
����������
�������

Citation: Montano, L.; Maugeri, A.;

Volpe, M.G.; Micali, S.; Mirone, V.;

Mantovani, A.; Navarra, M.; Piscopo,

M. Mediterranean Diet as a Shield

against Male Infertility and Cancer

Risk Induced by Environmental

Pollutants: A Focus on Flavonoids.

Int. J. Mol. Sci. 2022, 23, 1568.

https://doi.org/10.3390/ijms23031568

Academic Editor: Mahmoud

Huleihel

Received: 28 December 2021

Accepted: 27 January 2022

Published: 29 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Mediterranean Diet as a Shield against Male Infertility and
Cancer Risk Induced by Environmental Pollutants: A Focus
on Flavonoids
Luigi Montano 1,2 , Alessandro Maugeri 3 , Maria Grazia Volpe 4 , Salvatore Micali 5, Vincenzo Mirone 6,
Alberto Mantovani 7, Michele Navarra 3,* and Marina Piscopo 8

1 Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL),
84124 Salerno, Italy; l.montano@aslsalerno.it

2 PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, 00133 Rome, Italy
3 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina,

98166 Messina, Italy; amaugeri@unime.it
4 Institute of Food Sciences, National Research Council, CNR, 83100 Avellino, Italy;

mariagrazia.volpe@isa.cnr.it
5 Urology Department, University of Modena and Reggio Emilia, 41124 Modena, Italy;

salvatore.micali@unimore.it
6 Department of Neurosciences, Science of Reproduction and Odontostomatology, University of Naples

Federico II, 80126 Naples, Italy; mirone@unina.it
7 Department of Food, Safety, Nutrition and Veterinary public health, Italian National Health Institute,

00161 Roma, Italy; alberto.mantovani@iss.it
8 Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; marina.piscopo@unina.it
* Correspondence: mnavarra@unime.it

Abstract: The role of environmental factors in influencing health status is well documented. Heavy
metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, dioxins, pesticides,
ultrafine particles, produced by human activities put a strain on the body’s entire defense system.
Therefore, together with public health measures, evidence-based individual resilience measures are
necessary to mitigate cancer risk under environmental stress and to prevent reproductive dysfunction
and non-communicable diseases; this is especially relevant for workers occupationally exposed to
pollutants and/or populations residing in highly polluted areas. The Mediterranean diet is character-
ized by a high intake of fruits and vegetables rich in flavonoids, that can promote the elimination of
pollutants in tissues and fluids and/or mitigate their effects through different mechanisms. In this
review, we collected evidence from pre-clinical and clinical studies showing that the impairment
of male fertility and gonadal development, as well as cancers of reproductive system, due to the
exposure of organic and inorganic pollutants, may be counteracted by flavonoids.

Keywords: pollution; flavonoids; cancer; male infertility; Mediterranean diet; heavy metals; bisphenols;
polycyclic aromatic hydrocarbons; dioxins; phthalates

1. Introduction

In recent decades, the role of environmental factors in influencing population health
has become increasingly evident, so that chemical and physical pollutants are now consid-
ered the most important public health threat, whose effects, including transgenerational
ones, come to be well reported in the scientific literature [1]. The World Health Organiza-
tion (WHO) estimates that around a quarter of diseases are due to prolonged exposure to
environmental pollutants [2] and air pollution is among the first risk factors for cardiovas-
cular, chronic degenerative diseases, premature deaths and reproductive dysfunctions [3,4].
Noticeably, many outdoor and indoor pollutants carry out their action as endocrine dis-
ruptors [5] altering inter-cellular signaling and also inducing oxidative stress [6]. Excess of
radical oxygen species (ROS) not balanced by the presence of reductive activity represents
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a central molecular mechanism of damage for various macromolecules (DNA, proteins,
lipids) which, if not properly repaired, can cause inflammatory processes up to neoplastic
transformation [7]. Indeed, the imbalance of antioxidant defenses and detoxification pro-
cesses provides a logical explanation for the occurrence of oxidative stress-related diseases
in humans [8]; including the increased susceptibility to pollutants [9]. The reproductive sys-
tem appears to be particularly sensitive to environmental stresses and an increasing amount
of in vitro and in vivo toxicological studies are performed on this system. In fact, besides
its obvious functional importance, the reproductive system can also represent a sentinel to
environmental stresses; the epidemiological and clinical data available today, in particular,
on male infertility, seem to confirm this sensitivity [10,11]. A strong trend of decline, already
described for sperm concentration from 113 × 106/mL in 1940 to 66 × 106/mL in 1990 [12],
is observed for testosterone levels [13]. Sperm decline has been also reported in Africa,
China, India, Brasil from 1980 to 2015 [14,15] (Figure 1).

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 25 
 

 

endocrine disruptors [5] altering inter-cellular signaling and also inducing oxidative stress 
[6]. Excess of radical oxygen species (ROS) not balanced by the presence of reductive ac-
tivity represents a central molecular mechanism of damage for various macromolecules 
(DNA, proteins, lipids) which, if not properly repaired, can cause inflammatory processes 
up to neoplastic transformation [7]. Indeed, the imbalance of antioxidant defenses and 
detoxification processes provides a logical explanation for the occurrence of oxidative 
stress-related diseases in humans [8]; including the increased susceptibility to pollutants 
[9]. The reproductive system appears to be particularly sensitive to environmental stresses 
and an increasing amount of in vitro and in vivo toxicological studies are performed on 
this system. In fact, besides its obvious functional importance, the reproductive system 
can also represent a sentinel to environmental stresses; the epidemiological and clinical 
data available today, in particular, on male infertility, seem to confirm this sensitivity 
[10,11]. A strong trend of decline, already described for sperm concentration from 113 × 
106/mL in 1940 to 66 × 106/mL in 1990 [12], is observed for testosterone levels [13]. Sperm 
decline has been also reported in Africa, China, India, Brasil from 1980 to 2015 [14,15] 
(Figure 1). 

 

Figure 1. Decrease rates of sperm concentration worldwide. Sperm concentration declines in several 
areas of the world from 1980 to 2015 (A), and from 1940 to 1990 (B). 

