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Aging and obesity are two conditions characterized by chronic, low-grade inflammation.
While both conditions are also associated with dysfunctional immune responses, the
shared and distinct underlying mechanisms are just starting to be uncovered. In fact,
recent findings have suggested that the effects of obesity on the immune system can be
thought of as a state of accelerated aging. Here we propose that chronic, low-grade
inflammation seen in obesity and aging is complex, affects multiple cell types, and results in
an altered basal immune state. In aging, part of this altered state is the emergence of
regulatory immune populations that lead to further immune dysfunction in an attempt to
reduce chronic inflammation. While in obesity, part of the altered state is the effect of
expanding adipose tissue on immune cell function. Thus, in this review, we compare, and
contrast altered immune states in aging and obesity and discuss their potential
contribution to a shared clinical problem- decreased vaccine responsiveness.
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INTRODUCTION

First described in 2000, both chronic, low-grade inflammation, known as “inflammaging,” and age-
related changes in the immune system, known as immunosenescence, are now recognized as
hallmarks of the defective aging immune system (Franceschi et al., 2000a; Franceschi et al., 2000b).
Inflammaging and immunosenescence create a balancing act that the aging immune system must
contend with. These states are associated with increased rates of frailty, cardiovascular disease,
Alzheimer’s disease, and susceptibility to infection (Giunta et al., 2008; North and Sinclair, 2012;
Monti et al., 2017; Leonardi et al., 2018). Likely as a counter-response to low-grade chronic
inflammation, we and others have recently demonstrated that aging also promotes the
accumulation of anti-inflammatory cells and molecules, which in turn shape the landscape
around age-related immune suppression (Sharma et al., 2006; Almanan et al., 2020).

Chronic inflammation is also a hallmark of obesity. Obesity-associated chronic inflammation is
pathophysiologically linked to a variety of adverse sequelae, including metabolic syndrome, type II
diabetes (T2D), dyslipidemia, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease,
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Alzheimer’s disease, and diverse cancers (Calle et al., 2003;
Weisberg et al., 2003; Strissel et al., 2007; Schenk et al., 2008).
Like in aging, extensive characterization of the immune system in
obesity has also revealed alteration of anti-inflammatory
mechanisms (Pirola and Ferraz, 2017; Liu and Nikolajczyk,
2019), likely in response to obesity-driven low-grade chronic
inflammation.

The immune system in obesity has been posited to display an
“immunosenescence” phenotype, similar to that seen in aging
(Shirakawa et al., 2016; Salvestrini et al., 2019), where cells
become more broadly inflammatory even though their cell-
specific functionality is altered. Nonetheless, parallels between
the elevated basal rate of inflammation in aged and obesity-
related inflammation remain insufficiently explored. It can be
posited that the immune cells in aging and obesity become more
inflammatory as a manner of trying to compensate for their loss
of more specific and targeted functionality. Although immune
systems of aged and obese individuals are similar in their
inflammatory state, immunomodulatory responses of the
immune system are different, suggesting aging and obesity use
differing programs to quell the onslaught of inflammatory
mediators. Though the pro- and anti-inflammatory responses

differ somewhat in aging and obesity, they lead to similar
outcomes inclusive of immune system dysfunction.

Notably, the mechanistic similarities and differences between
the two chronic inflammatory states remain poorly understood,
especially when the two conditions co-exist. In this review, we
evaluate and compare inflammatory states of cells and mediators
that compromise the aging and obese immune system. For
simplicity, we describe their role in obesity and aging as either
pro- or anti-inflammatory (Figure 1), although in reality
inflammation exists on a sliding scale where each cell or
mediator can have either pro- or anti-inflammatory roles
given the right context. Finally, we compare the impact of
altered immune states in both aging and obesity, utilizing
decreased vaccine responsiveness as an exemplar. Furthermore,
the underlying immune mechanisms linked to immune
dysfunction in aging and obesity are likely to impact many
other diseases associated with aging and/or obesity.

