minimized), demonstrating that there is sufficient free-
dom within these two parents to enable effective optimi-
zation for the objectives, and that the algorithms are
successfully exploiting the available freedom. Since the f2
metric gives “partial credit” for run lengths of 6, 7, and 8,
we break out those contributions to its score. We see
most of the optimization still focuses on full 9 nt and lar-
ger runs, which is natural given the reduced score contri-
bution for shorter runs (since they are believed to be less
productive in promoting recombination). The trends for
diversity optimization are not shown here since scores
are not directly comparable for libraries of different sizes
(resulting from different numbers of runs yielded by dif-
ferent patterns of codons and mutations).
We introduced novel run-based objective functions in

order to more directly target the sufficient stretches of
parental homology required for annealing, only indirectly
optimized by the objectives of common nucleotides and
�G◦

nn employed by eCodonOpt. To assess the impact of
this more direct objective functions, we determined the
number of runs produced by plans under the different
objectives. We varied the threshold to consider a homo-
logous region as a “run” from 7 (lower confidence) to 12
(higher confidence). As discussed above, among the plans
tied for optimal for a particular objective, we sought the
one with the best run score. We evaluated both the num-
ber of runs and the number of nucleotides in those runs.
For the sake of space, Figure 6 presents only the results
for a threshold of 9; the trends at the other thresholds
are very similar. We see that, as mutations are intro-
duced, optimizing directly for runs is indeed much more
effective at producing runs than either of the “proxies” of
common nucleotides or �G◦

nn. We do not show trends
for f2, as it also optimizes for “partial credit” runs (of
lengths 6, 7, and 8).
The final question regards diversity–how much control

we can exert over the level of diversity we introduce
(how different the resulting chimeras in a plan are from
the parents and from each other). Here we deem a 9 nt
run as sufficient for a breakpoint, and evaluate the ability
of CODNS to minimize our library diversity variance
objective (Eq. 15) while maximizing the number of runs.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 7 of 14

Figure 7 illustrates some plans with the same (optimal)
number of runs but different library diversity scores. As
discussed above, mutations in diversity-optimal plans are
optimally allocated so as to create runs more evenly dis-
tributed throughout the entire sequence (counting posi-
tions with different amino acids in the parents).
However, plans with larger diversity variance scores place
runs closer together and leave the C-terminal portion
without any runs, thereby generating no diversity there

(the final 100+ residues will be from one parent or the
other, rather than a hybrid).

DNA polymerases
Our second case study involves two distantly-related
members from the X-family of DNA polymerases: Afri-
can swine fever virus DNA polymerase X (Pol X) and
Rattus norvegicus DNA polymerase beta (Pol b). While
these two proteins share a similar fold, they have very

Figure 4 GAR transformylase detailed plans. Shown are the locations of selected mutations (vertical lines) and resulting runs of length ≥ 9
(boxes; staggered at some locations to avoid overlap), optimized under different objectives. For f2, runs are colored by length, with 6:green, 7:
black, 8:magenta, ≥ 9:blue. For 0 mutations, all methods yielded the same run pattern, so only the f2 version is shown.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 8 of 14

Figure 5 GAR transformylase scoring trends. The trends are given for each objective, from 0 to 10 mutations.

Figure 6 GAR transformylase run trends. Shown are the run trends (left: # nts in runs; right: # runs) in GAR transformylase plans employing
from 0 to 10 mutations, optimized for common nucleotides (red), �G◦

nn (blue), and runs under f1 score (magenta).

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 9 of 14

low sequence identity. The site-directed SCOPE method
[10] was developed due to the difficulty in producing
viable Pol X – Pol b chimeras by other methods. We
obtained the published structure-based sequence

alignment of the two parents, in which the full Pol X
and the palm and finger domains of Pol b were aligned
to a length of 214 residues and gaps, with only 32 resi-
dues (15%) in common. The wild-type DNA sequences

Figure 7 GAR transformylase plans of different levels of diversity. The plans are shown as in Figure 4, with different levels of diversity
variance (noted on the left; smaller is better; the bottom one has the optimal score) but the same optimal number of runs (at θ = 9).