The incidence of male infertility has increased steadily in many countries [16,17]. The 
changes in sperm production correspond precisely to the increased introduction of chem-
icals in the living environment, especially after 1940, and were initially thought to be due 
solely to maternal exposure to environmental estrogens [18]; based on the current 
knowledge, especially from experimental data, these effects appear to be due to different 
types of endocrine disrupting chemicals (EDCs) [18]. EDCs can act through several mech-
anisms, targeting either nuclear receptors for steroid hormones (i.e., estrogen and andro-
gen receptors), other nuclear receptors (i.e., peroxisome proliferator-activated receptors), 
steroidogenic enzymatic cascades, FSH/LH balance and at central and/or peripheric lev-
els. Noticeably, the developmental phase is most sensitive: EDC exposure is involved the 
“testicular dysgenesis syndrome” with poor semen quality and increased risk of congen-
ital anomalies such as hypospadias and cryptorchidism as well as of testicular cancer. 
Adult exposure to EDC (e.g., in highly polluted environments) may also affect spermato-
genesis and male fertility. Also, EDC exposure might synergize with other conditions in-
ducing impaired sperm production, including systemic diseases and genetic factors such 
as karyotype anomalies and Y chromosome microdeletions [18–20]. Indeed, the extensive 
use of EDCs appears to be involved not only in the fall in sperm count but also in the 
increased incidence of hypospadias, cryptorchidism and testicular malignancies [20]. The 
incidence of primary testicular tumors (TC), especially testicular seminomas has increased 
worldwide and the percentage over the past decades has risen approximately 1.2% per 

Figure 1. Decrease rates of sperm concentration worldwide. Sperm concentration declines in several
areas of the world from 1980 to 2015 (A), and from 1940 to 1990 (B).

The incidence of male infertility has increased steadily in many countries [16,17].
The changes in sperm production correspond precisely to the increased introduction of
chemicals in the living environment, especially after 1940, and were initially thought to
be due solely to maternal exposure to environmental estrogens [18]; based on the current
knowledge, especially from experimental data, these effects appear to be due to differ-
ent types of endocrine disrupting chemicals (EDCs) [18]. EDCs can act through several
mechanisms, targeting either nuclear receptors for steroid hormones (i.e., estrogen and
androgen receptors), other nuclear receptors (i.e., peroxisome proliferator-activated recep-
tors), steroidogenic enzymatic cascades, FSH/LH balance and at central and/or peripheric
levels. Noticeably, the developmental phase is most sensitive: EDC exposure is involved
the “testicular dysgenesis syndrome” with poor semen quality and increased risk of con-
genital anomalies such as hypospadias and cryptorchidism as well as of testicular cancer.
Adult exposure to EDC (e.g., in highly polluted environments) may also affect spermato-
genesis and male fertility. Also, EDC exposure might synergize with other conditions
inducing impaired sperm production, including systemic diseases and genetic factors such
as karyotype anomalies and Y chromosome microdeletions [18–20]. Indeed, the exten-
sive use of EDCs appears to be involved not only in the fall in sperm count but also in
the increased incidence of hypospadias, cryptorchidism and testicular malignancies [20].
The incidence of primary testicular tumors (TC), especially testicular seminomas has in-
creased worldwide and the percentage over the past decades has risen approximately
1.2% per year [21–23]. TC generally affects young and middle-aged men; indeed, it is the
most common type of cancer among males aged 15–44 years in developed countries [24].
Noticeably, over the past four decades, the incidence of this type of cancer has increased
especially in wealthy, industrialized countries [25–27] and has started to grow in countries
moving toward higher levels of development [27]. The increasing trend of TC has raised
attention towards its epidemiological features and the genetic and non-genetic factors
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involved in the etiopathogenesis [28–32]. The causes of increased incidence of this type of
cancer include cryptorchidism, occurring in 2–9% of boys born at term and considered to
be linked to an almost 9-fold increased risk of TC, along with hypospadias; indeed, TC,
cryptorchidism, and hypospadias are hallmark components of the “testicular dysgenesis
syndrome” [20,33,34]. The first event in TC occurs prenatally as the presence of foci of
poorly differentiated gonocytes in seminiferous tubules. Postnatally, TC development and
progression is associated with allele polymorphisms of a number of transcription factors
(i.e., GATA4 and GATA1), genes (i.e., PRDM14, DMRT1, SALL4, TEX14 WDR73, PMF1,
CENPE, and PCNT) and receptors (i.e., CAG/GGC androgen receptor polymorphism),
which are implicated in the maturation specification and differentiation of the postnatal
testis [35–38]. Even though, compared to tumors in other districts, testicular cancer is still
more treatable [39], both the cancer and its treatment are associated with several compli-
cations, particularly sexual dysfunction and infertility [40,41]. These, together with the
expected growth in the coming decades, highlight the public health and socio-economic
impacts of testicular cancers [42,43]. Nonetheless, environmental factors including heavy
metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), diox-
ins, pesticides, ultrafine particles, produced by human activities put a strain on the body’s
entire defense system which struggles to metabolize and eliminate toxic compounds. To-
gether with public health measures, evidence-based individual resilience measures are
therefore necessary to mitigate health risks under conditions of environmental stress and
to prevent noncommunicable diseases (NCDs); this holds true especially for workers oc-
cupationally exposed to pollutants and/or population residing in highly polluted areas.
Mediterranean diet is a foremost model for nutritionally rich and balanced diets [44]. It is
characterized by high intake of fruits and vegetables, rich in detoxifying and antioxidant
substances, hence it is particularly rich of flavonoids. Flavonoids promote the elimination
of pollutants in tissues and fluids and/or mitigate their effects through different mecha-
nisms. In this review, the properties of flavonoids will be explored in the context of the
Mediterranean diet model highlighting their role in mitigating the long-term effects of
pollutants on human health with particular attention to reproductive system cancer and
male infertility.

2. Mediterranean Diet

It is well-known, that diet can significantly influence the population’s risk profile,
both at primary and secondary level of prevention. Several types of diets have been
brought to public attention, but the one that has gained the most interest is no doubt the
Mediterranean diet. The concept of Mediterranean diet originates from 60’s, when Ancel
Keys first coined this term based on the results of an epidemiological study which showed
that the populations (Italy and Greece) that faced the Mediterranean Sea presented a lower
incidence of cardiovascular diseases and cancer than other populations [44]. After this
famous study, other researches have corroborated these results, and the Mediterranean diet
with its specific foods has been diffused all over the world as a model of a potential healthy
diet. At present, the global scientific milieu highlights the Mediterranean-like diet pattern
as the ideal dietary profile to maintain the health status and to reduce cancer mortality and
in general the incidence of the major NCDs [45–47].