Aging-Associated Chronic Inflammation
Inflammaging is the chronic low-grade inflammation associated
with aging (Franceschi et al., 2000b). Multiple age-associated
diseases including cardiovascular diseases, neurodegenerative

FIGURE 1 | Effects of aging and obesity on immune system. (A) Chronic inflammation and immunosuppression are a dynamic process in aging and obesity. (B)
Cellular dysregulated adipocytes, innate/adaptive immune cells, and pro- and anti-inflammatory mediators in aged or obese individuals lead to global immune cell
dysfunction. (C) Immunological dysfunction contributes to impaired vaccine responses in age and obesity.
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diseases, and various cancers are largely driven by this chronic
inflammation (Giunta et al., 2008; North and Sinclair, 2012;
Monti et al., 2017; Leonardi et al., 2018). Key inflammatory
markers (e.g., Interleukin-6 [IL-6]) are elevated in aged
humans and mice and contribute to inflammaging (Wei et al.,
1992; Giuliani et al., 2001; Raynor et al., 2015). There are multiple
theories surrounding the underlying mechanism and cellular
source of increase inflammaging-associated inflammatory
mediators. Senescent cells, obesity, increased gut permeability,
changes to microbiota, inflammasome activation, oxidative stress
caused, and chronic infections are likely major contributors. For
instance, upon continual cellular stress (e.g., persistent DNA
damage signaling, accumulation of reactive oxygen species
[ROS], failure to remove defective cellular components) cells
can exhibit senescence associated secretory phenotype (SASP),
characterized by cellular growth arrest and a pro-inflammatory
secretory phenotype (van Deursen, 2014). Senescent cells secrete
many inflammatory mediators (e.g., IL-6, Interleukin-1 [IL-1]
and colony stimulating factor [CSF]) (Garfinkel et al., 1994;
Coppé et al., 2008), thus their accumulation might be directly
responsible for systemic increases in inflammatory proteins with
age. In addition, stressed senescent cells produce damage-
associated molecular patterns (DAMPs) further activating
immune cells pro-inflammatory programming (Huang et al.,
2015). Moreover, persistent infections acquired throughout an
individual’s lifespan exert a constant pressure on the immune
system (Brunner et al., 2011; Minciullo et al., 2016). However,
whether the presence of persistent infections contributes to age-
related immune senescence remains under debate (Nikolich-
Žugich, 2008).

Overall, immune cell functionality declines with aging while
exhibiting a bias towards pro-inflammatory phenotypes, further
contributing to inflammaging. Aging is associated with a shift in
myeloid cells output by the bone marrow; however, these
myeloid cells are largely dysfunctional (Pang et al., 2011).
Published reports have shown that aged human monocytes
shift to a more pro-inflammatory phenotype that correlates
with increased production of IL-6, tumor necrosis factor (TNF),
and IL-1β compared to their younger counterparts (Sadeghi
et al., 1999). Also, neutrophil (Wenisch et al., 2000) and
macrophage (Linehan et al., 2014; Wong et al., 2017)
phagocytosis decreases with age, preventing bacterial
clearance and timely and efficient removal of cellular debris
in the case of injury or even normal tissue homeostasis. This
results in increased prevalence of DAMPs that further amplifies
pro-inflammatory pathways. Similarly, dendritic cell (DC)
populations are altered in aging. Aged DCs are less
phagocytic and less efficient in the cross-presentation of cell-
associated antigens and subsequently in the cross-priming of
CD8+ T cells and subsequent effector responses compared to
their younger counterparts (Nikolich-Žugich et al., 2012;
Chougnet et al., 2015). The aging T cell compartment
produces more inflammatory cytokines compared to their
younger counterparts (Fagiolo et al., 1993), and the involuted
thymus produces more autoreactive T cells, which are also
known to be more inflammatory (Coder et al., 2015).
Furthermore, circulating CD4+ T cells from aged individuals

display an increased Th17 associated cytokine profile, driven by
increased mitochondrial dysfunction and ROS production
(Bharath et al., 2020). Together these findings suggest that
dysfunction in both the innate and adaptive immune
compartments contribute to the inflammaging and immune
dysfunction in the elderly.