Figure 8 DNA polymerase detailed plans. The plans for the DNA polymerases are shown as in Figure 4.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 10 of 14

had only 158/642 (24%) nucleotides in common, with no
common nucleotide runs of length greater than 5. Thus
standard DNA shuffling techniques are unlikely to pro-
duce any cross-overs.
We optimized these parents under each of our objec-

tive functions, using from 0 to 10 mutations. Figure 8
illustrates an optimal plan for each objective with 0, 4,
or 8 mutations, showing runs of length ≥ 9. These parti-
cular parents are so diverse that only a few such runs
can be produced by codon selection alone (no muta-
tions). We do see, however, that the run-optimization
methods form one more run (positions 148-157) than
do the common nucleotide and �G◦

nn methods, and f2
forms some potentially productive shorter runs. The
difference increases with more mutations, as run

optimization directly allocates them so as to produce
more runs, while, due to the parental diversity, the
indirect choices made to optimize common nucleotides
and �G◦

nn are unlikely to lead to runs. With less free-
dom, it is harder to optimize diversity. We do see that
while the f1 plan is diversity-optimal for 0 and 4 muta-
tions, it is not for 8 mutations, and the diversity-optimal
plan spreads mutations out more. We also observe that
the N-terminal region is so diverse that no run is pro-
duced there even with 8 mutations. Diversity optimiza-
tion thus tends to create runs that are more evenly
distributed in the large C-terminal region.
Figure 9 illustrates the effectiveness of allocated

codons and mutations in terms of the optimizing the
different objectives. We again see linear trends for the

Figure 9 DNA polymerase scoring trends. The scoring trends for the DNA polymerases are shown as in Figure 5.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 11 of 14

four objectives (as discussed with GAR transformylases,
diversity is not directly comparable over different library
sizes). Thus even with these two extremely diverse par-
ents, it is possible to select mutations according to a
specified objective, and our algorithm does so.
Figure 10 illustrates how well the different objectives

do at producing runs, and how many nucleotides com-
prise those runs. For the sake of space (and as with GAR
transformylases), we only illustrate under a 9 nt threshold
for a homologous region to count as a run, but we found
exactly the same trends with other thresholds from 7 to
12. Once again, explicitly optimizing for runs proves to
be much more effective at producing runs (and more
nucleotides in them) than does indirectly optimizing for
runs by overall nucleotide identity or the nearest-neigh-
bor approximation to change in free energy of annealing.
With these diverse parents, the indirect objectives do not
happen to produce many runs or nucleotides in runs; in
fact, they produce almost no runs of longer lengths (e.g.,
12, not shown), even with 10 mutations.
Even with such diverse parents, there is sufficient free-

dom in the codon and mutation choices that different
run-optimal plans yield different levels of chimera diver-
sity. Figure 11 illustrates some such plans, at two muta-
tion levels. The three plans at the same mutation level
have the same number of runs but increasing diversity
(and increasingly more even distributions of run) from
top to bottom.

Beta-lactamases
Our third case study examines the effect of wild-type
sequence identity. Beta-lactamases, which hydrolyze the
beta-lactam found in certain antibiotics (e.g., penicillin),
have been the object of much chimeragenesis work,
including DNA shuffling [1] and site-directed methods
[11]. We previously developed a multiple sequence

alignment (272 residues and gaps) of diverse beta-lacta-
mases [15]. For the present study, we considered (a) the
common beta-lactamase targets TEM-1 (E. coli) and
PSE-4 (Pseudomonas aeruginosa) (42% amino acid iden-
tity); (b) the even more diverse pair from P. aeruginosa
and Bacillus licheniformis (26% id); (c) the more similar
pair from E. coli and Proteus mirabilis (47% id).
Optimizing the wild-type amino acid sequences for

common nucleotides yields DNA identity of (a) 70%, (b)
61%, and (c) 73%. These numbers are somewhat border-
line for standard DNA shuffling. They do result in some
runs, though generally fewer than when directly optimiz-
ing for runs, a trend that widens with more mutations.
Optimizing for runs yields the same behavior as observed
for the previous two cases; due to lack of space, we only
present the free energy score and the number of nucleo-
tides in runs under the f1 metric (Figure 12). We again see
the linear tread for both objectives with increasing muta-
tions from 0 to 10. The actual energy score and run score
both depend on parental sequence identity, with the same
ranking on both metrics.

Conclusion
DNA shuffling is a staple of protein engineering, and we
have demonstrated that our new algorithms can sub-
stantially improve the expected productivity of an
experiment. Even without performing any mutations, we
are able to allocate codons to better form runs. By per-
forming a small number of conservative substitutions,
not expected to significantly affect stability or activity,
we generally are able to increase the number of runs
and the number of nucleotides in runs, linearly with the
number of substitutions. Finally, since we are establish-
ing runs whose lengths are sufficient to promote regular
recombination, we can enhance our optimization to
account for properties of the resulting chimeric library.