The Mediterranean diet is characterized by low consumption of meat, intake of veg-
etable oils instead of animal fats as sources of lipids, moderate amounts of red wine and
significant amounts of fresh fruits and vegetables. Plant polyphenols have attracted con-
siderable interest in the scientific communities in recent times for their health-promoting
properties. In fact, many clinical studies have indicated health benefits attributable to
the presence of significant quantities of these molecules, even though, in some cases,
contradictory results have been reported, which highlights the need for further investi-
gations. Therefore, recent research has sought to provide insights into the mechanisms
of action of these compounds to help decipher the complex relationships between plant
polyphenols and cellular homeostatic systems, including metabolic and redox balance,
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proteostasis, and the inflammatory response, establishing an increasingly strong molec-
ular basis for the beneficial effects of these molecules. The underlying biochemical and
molecular events include anti-inflammatory, antioxidant and anti-atherosclerotic mech-
anisms, as well as the epigenetic and gut-microbiota modulations pointed out by more
recent studies [48]. Overall, the currently available data are providing a rationale for
the possible use of natural polyphenols as nutraceuticals to counteract aging and combat
many associated diseases [49]. In fact, various phytochemical compounds found in plant
foods can prevent or counteract the harmful effects of environmental pollutants, through a
number of mechanisms including reactive oxygen species (ROS) scavenging, chelation of
toxic metals, anti-inflammation, epigenetic up-regulation of detoxifying genes or enzymes,
and other [50–56]. Some systematic reviews found that diets rich in fish, shellfish and
seafood, poultry, cereals, vegetables and fruits, low-fat dairy and skim milk were positively
associated with sperm quality parameters [57,58].

A substantial body of research evidence from observational studies worldwide sug-
gests that the diets’ models consistent with those promoted for the prevention of heart
disease and other chronic conditions can be advantageous for male fertility as well [59].
Meanwhile, the evidence on the association between dietary patterns and male fertility is
far from complete; nevertheless, several indications have emerged. The increased intake
of omega-3 fatty acids, both as supplements or from foods (whether from nuts or fish)
seems to positively affect spermatogenesis. Integration with antioxidants and nutrients
implicated in the mono-carbon metabolism pathway (folate, vitamin B12, zinc) also seems
a beneficial. In addition, a study conducted by Salas-Huetos et al., 2018 showed that
supplementation of a conventional “Western” diet with walnuts, hazelnuts and almonds,
present also in Mediterranean diet, improves key sperm quality parameters among healthy
men of reproductive age, potentially by a reduction in sperm DNA fragmentation. These
results support the potential benefits of some nutrients contained in nuts for sperm qual-
ity [60]. In a 24-week study on adult rats, Dominguez-Vias et al. [61] showed that a diet
enriched with virgin olive oil, a major element of Mediterranean diet, increased the activity
of dipeptidyl peptidase IV, an enzyme involved in glucose metabolism regulation as well
as detoxification processes; in the testicular r tissue compared to a butter-enriched diet;
this latter, contrary to olive oil enrichment, elicited a number of markers of saturated fat
intake [61]. Bioactive substances in vegetable foods also deserve attention. Resveratrol
(RES), abundant in grape, is a well-known cytoprotective substance with beneficial ef-
fects on diverse cell types thanks to its anti-inflammatory, anti-oxidant and anti-cancer
properties. In vitro, it increased total and progressive sperm motility, restored chromatin
compactness and decreased sperm lipoperoxidation, along with mitochondrial superoxide
anion levels in benzopyrene-exposed spermatozoa. These biological activities deserve to
be further investigated in vivo, for possible benefits in people with impaired fertility due
to environmental factors [62]. A recent randomized clinical trial on healthy young males in
highly polluted area of Italy has demonstrated positive effects of the Mediterranean diet
and regular physical activity, on semen quality [63].

Although several studies indicate a favorable effect of the adherence to Mediterranean
diet on semen parameters, few data evaluating the influence of diet on couple’s fertility are
reported, including in couples attempting conception with assisted reproductive technology
(ART). Thus, the impact of Mediterranean on couple fertility and ART success is a topic for
further studies [64–67].

In addition, “organic” (i.e., cultivated based on agroecological criteria) foods, due to
a higher content in bioactive compounds in comparison to conventional ones, has been
suggested as an additional safeguard for counteracting the effects of environmental pol-
lutants [68]. In this direction, the typical foods of the Mediterranean diet, when they are
organically cultivated, should have a significantly reduced content of pesticides [69,70],
whereas they are expected to contain higher concentrations of their natural occurring
beneficial phytochemicals including polyphenols [71], flavonoids [72], carotenoids [73]
and macro- and micro-nutrients such as vitamin C, iron, magnesium, phosphorus and
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omega-3 fatty acid [74]. Therefore, the environmentally friendly cultivation procedures
endorsed by agroecology can maintain a higher content of bioactive compounds, compared
to conventional foods. Indeed, several studies report that the consumption of organic foods
may improve fertility, in addition to reducing other reproductive (pre-eclampsia, obesity in
pregnancy) and other non-reproductive health disorders (overweight, eczema in children,
some cancers, diabetes etc.). Therefore, rather than a specific effect, improved reproductive
health may reflect a better health status associated with a healthier dietary style, higher
intakes of nutrients, antioxidants and other bioactive compounds, as well as lower intakes
of undesirable substances (i.e., nitrates and cadmium from fertilizers, pesticides, fertilizers,
pollutants and their metabolites) [68,71,75–81]. Therefore, cultivation methods influence
the potential of foods to counteract the oxidative stress and epigenetic alterations induced
by environmental contaminants [51–57,82–86].

Communities living in polluted areas are recognized to experience a higher incidence
of cancer, NCDs and male infertility. Therefore, in parallel to regulatory actions, evidence-
based lifestyle intervention models should be designed in order to mitigate the impact of
environmental pollutants on human health [63,87–91].

Spermatozoa are very sensitive to oxidative stress induced by environmental toxins
so that the richness of antioxidants of Mediterranean diet nutrients has protective role
especially on morphology, motility and sperm DNA [57,92–94]. Semen quality is also a
potential susceptibility indicator to SARS-CoV-2 insults in polluted areas [14], and very
recently it has been demonstrated that air pollution and COVID-19 could represent a
possible dangerous synergy for male fertility [95].

3. Flavonoids: Mechanisms of Action in Cancer

Flavonoids are the most prevalent and well-studied polyphenols in human diet.
The common scaffold within this class of compounds is the benzo-pyrone moiety, which
can be variously substituted. Based on the degree of oxidation or unsaturation, flavonoids
can be classified into six major subclasses: flavonols, flavones, flavanones, flavanonols,
anthocyanins and isoflavones (Figure 2). They are more frequently found as glycosides,
although it is likely to find them as aglycone.