Obesity-Induced Chronic Inflammation
Similar to chronic inflammation in aging, the obese chronic
inflammatory state is central to the development of obesity-
associated sequelae (e.g., T2D, and NAFLD) (Whitlock et al.,
2009; Gregor and Hotamisligil, 2011). While obesity impacts
circulating immune cells in both pro- and anti-inflammatory
manners, nearly all the cellular populations present within
adipose tissue develop an inflammatory phenotype (Elgazar-
Carmon et al., 2008; Nishimura et al., 2009; Bertola et al.,
2012; Talukdar et al., 2012; Shaikh et al., 2015; Wensveen
et al., 2015; Lauterbach and Wunderlich, 2017; Russo and
Lumeng, 2018; Zhao et al., 2018). Hence, it is not surprising
that adipose tissue expansion is considered the key initiator of
inflammation in obesity. The adipose tissue-associated
inflammatory microenvironment shapes the chronic, low-grade
inflammation in obesity with both adipose tissue-resident
immune cells and inflammatory-skewed adipocytes
contributing to the overall effect (Fontana et al., 2007; Reilly
and Saltiel, 2017; Chan et al., 2020; Alarcon et al., 2021).
Changes in the adipose tissue microenvironment result in
increased volume of inflammatory cells and subsequent
secretion of inflammatory mediators (e.g., Leptin, IL-6, IL-1β)
(Skurk et al., 2007; Strissel et al., 2007; Grant and Dixit, 2015;
Wueest and Konrad, 2018). Increased levels of these inflammatory
mediators may also contribute to decreased adaptive immune
function as plasma from obese individuals is sufficient to induce
senescence in cytotoxic T cells (Parisi et al., 2017). Of note, as
adipose tissue distribution varies by race (Stults-Kolehmainen
et al., 2013), such changes could contribute to observed
differences in immune responses between obese individuals of
diverse races and ethnicities.

The impact of obesity on the innate immune compartment has
been the most studied thus far. Published reports have shown
increased total numbers of circulating monocytes, macrophages,
and neutrophils in obesity (Roberts et al., 2018; Friedrich et al.,
2019). Further, these innate immune populations are skewed
towards a pro-inflammatory state, with macrophages being
skewed towards an inflammatory phenotype and neutrophils
having elevated cytokine, reactive oxygen species, and
extracellular trap formation, contributing to elevated
circulating levels of proinflammatory cytokines (e.g., IL-6,
TNFα) (Lumeng, 2013; D’Abbondanza et al., 2019; de Heredia
et al., 2012). However, obesity doesn’t impact all immune cells
equally. Although increased numbers of DCs are observed in
obesity, the chronic inflammation leads to impaired
responsiveness of DCs to toll-like receptor (TLR) agonists
(Pizzolla et al., 2016). The obesity-driven inflammation also
negatively impacts effector function of other innate cells (e.g.,
NK cells), decreasing their total numbers and their cytotoxic
potential (O’Shea and Hogan, 2019; Viel et al., 2017).
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Intriguingly, the impact of obesity on splenic NK cells closely
resembles an aging-induced immunosenescent state (Gheorghe
et al., 2017), further supporting the concept of obesity induced
“accelerated aging” phenotype (Salvestrini et al., 2019).

Recent studies have also begun to explore obesity’s impact on
adaptive immune cell function. Obesity-driven inflammation is
also associated with decreased proliferation capability of naïve
T cells (James et al., 2012). CD4+ helper T cells are skewed
towards inflammatory subtypes, with increased Th17 and Th1
(McLaughlin et al., 2017; Moreno-Fernandez et al., 2021a) and
decreased Th2 and Treg polarization (Zhao et al., 2018). CD8+

T cells are impacted similarly to NK cells, with decreased
numbers and limited cytotoxic potential (Kado et al., 2019).
In animal models of obesity, increases in adiposity and
leukocyte infiltration that occur in the bone marrow
negatively impact B cell bone marrow precursor populations
(Adler et al., 2014). This results in B cells being skewed towards
an inflammatory phenotype (Frasca et al., 2017a). This
inflammatory skewing may lead to an increased population
of exhausted memory B cells (Frasca et al., 2016; Frasca
et al., 2017b), invoking the possibility that obesity-induced
inflammatory states further exacerbate deficiencies in
antibody responses and subsequently vaccine
unresponsiveness. Importantly, B cells accumulate in the
adipose tissue as a result of obesogenic diet (Duffaut et al.,
2009; Winer et al., 2011). However, in human subcutaneous and
visceral adipose tissue only a small fraction of B cells is observed
(McDonnell et al., 2012; García-Rubio et al., 2018). Low
frequency of B cells can likely be a consequence of low
density of fat-associated lymphoid clusters in omental and
subcutaneous human adipose tissues, which are structures
associated with B cell accumulation Notably, B cell depletion
improved insulin and glucose responses in obesity/T2D, which
correlated with decreased inflammation (DeFuria et al., 2013).
However, more work is required to mechanistically link chronic
adipose tissue inflammation driven by the adaptive immune
system to local and systemic immune cell dysfunction/
senescence in human disease.