Figure 10 DNA polymerase run trends. The run trends for the DNA polymerases are shown as in Figure 6.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 12 of 14

Future directions include extending run optimization to
incorporate the type of potential underlying �G◦

nn (i.e.,
accounting for differences in nucleotide content), to
optimize multiple parents simultaneously, and to inte-
grate CODNS within our Pareto-optimization frame-
work [29] in order to optimize productivity of shuffling
in concert with other properties. While both extensions
will increase the computational expense, the resulting
gain in experimental efficiency could be well worth it. In
summary, our methods yield a new approach to DNA

shuffling that supports substantially more diverse par-
ents, is more deterministic, and generates more predict-
able and more diverse chimeric libraries.

Acknowledgements
This work is supported in part by US NSF grant IIS-1017231.

Author details
1Dept of Computer Science, Dartmouth College, 6211 Sudikoff Laboratory,
Hanover, NH 03755, USA. 2Dept of Biological Sciences, Markey Center for

Figure 11 DNA polymerase plans with different diversity values. The plans for DNA polymerases with different diversity values (as in Figure
7).

Figure 12 Beta-lactamase objective function trends. Shown are the objective function trends (left: �G◦
nn; right: f1 at θ = 9) for beta-

lactamase plans with 0 to 10 mutations, for pairs of beta-lactamase parents from (red) E. coli and P. aeruginosa, (blue) P. aeruginosa and B.
licheniformis, and (magenta) E. coli and P. mirabilis.

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 13 of 14

Structural Biology, Purdue Cancer Center, and Bindley Bioscience Center,
Purdue University, West Lafayette, IN 47907, USA.

Authors’ contributions
LH, AMF, and CBK developed the approach; LH, and CBK designed the
algorithms, LH implemented the algorithms and collected the results; LH,
AMF, and CBK analyzed the results and wrote the paper. All authors read
and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 21 March 2012

References
1. Stemmer WPC: Rapid evolution of a protein in vitro by DNA shuffling.

Nature 1994, 370:389-391.
2. Stemmer WPC: DNA shuffling by random fragmentation and reassembly:

in vitro recombination for molecular evolution. Proc Natl Acad Sci USA
1994, 91:10747-10751.

3. Littlehales C: Profile: Willem ‘Pim’ Stemmer. Nat Biotechnol 2009, 27:220.
4. Crameri A, Raillard SA, Bermudez E, Stemmer W: DNA shuffling of a family

of genes from diverse species accelerates directed evolution. Nature
1998, 391:288-291.

5. Chang C, Chen T, Cox B, Dawes G, Stemmer W, Punnonen J, Patten P:
Evolution of a cytokine using DNA family shuffling. Nat Biotechnol 1999,
17:793-797.

6. Ness J, Welch M, Giver L, Bueno M, Cherry J, Borchert T, Stemmer W,
Minshull J: DNA shuffling of subgenomic sequences of subtilisin. Nat
Biotechnol 1999, 17:893-896.

7. Christians F, Scapozza L, Crameri A, Folkers G, Stemmer W: Directed
evolution of a thymidine kinase for AZT phophorylation using DNA
family shuffling. Nat Biotechnol 1999, 17:259-264.

8. Ostermeier M, Shim JH, Benkovic SJ: A combinatorial approach to hybrid
enzymes independent of DNA homology. Nat Biotechnol 1999,
17:1205-1209.

9. Sieber V, Martinez CA, Arnold FH: Libraries of hybrid proteins from
distantly related sequences. Nat Biotechnol 2001, 19:456-460.

10. O’Maille PE, Bakhtina M, Tsai MD: Structure-based combinatorial protein
engineering (SCOPE). J Mol Biol 2002, 321:677-691.

11. Meyer MM, Silberg JJ, Voigt CA, Endelman JB, Mayo SL, Wang ZG,
Arnold FH: Library analysis of SCHEMA-guided protein recombination.
Protein Sci 2003, 12:1686-1693.

12. Ye X, Friedman A, Bailey-Kellogg C: Hypergraph model of multi-residue
interactions in proteins: sequentially-constrained partitioning algorithms
for optimization of site-directed protein recombination. J Comput Biol
2007, 14:777-790, Conference version: Proc. RECOMB, 2006, pp. 15-29.