Citrus fruits, tea, and red wine are among their primary nutritional sources. Numerous
studies have revealed that eating polyphenol-rich foods on a daily basis may benefit a wide
range of human pathologies, including those characterized by an abnormal inflammatory
and oxidant status, such as infections, autoimmune and neurodegenerative diseases, along
with cancer [96–102]. These interesting properties are also exploited in clinical settings,
mainly in the aromatherapy [103,104]. Regarding cancer, which is characterized by an
uncontrolled cell proliferation and a disrupted cell cycle, leading to aberrant cells that
infiltrate and metastasize to other regions of the body, flavonoid act by a wide plethora of
mechanisms [105–108]. Moreover, it was documented that these compounds are able to
counteract not only genetic causes of cancer development [109], but also external causes,
such as pollution, smoking or radiation [110]. In particular, the ability of flavonoids to in-
hibit tumorigenesis was attributed primarily to their undoubted antioxidant activity, which
is capable of preventing and scavenging the formation of ROS and reactive nitrogen species
(RNS), known players in the toxicity of many pollutants [111]. Flavonoids also act as free
radical scavengers mainly via chelating metallic ions, that consequently catalyze the genera-
tion of ROS and RNS [112–114]. These are the leading causes of many other conditions other
than cancer, such as inflammation [115–117], and flavonoids target different receptors to
modulate intracellular signaling pathways involved also in this process like SIRT1, nuclear
factor kappa B (NF-κB), mitogen activated protein kinases (MAPKs) and cyclooxygenase-2
(COX-2) [118–121]. Flavonoids were shown to act also via immune cell regulation, sup-
pressing chemokines and cytokines [122,123], which are known to be implied in cancer
progression as well as in its spreading [124]. In this regard, flavonoids were shown to
actively inhibit factors implied in metastasization of cancer via altering adhesion molecules
such as metalloproteinases and other epithelial-mesenchymal transition markers [125–127].
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Angiogenesis is another relevant process involved in cancer progression and migration,
since it is crucial for the proper nourishment of the tumor microenvironment, hence the
acknowledged role of flavonoid of inhibiting pivotal factors of this process, such as VEGF
or EGFR expression, is one of the paths followed by these compounds to counteract cancer
formation [128,129]. Among the numerous processes involved in tumorigenesis, the escape
from apoptosis, which is a type of controlled cell death that is generally triggered by a
number of signal transduction pathways and pro-apoptotic proteins, is acknowledged
to represent one of the first characteristics acquired by cells undergoing promotion [130].
Flavonoids are able to interfere with the apoptotic machinery via hampering the activity
of caspases and Bcl-2 family members [131,132]. Parallelly, flavonoids can restore also
impaired autophagy in tumor cells due to the activation of beclin-1 and LC3, marker of
early and late stages of autophagosome formation, respectively [133]. Moreover, the altered
progression through cell cycle is another crucial element characterizing tumor develop-
ment, and flavonoid were widely investigated in this field, finding their ability to modulate
expression of several isoforms of cyclins, involved in each phase of cell cycle [134]. Finally,
the intake of flavonoids through a varied and balanced diet, such as the Mediterranean
diet, does not lead to any appreciable risk of undesirable effects, contrary to high intakes
through supplements, where potential endocrine effects justify caution [135]. The effects of
flavonoids against cancer development are summarized in Figure 3.
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Figure 2. Basic structures of the six classes of flavonoids. The lead compound benzopyrone can be
variously substituted to form the derivative structures of flavonols, flavones, flavanones, flavanonols,
anthocyanins and isoflavones. The hydroxyl groups can be linked to monosaccharides, in case of
glycosides, or methoxylated. The radicals, expressed as R, can be either methyl or methoxy groups,
depending on the structure.
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infertility. Physiological processes of normal cells can be altered by pollutants leading to cancer
and sperm cell damage. Flavonoids can protect cellular functions from environmental insults via
targeting a wide plethora of mechanisms.

4. Flavonoids: Mechanisms of Action in Male Infertility

Flavonoids have been extensively explored for the treatment of male reproductive
dysfunctions. The observed favorable effects can be ascribable to a combination of bio-
logical mechanisms, for example their antioxidant, anti-inflammatory, immunostimulant,
anti-apoptotic, anticarcinogenic activities [136]. Moreover, flavonoids are amphipathic
molecules that can penetrate the lipid bilayer of membranes, thus providing possible
protection for the entire spermatozoa and acrosome membrane. In this way, flavonoids
prevent oxidative damage and guarantee the acrosome reaction of spermatozoa necessary
for fertilization [137,138].

Rutin and quercetin, along with epigallocatechin, were shown to improve motility,
plasma and acrosomal membrane integrity, mitochondrial activity, anti-oxidase activities,
and lower intracellular ROS concentration of frozen sperm [139–142]. Among these, rutin
was shown to improve the kinematic parameters of post-thawing sperm, as well as its
fertilizing characteristics, prompting an increase in cleavage rates and blastocyst rate [142].
Instead, the main intercellular target of quercetin appears to be the mitochondria. Studies
have demonstrated its protective and regulatory action of crucial mitochondrial processes,
including electron transport chain and oxidative phosphorylation, which may affect the
metabolism and performance of male gametes [140].

In male rats, quercetin reduces the endocrine and testicular alterations induced by the
heavy metal cadmium [143,144]. Quercetin, apigenin, EGCG, and luteolin are also capable
of increasing gene expressions of steroidogenic acute regulatory protein (StAR), cytochrome
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P450 11A (CYP11A), CYP17A, 17-beta-hydroxy steroid dehydrogenase (17-β-HSD) and
3-beta-hydroxy steroid dehydrogenase (3-β-HSD), useful for restoring Leydig cell function
and testosterone secretion [145].