Aging-Associated Immunological
Regulation
While aging and obesity are associated with markers of chronic
inflammation, both states also lead to altered immunological
regulation. Recent work, including findings from our group,
have shown that alongside chronic inflammation activation of
immune regulatory mechanisms and secretion of anti-
inflammatory mediators are exacerbated in aging. Aged mice
show an increase in myeloid-derived suppressor cells (MDSCs)
in the spleen and peripheral lymph nodes (Heithoff et al., 2008;
Enioutina et al., 2011). These aged MDSCs exhibit greater
capacity to suppress T cell proliferation and cytotoxic
function compared to their younger counterparts (Grizzle
et al., 2007; Enioutina et al., 2011). Additionally,
macrophages with anti-inflammatory characteristics,
including increased secretion of Interleukin-10 (IL-10) and
Transforming Growth Factor Beta (TGFβ) are more frequent

in aged bone marrow, lymph nodes, and skeletal muscle
(Jackaman et al., 2013; Wang et al., 2015).

Regarding the B cell and T cell compartment, regulatory
B cells (Bregs) have been shown to increase in aging and
conserve their suppressive function by producing similar IL-
10 levels compared to young Breg cells (Mori et al., 2016; Freitas
et al., 2019). Further, we and others have shown that, in mice
and humans, regulatory T cells (Tregs, CD4+FOXP3+)
accumulate with age (Nishioka et al., 2006; Sharma et al.,
2006; Lages et al., 2008; Raynor et al., 2012). IL-6 drives the
accumulation of Tregs suggesting this is a compensatory
pathway attempting to dampen the chronic low-grade
inflammation associated with aging (Raynor et al., 2015).
Aged Tregs can 1) suppress the activation of DCs via
decreased CD86 expression, 2) enhance suppression of
effector T cell proliferation, and 3) secrete more IL-10
compared to younger counterparts (Garg et al., 2014).
However, aged Tregs fail to suppress Th17 cells’ production
of IL-17 during autoimmune inflammation (Sun et al., 2012).
Together these data suggest that aging Treg have an altered
functional profile.

More recently, we show that IL-10 actively suppresses vaccine
responses in aged mice as neutralization of IL-10 restored
antigen-specific antibody levels to nearly those observed in
young mice (Almanan et al., 2020). In this study, the greatest
producer of IL-10 in aged mice was a novel population of T
follicular helper cells, which we called Tfh10 cells. These Tfh10
cells appear to regulate the systemic IL-6:IL-10 balance which is
crucial to healthy aging (Monti et al., 2017; Almanan et al., 2020).
Our data also showed that IL-10R blockade resulted in an
increase in antigen-specific, germinal center B cells (Almanan
et al., 2020), suggesting this accumulation of Tfh10 cells in aging
is drastically dampening B cell responses. These B cell responses
are vital for producing strong antibodies in both a vaccine and
infection setting, both of which significantly decrease with age
(Frasca and Blomberg, 2011; Simell et al., 2011; Frasca and
Blomberg, 2020). Combined, our data suggest that there is
active immune suppression in aging, reversable by
neutralization of a single cytokine, IL-10, which is sufficient to
restore antibody responses in aged mice. Another IL-10 cellular
source is T follicular regulatory (Tfr) cells, a novel CD4+ T cells
population that are FoxP3+ and Bcl6+ and express high levels of
PD-1 and CXCR5, have been shown to be critical for regulating
germinal center B cell reactions such as plasmablast formation,
affinity maturation, and class switching (Frasca et al., 2004; Frasca
et al., 2011). Tfr cells frequency was reported to be increased in
aged mice and humans (Sage et al., 2015; Lefebvre et al., 2016a).
Although, at the cellular level Tfr cells were found to display
impaired suppressive function due to their age-related decrease in
IL-10 production (Lefebvre et al., 2016a; Ito et al., 2019), their
suppressive function in aging is associated with expansion.
Indeed, we recently reported increased serum IL-10 levels in
aged mice (Almanan et al., 2020).