13. Zheng W, Ye X, Friedman AM, Bailey-Kellogg C: Algorithms for selecting
breakpoint locations to optimize diversity in protein engineering by site-
directed protein recombination. Comput Syst Bioinformatics Conf 2007,
6:31-40.

14. Zheng W, Friedman AM, Bailey-Kellogg C: Algorithms for joint
optimization of stability and diversity planning combinatorial libraries of
chimeric proteins. J Comput Biol 2009, 16:1151-1168, Conference version:
Proc. RECOMB, 2008, pp. 300-314.

15. Saftalov L, Smith P, Friedman A, Bailey-Kellogg C: Site-directed
combinatorial construction of chimaeric genes: general method for
optimizing assembly of gene fragments. Proteins 2006, 64(3):629-642.

16. Avramova L, Desai J, Weaver S, Friedman A, Bailey-Kellogg C: Robotic
hierarchical mixing for the production of combinatorial libraries of
proteins and small molecules. J Comb Chem 2008, 10:63-68.

17. Moore G, Maranas C: eCodonOpt: a systematic computational framework
for optimizing codon usage in directed evolution experiments. Nucleic
Acids Res 2002, 30:2407-2416.

18. Henikoff S, Henikoff JG: Amino acid substitutions from protein blocks.
Proc Natl Acad Sci USA 1992, 89:10915-10919.

19. Durbin R, Eddy S, Krogh A, Mitchison G: Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids Cambridge University Press;
1998.

20. Guerois R, Nielsen JE, Serrano L: Predicting changes in the stability of
proteins and protein complexes: a study of more than 1000 mutations.
J Mol Biol 2002, 320:369-387.

21. Sun F: Modeling DNA shuffling. J Comput Biol 1999, 6:77-90.
22. Moore GL, Maranas CD, Lutz S, Benkovic SJ: Predicting crossover

generation in DNA shuffling. Proc Natl Acad Sci USA 2001, 98:3226-3231.
23. Maheshri N, Schaffer D: Computational and experimental analysis of DNA

shuffling. Proc Natl Acad Sci USA 2003, 100:3071-3076.
24. SantaLucia J Jr: A unified view of polymer, dumbbell, and

oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad
Sci USA 1998, 95:1460-1465.

25. Villalobos A, Ness J, Gustafsson C, Minshull J, Govindarajan S: Gene
Designer: a synthetic biology tool for constructing artificial DNA
segments. BMC Bioinformatics 2006, 7:285.

26. Nakamura Y, Gojobori T, Ikemura T: Codon usage tabulated from the
international DNA sequence databases: status for the year 2000. Nucleic
Acids Res 2000, 28:292[http://www.kazusa.or.jp/codon/].

27. Guoy M, Gautier C: Codon usage in bacteria: correlation with gene
expressivity. Nucleic Acids Res 1982, 10:7055-7074.

28. Waterman MS, Byers TH: A dynamic programming algorithm to find all
solutions in a neighborhood of the optimum. Math Biosci 1985,
77:179-188.

29. He L, Friedman AM, Bailey-Kellogg C: A divide and conquer approach to
determine the Pareto frontier for optimization of protein engineering
experiments. Proteins 2012, 80(3):790-806.

30. Joern J: DNA shuffling. Directed Evolution Library Creation: Methods and
Protocols Humana Press; 2003, 85-89.

doi:10.1186/1471-2105-13-S3-S3
Cite this article as: He et al.: Algorithms for optimizing cross-overs in
DNA shuffling. BMC Bioinformatics 2012 13(Suppl 3):S3.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

He et al. BMC Bioinformatics 2012, 13(Suppl 3):S3
http://www.biomedcentral.com/1471-2105/13/S3/S3

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/8047147?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7938023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7938023?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19270662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9440693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9440693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10429246?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10471932?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10096293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10096293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10096293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10585719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10585719?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11329016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11329016?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12206782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12206782?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12876318?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691894?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17951810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17951810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17951810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19645597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19645597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19645597?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16783818?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18072752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18072752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18072752?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12034828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12034828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1438297?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12079393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12079393?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10223666?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11248060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11248060?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12626764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12626764?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9465037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9465037?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16756672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592250?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592250?dopt=Abstract
http://www.kazusa.or.jp/codon/
http://www.ncbi.nlm.nih.gov/pubmed/6760125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/6760125?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180081?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22180081?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Common nucleotide optimization
	ΔGnn∘ optimization
	Run optimization
	Diversity optimization
	Codon usage

	Results and discussion
	GAR transformylases
	DNA polymerases
	Beta-lactamases

	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 500
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