Oxidative stress is indicated as an essential contributor to apoptosis, DNA damage,
lipid peroxidation, and decreased sperm motility [146]. Rutin and quercetin are able to
attenuate ROS accumulation and malondialdehyde (MDA) production by improving an-
tioxidant enzyme activity [142,147]. Moreover, quercetin eliminates the toxic effects of
hydrogen peroxide (H2O2) on motility, amount of MDA and nitric oxide (NO), along with
increasing viability and total antioxidant capacity (TAC) [148]. Effects of flavonoids on apop-
tosis have also been shown. In particular, rutin can inhibit cell apoptosis in H2O2-induced
Leydig cells [149], while hesperetin lowers the number of TUNEL-positive germ cells in
the testis [150]. In addition, rutin, hesperetin, and morin were noted to decrease apoptosis
in testis by significantly increasing protein levels of Bcl-2 (B-cell leukemia/lymphoma 2),
and decreased protein levels of BCL2-associated X (Bax) and cysteine aspartic acid-specific
protease 3 (caspase 3) [149,150]. A relationship between Sertoli cells (Sc), blood-testis
barrier (BTB), and flavonoids also exits. In this context, luteolin protects SCs and BTB
integrity by up-regulating the expression of several antioxidant genes and ameliorating the
protein expression of ZO-1, occludin, claudin-11, and Cx43 [151]. In addition, it was shown
that icariin may affect spermatogenesis via regulating the claudin-11 mRNA expression
in SCs [152]. Finally, investigations have established the important role that 3′,5′-cyclic
adenosine monophosphate (cAMP)/ cAMP-dependent protein kinase-A (PKA) signaling
pathway plays in the regulation of testosterone secretion. In this regard, another effect of
quercetin, apigenin and luteolin is to inhibit cyclooxygenase-2 (COX-2)-dependent signal
transduction, which has been found to enhance cAMP/PKA-dependent StAR gene expres-
sion and steroidogenesis in Leydig cells [145,153]. Overall, flavonoids show a number of
biological mechanisms relevant to the protection of male fertility in in vitro and in vivo
studies. The available evidence supports the design of studies on humans in areas polluted
with EDC and other reproductive toxicants, in order to investigate the efficacy and safety of
increasing flavonoid intake within a balanced and nutritionally rich dietary pattern, such as
the Mediterranean diet.

Figure 3 summarizes the main effects of flavonoids that may counteract the pollutants
affecting male.

5. Heavy Metals

Heavy metals are a naturally occurring part of the Earth’s crust, but anthropogenic and
industrial activities have caused drastic environmental pollutions in distinct areas. The non-
biodegradability of heavy metals causes them to persist in the environment. Thus, they can
enter the food chain through cultivated plants, and eventually can accumulate in the human
body through biomagnification. Given the toxicity of heavy metals, human health and
ecosystems are threatened by their contamination. Heavy metals, however, are of utility
in industrial areas such as alloying, smelting, and commercial product manufacturing.
Of course, this contributes to increased exposure to heavy metals as waste from industrial
processes represents a significant source of environmental contamination and subsequent
accumulation in the human body.

Almost all heavy metals are severely toxic as carcinogens. For example, arsenic,
cadmium, chromium, and nickel are classified as Group 1 carcinogens by the International
Agency for Research on Cancer, and are used commercially [154]. Living organisms easily
come into contact with various heavy metals such as cadmium, cobalt, methylmercury,
manganese, and arsenic, and it has been shown in many research studies that a strong link
exists between the environmental contaminants and human health. In addition, several
metals also have negative effects on the reproductive health of organisms [155–162]. Heavy
metals such as lead (Pb), mercury (Hg) and cadmium (Cd) can influence the endocrine
system, disrupting embryonal programming and gonadal development in utero [163].
Chromium (Cr), Cd, iron (Fe), nickel (Ni), Pb, and copper can enhance ROS [164], which
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can impair DNA in the male germ line and increase health risk in offspring. Some studies
have shown that the risk of hypospadias and cryptorchidism is significantly increased by
paternal exposure to heavy metals [165]. This study, and also another [166], proposed that
the risk of hypospadias may be elevated following maternal exposure to heavy metals.
In addition, a recent study provides little evidence for the association of parental exposures
to heavy metals and testicular germ cell cancer in progeny except in cases of high paternal
chromium exposure [164].

The reported results of many research suggest that increased consumption of fruits
and vegetables or certain dietary supplements can substantially enhance the protection
against many heavy metals. Over the past decade, dietary factors have proven to reduce
the toxicity of environmental pollutants and effect prevention against adverse chronic
degenerative diseases and cancer in humans, and a growing scientific body of evidence
has suggested that flavonoids, thanks to their antioxidant and metal chelating properties,
are involved in preventing or decreasing the damage caused by heavy metals.

5.1. Cadmium (Cd)

The best documented explanation for the toxicity related to Cd is oxidative stress.
Cd also acts as an endocrine disruptor, particularly of the reproductive hormones [163,167].
Cd mimics the chemical state of divalent Zn; therefore, it has the potential to interfere with
the site of Zn binding to DNA. Furthermore, this metal mimicking endogenous estrogen,
produces an increased risk of ovarian and breast cancer and also disrupts the ovarian
steroidogenic pathway, progesterone and testosterone production [168,169]. Several studies
reveal that testis is a susceptible target of toxicity from cadmium. In fact, cadmium exposure
can cause germ cell apoptosis and decreased daily sperm production, which may account
for the decline in male fertility [170].

Regarding Cd, Xia Li et al. highlighted how flavonoids can alleviate Cd toxic-
ity [171]. Anthocyanins have been widely applied to nutritional intervention of Cd toxicity.
Flavonoids having similar structure demonstrate analogous mechanisms of action in pro-
tecting the body against Cd poisoning. These mechanisms in Cd-induced diseases mainly
include elimination of ROS, reduction of lipid peroxide production, increased activity of
enzymes related to oxidative stress, reduction of free Cd2+ content, reduction of DNA
damage and cell apoptosis, inhibition of inflammation and fibrosis, and influence of metal
ions in vivo. In addition, experimental studies have shown that fenugreek seed powder
attenuates cadmium-induced testicular damage and hepatotoxicity in male rats [172,173].
These authors, in fact, showed that flavonoids restored the depletion of antioxidants as
they antagonized the effect of Cd on antioxidant enzyme activity or increased GSH content,
improving the antioxidant capacity of the body. In parallel, a flavonoid rich-extract of
bergamot juice counteracted both testicular and kidney damage induced by Cd exposure
in rats [174,175]. Another research asserts that flavonoids reduced the chromosomal aberra-
tion regarding to structure and number of spermatocytes due to their detoxification action
that protect protein and DNA from free radicals, and hence from cancer [173]. In a similar
manner, catechin hydrate exhibited protective antigenotoxic and anti-immunotoxic roles
via decreasing the fragmentation of DNA and by suppressing the expression of the genes
related to apoptosis [176]. Quercetin is among the most important flavonoid found in veg-
etables and fruits; it shows anti-inflammatory, anti-hypertensive, vasodilator, anti-obesity,
anti-hypercholesterolemic, and anti-atherosclerotic effects [177], as well as for its protective
against testicular carcinogenesis [178]. The protective effects of quercetin can be explained
by its ability to chelate metal ions and form stable complexes given its three potential
bidentate binding sites (α-hydroxycarbonyl, β-hydroxycarbonyl or catechol) [179], along
with its inhibitory effects on apoptosis, cell migration, differentiation and proliferation,
oxidative balance, and inflammation [180].