Although inflammaging is well characterized, there is evidence
that both pro- and anti-inflammatory immune programs are
present in aging, thus a more detailed investigation of how the
anti-inflammatory arm of the immune system is regulated in
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aging and how it interacts with age-associated chronic
inflammation is needed. Logically, the overabundance of pro-
inflammatory mediators that overwhelm an aged individual is
bound to elicit a “brake” response, by upregulating anti-
inflammatory cells and mediators. Thus, an improved
understanding of the interplay of pro- and anti-inflammatory
immune programs in aging may provide important insights into
overall immune function and potential revitalization in aging.

Obesity Induced Alteration in
Anti-inflammatory Mediators
Obesity is also associated with alterations in multiple types of
immunoregulatory cells and mediators, including Tregs, Bregs,
MDSC, anti-inflammatory macrophages and IL-10. While such
immune changes plausibly contribute to the persistent low-grade
immune activation associated with the obesogenic state, how such
changes are modified in elderly obese and the contribution of
their effects on metabolic disease remains unclear.

Treg frequency declines in the peripheral blood in obese
humans (Cortez-Espinosa et al., 2015; Yuan et al., 2018) and
in the adipose tissue (Wu et al., 2019; Smith et al., 2020).
Furthermore, metabolic decline in individuals newly diagnosed
with obesity-driven T2D is associated with reduced circulating
Treg frequencies (Yuan et al., 2018). In animal models of obesity
driven metabolic disease, in homeostatic condition (lean state),
Treg cell numbers are expanded in adipose tissue compared to the
obesogenic state, where Treg frequency decreased (Feuerer et al.,
2009; Bapat et al., 2015). Treg cells play a protective role in insulin
sensitivity and energy homeostasis in obesity (Ilan et al., 2010).
Increased adipose inflammation was observed in Treg-depleted
mice and altered glucose metabolism was ameliorated in obese
mice after adoptive transfer of Treg cells (Feuerer et al., 2009; Eller
et al., 2011). As Treg frequency differs in a gender dependent
manner (Ishikawa et al., 2020; Vasanthakumar et al., 2020), the
impact of obesity on Treg homeostasis may differ between
genders. Of note, female mice display lower visceral adipose
tissue Treg frequency than male mice (Vasanthakumar et al.,
2020). This was associated with estrogen levels, as visceral adipose
tissue Tregs frequencies increases in estrogen receptor alpha-
depleted or testosterone-treated female mice (Vasanthakumar
et al., 2020). Treg accrual is also reduced in adipose tissue in obese
male mice compared to lean animals (Feuerer et al., 2009;
Ishikawa et al., 2020). In contrast, obesogenic diet feeding
promoted adipose tissue Treg expansion in female mice
(Ishikawa et al., 2020), which was associated with limited
induction of metabolic diseases (Moreno-Fernandez et al.,
2021b). Thus, change in female sex hormones during aging
may be implicated in altered adiposity and Treg frequency in
the context of increase adiposity during aging. Further, the above
mentioned hormonal effect on the immune system may explain
lower propensity of females to age-relatedmetabolic alterations in
the elderly.

In addition to altered Treg homeostasis, Treg function is
impacted in obesity. Numbers of Tregs expressing CD39, an
immunomodulatory ecto-5′- nucleotidases, decline in obese
individuals who have T2D (Cortez-Espinosa et al., 2015).

Importantly, high levels of expression of PD1 and T cell
immunoreceptor with Ig and ITIM domains (TIGIT) is
observed on Tregs as well as other CD4+ T cells in the
adipose tissue of obese humans and mice (Smith et al., 2020;
Porsche et al., 2021). However, the role of PD1 pathway is not
clear, since PD1 blockade did not affect T cell function and
metabolic alteration in obese mice (Porsche et al., 2021). These
data suggest that although T cells PD1 is increased additional
mechanisms may contribute to T cell exhaustion in obesity.