As regards Cd-induced-pro-oxidant action, the protective effect of dietary quercetin in
testicular germ cells was documented by several research [181]. In male mice, Cd signif-
icantly decreased testicular antioxidant system, including decreases in the level of GSH,
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SOD and GSH-Px activity. In addition, Cd exposure resulted in increased H2O2 production
and lipid peroxidation in the testes and caused germ cell apoptosis by increasing the ex-
pression of the proapoptotic proteins Bax and caspase-3 and decreased the expression of
the antiapoptotic protein Bcl-XL. Notably, the administration of quercetin significantly at-
tenuated these effects [182]. In another work, it was showed that Cd accumulated in testes,
leading to oxidative stress and autophagy and that quercetin decreased cadmium toxicity
by reducing oxidative stress and inhibiting autophagy [183]. In a similar way, quercetin
effectively inhibited apoptosis in chicken granulosa cells exposed to Cd by regulating the
inhibition of antiapoptotic protein Bcl-2 and X-linked inhibitor of apoptosis protein (XIAP)
and activated caspase-3 [184]. Quercetin is highly present in onions, beans and fruits,
such as apples, apricots, cherries and grapes [185]; the studies on Cd and quercetin support
that a rich, varied and predominantly plant-based diet, such as the Mediterranean diet,
can provide bioactive substance mitigating the effects of environmental exposures.

5.2. Mercury (Hg)

Plant polyphenols, which have well recognized antioxidant properties, represent very
effective agents counteracting oxidative environmental stressors, including Hg. The ex-
posure to the organic Hg form, as methylmercury (MeHg), results in the generation of
reactive species that can lead to oxidative damage of macromolecules, especially DNA.
Furthermore, MeHg associates with endogenous biomolecules containing thiol groups,
such as glutathione. The growing occurrence of food-borne Hg is a matter of concern,
given the numerous serious adverse downstream effects, ranging from kidney, cardio-
vascular disease and reproductive problems, whereas MeHg specifically features as a
developmental neurotoxic. In addition, infertile individuals exhibited higher Hg levels in
blood, hair and urine in comparison with fertile subjects. Hg exposure prompted sperm
DNA damage and abnormal sperm morphology and motility. Moreover, Hg levels were
correlated with a greater incidence of menstrual and hormonal dysfunction and enhanced
cases of adverse reproductive outcomes [186]. Several papers report the biochemical bases
for pharmacological utilization of Fejioa sellowiana polyphenol-rich functional food in the
prevention and suppression of Hg-related health disorders [187,188]. Moreover, diverse
studies have also reported the possibility of reducing mercury toxicity with flavonoid
intake. Among the variety of dietary flavonoids, the beneficial role of chrysin (CR), which
is found mainly in passion fruit, honey, and propolis in preventing Hg-induced alterations
in both human erythrocytes and neuroblastoma cells has been investigated [189]. Finally,
a number of investigations have revealed the role of olive oil polyphenols in preventing
Hg toxicity [190].

5.3. Inorganic Arsenic (iAs)

The toxic effects of iAs on gonadal glands have been long studied through animal
models, showing that iAs can be accumulated in gonadal glands and induce an inhibitory
effect on gonadal development [191]. In addition, iAs affects one or more sex hormones and
induces inhibition of ovarian steroidogenesis, reproductive disorders, testicular steroido-
genic function, and spermatogenesis [192]. Similar toxic effects have been observed in
humans. In fact, iAs has been seen to cause a variety of reproductive problems through
disruption of the gonadal endocrine system. Specifically, iAs has been shown to have
a detrimental effect on reproduction and development in human reducing the quantity
and quality of human sperm [193]. Moreover, iAs has been linked to the onset of var-
ious forms of cancer in human, including that affecting the breast, which is the most
relevant [194]. To date, no report on the direct effects of flavonoids against iAs-induced
tumorigenesis is present, although it has been claimed that flavan-3-ols, flavone, flavonol,
flavanone, and anthocyanidin are positively associated with urinary dimethylarsinic acid
excretion in a clinical trial performed on 1037 Mexican women living in a highly polluted
area [195]. This supports the hypothesis that flavonoids may hamper iAs-toxicity and hence
tumorigenesis, by increasing its excretion.
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6. Bisphenols

Endocrine disrupting chemicals (EDCs) are hormone-like agents found in the envi-
ronment that induce adverse health effects by altering the endocrine system of vertebrate
animals, including humans. Specifically, xenoestrogens are believed to be involved in
development, reproduction, and malignant diseases by mimicking the natural hormone
17β-estradiol (E2) and interfering with endogenous endocrine regulation at specific times,
such as during fetal growth. Several organochlorine pesticides-polychlorinated biphenyls
(PCBs), phthalates, and bisphenol A (BPA)-used in the chemical industry have been identi-
fied as estrogenic EDCs. BPA is currently severely restricted as an EDC in the European
Union, but this compound has been used from the 1950s in industrial materials, food pack-
aging, dental sealants, and personal care products. All persons have exposure to BPA
via skin, inhalation, and through the digestive system. Exposure to substances with po-
tential for endocrine disruptive effects are continually increasing and, in recent decades,
are considered the primary factor in the rising incidence of testicular cancer. Because of
its metabolic and endocrine interference and its link to various human diseases including
cancer, diabetes, obesity, reproductive problems, BPA is subject of intense research [196].
BPA is known to disrupt the endocrine pathways since it is a partial estrogen agonist [197]
and has anti-androgenic and anti-thyroid activities [198]. For several decades, the impact
of low doses of bisphenols on male reproduction has been controversial. While some
investigations have reported that the low dose administration of bisphenols does not affect
the vital alteration of reproductive qualities, other studies have revealed varying degrees
of damage they trigger on male fertility. However, equal exposure to the same disruptor
is not uniquely associated with the same phenotype of testicular dysgenesis syndrome,
and this highlights the role of genetic background in establishing susceptibility to genito-
urinary disorders, in general, and testicular cancer in particular [198]. Furthermore, fetal
and perinatal exposure to BPA in rodents has been reported to affect the brain, mammary
gland, and reproductive tract, including hormone-dependent cancer [199,200]. In addition,
BPA is also capable of triggering a non-genomic action in pancreatic islets, endothelial and
pituitary cells, and mammary cancer cells starting fast responses at low doses [201,202].
Flavonoids have been explored for their role against BPA toxicity. In particular, a very
recent study investigated if flavonoids from Cuscuta chinensis (CCF) could be used as
dietary supplements to reverse BPA-induced epigenetic disturbances by analyzing the
molecular mechanisms linked to impairment of testicular development by BPA. The results
displayed that in comparison with BPA group, CCFs were able to markedly increase the
serum content of testosterone (T), estradiol (E2), the transcript levels of DNA methyltrans-
ferase 3A (Dnmt3A), Dnmt3B and that of estrogen receptor alpha (ERα). These findings
suggested that CCFs could lower the levels of ERα and H19/Igf2 gene methylation by
suppressing DNA methyltransferase (DNMT) expression, thus decreasing reproductive
hormone and receptor levels in adult males, and thus mitigating the adverse effect of
BPA on testicular development in male mice [203]. Several flavonoids, including daidzein,
genistein, luteolin, chrysin, flavone, and naringenin, have been shown to exhibit anti-
estrogenic activity, preventing BPA from proliferating in MCF-7 breast cancer cells and
causing malignant consequences [204]. In breast cancer cell lines, ER has been found to
be antagonized by naringenin, inhibiting their proliferation and supporting the role of
flavonoids in preventing BPA carcinogenesis and reproductive system damage.