Increased insulin levels in obesity, a consequence of insulin
resistance, may play an important role in shaping Tregs function.
Treg sensing of insulin is important as deletion of the insulin
receptor in Tregs improved glucose tolerance and insulin
sensitivity and increased numbers of IL-10 producing Tregs in
adipose tissue of obese animals (Wu et al., 2020). Additionally,
insulin administration decreased IL-10-expressing Tregs and
diminished Treg capacity to suppress macrophage function
(Han et al., 2014). Similarly, levels of leptin, an adipokine,
remain high during obesity as a consequence of leptin
resistance. Leptin can skew the T cell balance towards an
inflammatory state favoring Th17 cell differentiation (Reis
et al., 2015) at the expense of Tregs. Hence, circulating leptin
levels inversely correlate with circulating Tregs frequency
(Wagner et al., 2013). In contrast, levels of adiponectin,
another adipokine, are decreased in the obese state (Musovic
and Olofsson, 2019). Adiponectin has anti-inflammatory
properties that limit production of reactive oxygen species and
Th1 cell polarization (Robinson et al., 2011). Combined, these
data suggest that increased insulin and leptin in conjunction with
decreased adiponectin in the context of obesity likely shifts the
balance towards a more pathogenic/pro-inflammatory
environment. These responses may influence Treg
differentiation and further promote the accrual of
inflammatory T cells.

Bregs are also impacted by obesity. Bregs, a subpopulation of
B cells characterized by IL-10 production, play a critical role in
the differentiation and maintenance of Tregs and in the
suppression of T cell responses (Mizoguchi et al., 2000). Obese
individuals have a decreased circulating Breg frequency (García-
Hernández et al., 2018). In animal models, Breg numbers are
decreased in the adipose tissue of obese animals compared to lean
controls. Bregs restrict adipose tissue inflammation and insulin
resistance in obese mice in an IL-10 dependent manner
(Nishimura et al., 2013). Adoptive transfer of adipose tissue
Bregs ameliorated those effects and maintained metabolic
homeostasis in the lean adipose tissue (Nishimura et al., 2013).
Additionally, CD40 or BCR stimulation of purified B cells from
obese/T2D subjects led to decreased IL-10 production (Zhai et al.,
2016). These data suggest that the impaired ability to secrete IL-
10 and TGFβ by B cells in obese and T2D individuals could be
linked to decreased Breg numbers and function in obesity and
increased overall inflammation. Of note, reduced serum IL-10
levels are observed in patients with obesity-driven T2D (Yuan
et al., 2018). IL-10 is a protective factor against diet-induced
insulin resistance in the liver and in skeletal muscle as it
attenuates macrophage cytokine secretion (Hong et al., 2009).
Thus it would be important to determine whether increased IL-10
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levels in aging, may play a beneficial role in the context of obesity-
driven metabolic disease by ameliorating disease severity
(Moreno-Fernandez et al., 2021b). In addition, B cell function
is linked with leptin and BAFF levels (Frasca and Blomberg,
2020). BAFF levels are decreased in aging and in obese mice (Jin
et al., 2008; Kim et al., 2009). Of note, increased BAFF levels has
been implicated in the modulation of weight gain in mice and
humans (Chan et al., 2021). Given that aged and obese individuals
exhibit reduced antibody responses, the potentially unifying role
of BAFF in aging and obesity should be further explored.
Likewise, Breg development in obesity could be affected by the
impact of obesity in Tfh cells (Garner-Spitzer et al., 2020). A
recent study revealed that bariatric surgery (and subsequent
weight loss) resulted in an increase of less inflammatory Tfh
cells that had better capability to promote the development of
Bregs (Zhan et al., 2017), suggesting that Tfh function during
obesity is shifted, which may act as a rheostat that regulates
overall inflammation.

Contrary to their other immunoregulatory counterparts,
MDSC are poorly studied in obesity. Increased frequency of
monocytic CD11b+CD33+CD14+HLADRlow/- MDSC was
observed in the peripheral blood of obese individuals (Bao
et al., 2015). In mouse models of obesity, a MDSC population
expressing Gr-1 and CD11b is highly enriched in the liver and
adipose tissue. This particular MDSC population suppressed
CD8+ T cell and inflammatory macrophage function in obesity
(Xia et al., 2011), suggesting that MDSC may act as another
important counter regulatory mechanism of exacerbated
inflammatory immune responses in obesity. Overall, though
aging and obesity’s effect on immunomodulatory regulation
differ, they both are associated with immune cell
dysfunctionality, leading to abnormal immune responses.