Pharmacological inhibition of ERK1/2 could be considered as a target to mitigate
the effects of bisphenols in testicular cells. A recent review has provided an overview to
understand how oxidative stress induction may contribute to the harmful reproductive im-
pacts induced by BPA exposure [205]. The several studies reviewed show that reproductive
organs in males are more vulnerable to BPA exposure than those in females. Males may
be more susceptible for several reasons. First, because there are gender differences in glu-
tathione levels, considering its importance to the detoxification process (lower availability
of glutathione in males). Also, there is greater capacity for sulfate-based detoxification in
females. In addition, there is a greater inflammatory response in male reproductive organs
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to consider. Finally, reduced vulnerability to oxidative stress in female organs has been
reported. Growing evidence shows that a wide variety of BPA doses (in vivo and in vitro
or human exposure) promotes ROS generation and redox balance alteration, by leading
to mitochondrial dysfunction and cell signaling pathway modulation related to oxidative
stress. In addition, it should also be kept in mind that oxidative stress induced by BPA may
operate in a dependent or independent manner from its endocrine and metabolic deregu-
latory properties and that all this may produce marked reproductive effects in prenatal,
perinatal and postnatal exposure or in adulthood. Finally, the effect of BPA can be most
severe when exposure is combined with other risk factors, such as a poor diet, metabolic
impairments, and comorbidities [205]. The great antioxidant potential of flavonoids may
also function in the body’s defense against BPA damage, including cancer.

7. Polycyclic Aromatic Hydrocarbons

Air pollution is known to contain various toxic substances, gases, particulates, poly-
cyclic aromatic hydrocarbons (PAHs), toxic metals, etc. Some of them could affect the
reproductive process and sperm quality by decreasing one or more sperm quality pa-
rameters i.e., sperm morphology, concentration, motility, sperm DNA damage, up to
testicular cancer. The impact could be related to the concentration of pollutants and the
duration of exposure [206]. PAHs, formed by pyrogenic, petrogenic and biogenic (bio-
logical) processes, are defined as persistent organic pollutants (POPs); two of them, 7,
12-dimethylbenzo[a]anthracene (DMBA) and benzo[a]pyrene (B[a]P), are among the most
widely studied carcinogenic PAHs for their negative impact on the environment, human
and animal health. In particular, the International Agency for Research on Cancer (IARC)
defined PAHs as “probable” or “possible human carcinogens”, while benzo [a] pyrene has
been reclassified in group 1 as a “human carcinogen” [207]. Scientific studies have shown
that PAHs compounds undergo transformations through various metabolic reactions that
occur in the body, before genuinely carcinogenic types of molecules are produced. It is
precisely during these reactions that PAHs can transform into electrophilic intermediates
capable of reacting with biological molecules, including DNA [6].

The toxicity of PAHs is related to their physical/chemical properties. PAHs are soluble
in most organic solvents, are very lipophilic and have a high ability to adhere to organic
material. Within 24 h, they then begin to degrade through a sequence of radical reactions,
or undergo degradation by photolysis. The toxic effects occur through the formation of reac-
tive intermediates and the activation of a particular aryl hydrocarbon receptor (AhR) [208]
that regulates the expression of a series of genes. In addition to regulating the production
of enzymes involved in metabolic processes, AhR also has a role in regulating the immune
system, stem cells, cell differentiation and proliferation, apoptosis, carcinogenesis and drug
metabolism [209]. Other evidence on infertile populations suggested a negative association
between semen quality, testicular cancer, and PAH levels [210]. Moreover, male infertility
can be induced by PAH by affecting sperm motility, chromatin integrity, and increased
oxidative stress [211]. However, considering the human exposure at PAHs in the environ-
ment, the impact of these compounds on testicular cancer and the related mechanisms
involved in toxicity could be further investigated.

As many environmental pollutants, PAHs promote the excessive production of both
ROS and RNS [212]. Therefore, the maintenance of antioxidants is important in the preven-
tion of the damage caused by environmental pollutants, such as PAHs.

Matzkin et al. [213], reported how anti-inflammatory and antioxidant compounds
could exert a beneficial role in the improvement of physio-pathological state of the aged
male gonad [214]. Similarly, a dimer of epicatechin from the endophytic fungus Curvularia
australiensis reverted the tumorigenic effect of B[a]P exposure in female rats on induced
cervical cancer by reducing oxidative stress markers and pro-inflammatory ones, thus ame-
liorating lesion histopathology [215]. Other authors [216] investigated the molecular mech-
anisms associated with the cytoprotective effect of quercetin and its metabolites against
benzo[a]pyrene (B[a]P), suggesting the involvement of other mechanisms beyond the an-
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tioxidant activity. In particular, the reduction of B[a]P-induced cytotoxicity by quercetin
and isorhamnetin occurs through a decrease of BPDE-DNA adducts and intracellular B[a]P
and its metabolite, increasing the xenobiotic detoxification metabolism. Along the same
line, an anthocyanin-rich pool from grape proved to enhance detoxification capacity of
MCF-7 cells, blocking carcinogen-DNA adduct formation as well as ROS [217]. Moreover,
eupatorin-5-methyl ether, a flavonoid present in several medicinal plants, hampered B[a]P
stimulating effects in MCF-7 cancer cells, via inducing p21, JNK and p-JNK expression [218].