Inflammation-Induced Immunomodulation:
Linking Aging and Obesity
Intriguing unifying parallels between aging- and obesity-
dependent impact in the ability of the immune system to
properly function and leading to dysfunctional responses
warrant further investigation. Examining these trends is
critical for understanding the differences and similarities
between the associated-pathologies shared by both states. Of
significant interest is the intersection of these two states and how
immune alterations differ in those who are both elderly and
obese in comparison to those that are only elderly or obese.
However, many of the studies perform so far have largely
focused on either individual state rather than on overlapping
conditions. Therefore, which immunomodulatory program
obese elderly individuals adopt, and how this helps them
compensate for the compounded chronic inflammation are
key questions that remain unanswered. Of note, use of
thermoneutral housing allows for studying obesity and aging
in unison in both male and female mice (Giles et al., 2017;
Moreno-Fernandez et al., 2021b). Thus, this new model may
allow for future interrogations of obesity and aging in both sexes
and may lead to discovery of new underlying mechanisms
linking obesity and aging.

One highly clinically relevant similarity between obesity and
aging is their impact on vaccine-driven immune responses.
Vaccines have saved hundreds of millions of lives by reducing
disease mortality and morbidity. However, both elderly and obese
individuals have decreased vaccine responsiveness. For example,
yearly influenza vaccines provide 65–80% protection for young
individuals while only about 30–50% protection to their older
counterparts (Nichol et al., 2007). This lack of protection in aged
individuals is largely attributed to age-related dysfunction in B and
T cells that leads to a decline in antibody responses to the influenza
vaccine (Goronzy et al., 2001; Frasca et al., 2010). Aged B cells
accumulate intrinsic defects leading to decreased influenza-specific
antibody titers, decreased induction of AID (activation-induced
cytidine deaminase), a known inducer of Ig class-switch
recombination and somatic hypermutation, and decreased
memory induction (Frasca et al., 2010). Additionally, intrinsic
defects in aged T cells have been implicated in the loss of
influenza vaccine protection. Shifts in the aging CD4+ T cell
compartment towards Tfh cells, instead of Th1 cells, have been
proposed as a mechanism of decreased vaccine efficacy, as Th1 cells
are required for effective influenza clearance in the lung (Lefebvre
et al., 2016b). Additionally, as mentioned earlier excessive IL-10
production in aging suppresses vaccine responses in mice (Almanan
et al., 2020). Other vaccines show similar decreased efficacy with
aging. Hepatitis A and hepatitis B vaccines induce poor antibody
responses in the elderly leading to a decrease in vaccine efficacy from
92% in young individuals to 63% for hepatitis A and 67–33% for
hepatitis B respectively (Wolters et al., 2003). Additionally, the
mRNA-1273 COVID-19 vaccine efficacy drops from 95.6% in
individuals under 65 years old to 86.4% in those 65 years and
older (Baden et al., 2021). Together, these studies suggest that the
altered immune state in aged individuals severely limits their ability
to produce adequate and appropriate immune responses, thus
leaving these highly vulnerable populations without the
protection that vaccines normally provide.

Similar to aged individuals, the impact of obesity on vaccine
efficacy is well-reported (Painter et al., 2015). Obese individuals
have decreased antibody levels and an overall faster decline in
protective levels of antibodies than their lean counterparts for
many vaccines including rabies (Banga et al., 2014), Hepatitis A
(Reuman et al., 1997), Hepatitis B (Weber et al., 1985) or tetanus
(Eliakim et al., 2006) vaccines. With regards to these normally
highly efficient vaccines, obesity-associated chronic inflammation
might detrimentally influence the longevity of adaptive immune
cells that are known to be impacted by obesity. In addition, obese
adults have double the risk of developing influenza-associated
pneumonia despite having similar antibody titers to their lean
counterparts (Green and Beck, 2017). In this case, worsened disease
outcomes (e.g., impaired limitation of viral propagation, lung tissue
pathology) have been attributed to the impaired cytotoxicity of NK
cells in obese individuals (O’Shea and Hogan, 2019), and/or
increased inflammatory propensity of lung macrophages and
neutrophils (Narasaraju et al., 2011) in obese individuals.
Contribution of obesity-altered adipocytes has also been evoked
(Chan et al., 2019; Chan et al., 2020; Chan et al., 2021; Alarcon
et al., 2021). This trend might be due to obesity-specific
mechanisms, as T2D individuals have similar responsiveness to
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the influenza vaccine as non T2D individuals (Sheridan et al., 2015;
Dos Santos et al., 2018). Nevertheless, it is important to consider
these clinically relevant epidemiological trends, as they might have
impact on current and future vaccination efforts, such as for SARS-
CoV-2, where obese individuals are an “at risk” group (Popkin
et al., 2020).

Although there is some evidence to indicate that aging with
comorbidities such as obesity leads to worse outcomes in vaccine
efficacy, the interplay between both obesity and aging have been
largely understudied. Many reports of vaccine efficacy fail to
report data of individuals that are both elderly and obese making
it difficult to understand the respective and combined impact of
these two states. However, recent preliminary studies have begun
to include these analyses. For instance, it was suggested that the
Johnson and Johnson COVID-19 vaccine efficacy 28 post
vaccination could drop to 42.3% in elderly patients with
comorbidities including obesity, compared to 72.4% efficacy in
healthy elderly patients and 68.0% in healthy, young adults
(Administration FaD, 2021). Hence the combinatory effects of
both aging and obesity may exacerbate the worsened immune
dysfunctional environment than either obesity or aging alone.
Thus, further exploration and data analysis in this area are needed
as the obese, elderly, and obese-elderly populations continue to
increase.

Importantly, these clinical trends might be attributed to a
unifying impact of aging- and obesity-inflammation-
dependent skewing of the innate and adaptive immune
response. However, we also acknowledge that while
chronic inflammation appears to drive any similar immune
phenotypes, differences do exist, likely driven by mechanism
specific to each state. More research using multiomics
approaches such as IMM-AGE study (Alpert et al., 2019)
will be of great importance to decipher precise unique and
share pathways activated in each individual or combine state
over time. Further, uncovering of similarities and differences
between these two states will also help to uncover whether
anti-inflammatory treatment targeted towards amelioration
of metabolic dysfunction could be exploitable for aging and/
or aging/obesity associated inflammation and improving
vaccine responses in these populations. For instance,
metformin appears promising for treatment of chronic
inflammatory diseases associated with both aging and
obesity in pre-clinical models (Bharath et al., 2020).
Notably, pioglitazone alone or in combination with
metformin has also been shown to have anti-inflammatory
properties (Zhang et al., 2008; Shen et al., 2018) and decrease
inflammatory mediators in patients with T2D (Forst et al.,

2008; Schöndorf et al., 2011). Undeniably, it is attracting to
think about repurposing such drugs to improve vaccine
efficacy in the elderly and/or obese. For example,
preliminary studies of pioglitazone in experimental
influenza infection improved survival by favoring
protective and limiting exacerbated immune
responsiveness in mice (Aldridge et al., 2009; Moseley
et al., 2010). A better understanding of these mechanisms
is thus imperative to provide better vaccine regimens for
obese, elderly, or obese-elderly individuals.

CONCLUDING REMARKS

Aging- and obesity-associated chronic inflammation and
potential immunosuppression have a profound impact on the
functionality of the immune system (Figure 1A). Both
conditions exist as a mixed inflammatory state, where pro-
and anti-inflammatory cells and mediators co-exist and
contribute to the development of aging- and obesity-
associated disease (Figure 1B). While similarities between the
aged and obese immune systems have been noted, the literature
concerning the impact of combined aged and obese state is
limited, something that will be critically important to combat
major health issues including vaccine efficacy (Figure 1C).
Thus, further examination of the parallels between the aged
and obese immune system are needed to identify critical
inflammatory mechanistic links. Such studies might
provide novel therapeutic approaches to ameliorate the
clinical burden of disease in an increasingly obese world that
continues to age.
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