8. Dioxins

Dioxins are POPs that are largely produced by industrial combustion processes such
as waste incineration, the manufacturing of chlorophenols and chlorophenoxy herbicides,
metal processing, and free chlorine bleaching of paper pulp. Dioxins and similar com-
pounds all act by interacting with AhR, albeit with different potency. The cumulative effects
of dioxins are assessed using as parameter the AhR-binding potency of each congener
relative to that of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most known member of
the dioxin-like class [219]. The role of dioxins on the onset of several types of cancer and
the relative increase of mortality has been widely established by the numerous cohort and
case-control studies [220]. Moreover, human exposure to dioxins has been linked to de-
creased semen quality, menorrhagia, and hampered male characteristic development more
than female counterpart [221]. As already mentioned, these noxious effects are claimed
to be ascribed to the interaction of TCDD to the AhR, protein which translocates into the
nucleus to promote the transcription of several factors involved in survival, invasive and
migrative potential of cancer cells [222]. Moreover, AhR is implied in reproductive function
in both sexes, being widely spread in ovaries and testes. Indeed, it is known that testicular
functions (i.e., spermatogenesis and sperm motility), and hence male fertility, are affected
by activation of AHR induced by environmental toxicants [223]. Therefore, AhR has been
studied as an interesting target of pollutant-induced cancers and, specifically, natural
products, among which flavonoids, have seized the attention of the scientific community
in these regards [224]. In particular, the isoflavone genistein from soy was showed to
hamper TCDD-dependent downregulation and methylation of BRCA-1, whose alteration
is known to play a pivotal role in the onset of breast cancer, along with decreasing levels
of DNMT-1 and cyclin D1 in MCF-7 cells, proving the role of genistein in counteracting
ER (estrogen receptor) α-positive breast cancer cells via antagonizing AhR [225]. These
effects elicited by genistein were seen by the same group also in triple-negative breast
cancer cells [226]. The flavanone hesperetin, mainly found in Citrus fruits, was proved to
inhibit AhR translocation induced by TCDD exposure in MCF-7 cells, along with reducing
gene expression of different cytochrome P450 isoforms and other xenobiotic metabolizing
enzymes [227]. Kaempferol, a tetrahydroxyflavone present in many plant species, inhibited
the TCDD-induced expression of both phase I and phase II drug-metabolizing enzymes
(i.e., CYP1A1, NQO1, HO-1, GSTP1) in hepatocarcinoma HepG2 cells, targeting AhR
and Nrf2 pathways, and its combination with luteolin proved to bring even stronger ef-
fects [228]. Kaempferol and luteolin, along with fisetin, apigenin and naringenin hampered
the TCDD-induced up-regulation of CYP1A1 and UGT1A1 in colon carcinoma Caco2 cells,
although other flavonoids, such as quercetin and morin, increased the effect of TCDD.
These effects were explained by the different binding modes of these compounds to AhR,
since specific residues interacted with antagonists (i.e., apigenin) and others with agonists
(i.e., quercetin), while other residues were in common with both species [229]. These
reports highlight the ability of dietary flavonoids to counteract AhR activation mediated
by dioxin-like compounds like TCDD. Nevertheless, other members of this family proved
to possess TCDD-like effects on AhR, thus caution and more evidence are required for a
risk-to-benefit assessment of nutraceutical or pharmacological uses.



Int. J. Mol. Sci. 2022, 23, 1568 14 of 24

9. Phthalates

Phthalates, or phthalic acid diesters, are often employed to improve the flexibility, plia-
bility, and elasticity of otherwise hard polymers. Given their chemo-physical characteristics,
they are used in a wide range of industrial and consumer items, including toys, paints,
adhesives, personal-care products, and a variety of medical equipment. However, due to
their EDC properties, several phthalates in EUROPE are undergoing severe restrictions.
In particular, the main phthalates with EDC properties present in food contact materials are
di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP),
di-isononylphthalate (DINP) [230]. DEHP and other phthalates with EDC properties have
been linked to changes in puberty, development of testicular dysgenesis syndrome, can-
cer, and reproductive problems in both men and women. This because phthalates can
influence the release of hypothalamic, pituitary, and peripheral hormones, along with
interfere with nuclear and membrane receptors, intracellular signaling pathways, and affect
gene expression involved with reproduction [231]. In particular, it has been shown that a
chemokine secreted by immune cells, namely Chemokine (C-C motif) ligand 5 (CCL5) and
also known as RANTES, is involved in the crosstalk to maintain the correct environment for
optimal spermatogenesis [232]. Interestingly, the link between toxicity by environmental
pollutants, such as dioxins, and impairment of male fertility has been ascribed also to a
decrease of CCL5 expression, which experimentally induced a transitory decline in sperm
reserves in the testes of TCDD-exposed rats [233]. In this field, a flavonoid present mainly in
Citrus fruits, namely didymin, reverted the cancerous effects induced by several phthalate
esters (i.e., BBP, DBP, DEHP) in an in vitro experimental model targeting the CCL5 path-
way [234]. In particular, it was shown that MDA-MB-231 breast cancer cells co-cultured
with monocyte-derived dendritic cells and exposed to phthalate esters displayed higher
rates of progression, invasion and migration due to CCL5 release. Didymin was able to de-
plete its secretion, thus hampering the metastatic and proliferative activities of cancer cells
and proving its role in cancer prevention via targeting CCL5 pathway, and possibly protect
against phthalate-induced infertility. Notably, flavonoid consumption, specifically antho-
cyanidins and flavan-3-ols, has been also proved to be positively associated with reduced
breast cancer-risk in a population-based case-control study (233 cases and 221 controls)
performed in a highly polluted area of Mexico [235].

10. Conclusions

The unceasing development of anthropic activities brings consequently an ever-
increasing level of air and soil pollutants, known to hamper human, animal and plant health.
In order to increase one self’s defenses, secondary metabolites from edible plants may
represent valuable allies, when assumed within a varied and well-balanced diet, such as the
internationally recognized Mediterranean Diet model. In these regards, flavonoids are ac-
knowledged for their beneficial effects on human health, including the mitigation of health
risks from environmental pollutants. As here reviewed, the impairment of male fertility and
gonadal development, as well as progression of cancers of reproductive systems of both
sexes, due to the exposure of organic and inorganic pollutants, seemed to be counteracted
by flavonoids in several pre-clinical and clinical studies. While the available evidence is
promising, further studies are needed to definitively assert the role of flavonoids for the
protection of both fertility and related cancers caused by the exposure to environmental
pollutants. This will allow to design novel evidence-based dietary strategies to defend
those subjects’ health who live or work in highly polluted areas.
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