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Neural networks have become the method of choice in surro-
gate modeling because of their ability to characterize arbitrary,
high-dimensional functions in a data-driven fashion. This paper
advocates for the training of surrogates that are 1) consistent
with the physical manifold, resulting in physically meaningful pre-
dictions, and 2) cyclically consistent with a jointly trained inverse
model; i.e., backmapping predictions through the inverse results
in the original input parameters. We find that these two consis-
tencies lead to surrogates that are superior in terms of predictive
performance, are more resilient to sampling artifacts, and tend
to be more data efficient. Using inertial confinement fusion (ICF)
as a test-bed problem, we model a one-dimensional semianalytic
numerical simulator and demonstrate the effectiveness of our
approach.
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Across scientific disciplines, researchers commonly design
and evaluate experiments by comparing empirical observa-

tions with simulated predictions from numerical models. Simu-
lations can provide insights into the underlying phenomena and
are often instrumental to effective experiment design. Unfortu-
nately, the most reliable, high-fidelity simulators are often too
expensive to allow extensive calibration or parameter estima-
tion. Hence, it is common to use ensembles of simulations to
train a surrogate model that approximates the simulator over
a large range of inputs, thereby enabling parameter studies as
well as sensitivity analysis (1). Furthermore, one often fits a
second—inverse—model to guide adaptive sampling and to iden-
tify parameters that drive the surrogate model into consistency
with experiment.

Until recently, surrogate modeling has largely been restricted
to one or at most a handful of scalar outputs. Consequently,
scientists have been forced to distill their rich observational
and simulated data into simple summary indicators or hand-
engineered features such as the integral of an image, the peak
of a time history, or the width of a spectral line. Such fea-
ture engineering severely limits the effectiveness of the entire
analysis chain as most information from both experiments and
simulations is either highly compressed or entirely ignored.
Unsurprisingly, surrogate models designed to predict these fea-
tures are often underconstrained, ill-conditioned, and not very
informative.

Neural networks (NNs) have become a popular option to
address this challenge due to their ability to handle more com-
plex, multivariate datatypes, such as images, time series, or
energy spectra. In a number of different application areas rang-
ing from particle physics (1) to porous media flows (2) and many
other scientific problems (2), NNs are able to effectively capture
correlations across high-dimensional data signatures and pro-
duce high-quality surrogates, predictors, or classifiers. Inverse
problems tend to be ill-posed, yet deep neural networks have
shown remarkable progress in addressing challenging problems
(3). Some notable examples are in imaging (4) and more recently
leveraging novel regularizers such as structural priors (5, 6) or

generative models (7, 8) for traditionally challenging inverse
problems.

As a result there has been renewed interest in building bet-
ter surrogates using neural networks for scientific problems.
These include incorporating known scientific constraints into
the training process (9, 10) or reducing dimensionality for bet-
ter uncertainty quantification (11). However, surrogate forward
models are often constructed in isolation such that they are
inconsistent with an inverse model, leading to an implausible
overall system in which the intuitive cycle of mapping inputs to
outputs and back to inputs produces wildly varying results. Not
only can an inverse prediction from the surrogate output be far
away from the initial input, but even univariate sensitivities, i.e.,
inferring changes in predictions with respect to a single input
parameter, are often unintuitive.

To address these issues, this paper advocates for the training
of manifold and cyclically consistent (MaCC) surrogates using a
multimodal and self-consistent neural network that outperforms
the current state of the art on a wide range of metrics. Using a
semianalytic model of inertial confinement fusion (ICF) (12, 13)
as a test-bed problem, we propose a MaCC surrogate, containing
two distinct components: 1) an autoencoding network to approx-
imate the low-dimensional latent manifold and to accurately
capture the correlations between multimodal outputs of a simu-
lator, i.e., multiple images and a set of scalar quantities, and 2) an
inverse (or pseudoinverse because of the ill-posed nature) neu-
ral network that trains alongside the surrogate network. Cyclical
consistency has emerged as a powerful regularization technique
in unsupervised problems in the past few years (14–16), improv-
ing the state of the art in a variety of applications including
image-to-image translation (14), domain adaptation (17), visual
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question answering (18), and voice conversions (19). We propose
a direct coupling between forward and inverse models to enforce
cyclical consistency, which regularizes the training to produce
higher-fidelity and more robust models.

Main Findings
We find that manifold consistency significantly improves the pre-
dictive capabilities, while the cycle consistency helps in smooth-
ing the high-dimensional function space in the outputs, resulting
in improved resilience to sampling artifacts and data scarcity.
Surprisingly, we find that cyclical consistency generalizes even to
other inverse models (from data bootstraps) not accessed during
training, demonstrating a tight coupling between the input and
output spaces.

Surrogate Design for ICF
In any surrogate-based technique, the challenge is to build a
high-fidelity mapping from the process inputs, say target and
laser settings for ICF, to process outputs, such as ICF implo-
sion neutron yield and X-ray diagnostics. Developing surrogates
in the ICF context is particularly challenging. The physics of
ICF fusion ignition are predicated on interactions between multi-
ple strongly nonlinear physics mechanisms that have multivariate
dependence on a large number of controllable parameters. This
presents the designer with a complicated response function that
has sharp, nonlinear features in a high-dimensional input space.
While this is challenging, deep neural network solutions have
made building surrogates for scalar-valued outputs relatively
routine (20). However, to take full advantage of the rich range
of diagnostic techniques, we require surrogates that can also
replicate a wide range of array-valued image data. In ICF, the
images can be produced by different particles (X-rays, neu-
trons) at different energies (hyperspectral), at different times,
and from different lines of sight. These complicated modalities
are more difficult to ingest, and techniques for learning them
can introduce large model capacity and an associated need for
excessive amounts of data. Thus, our principal design task is
to develop a neural network surrogate that can handle multiple
data modalities, can produce predictions acceptable for precision
physics, and can be trained without requiring unreasonably large
amounts of data.

Predictive Surrogates with Neural Networks
Formally, the surrogate modeling problem is defined as fol-
lows: Given a set of input parameters, X ⊂X (obtained with
an experiment design of choice, e.g., Latin hypercube sample),
and the corresponding observations or outputs from the sim-

ulator, Y ⊂Y , where Y denotes a collection of images (Yimg)
and scalar quantities (Ysca), the task is to determine a func-
tion F :X 7→Y , such that a user-defined measure of predictive
accuracy, i.e., mean squared error (MSE), is minimized. Here,
X and Y refer to the space of inputs and outputs, respec-
tively. We refer to F as the forward model and the reverse
process, G :Y 7→X , as the inverse model. In many scientific
problems a functional inverse may not exist because of the ill-
posed nature of the problem, and in such cases we refer to G
as a pseudoinverse. In recent years, deep neural networks have
emerged as the most powerful predictive modeling tool because
of their ability to approximate nonlinear and high-dimensional
functions. Neural networks are modeled as a series of weights
and nonlinearities that take the input parameters while pre-
dicting the outputs. They are most commonly optimized using
stochastic gradient descent (SGD) with a loss function such as
MSE.

In this paper, we propose two consistency requirements to
improve surrogate modeling: first, a manifold consistency that
ensures the predictions are physically meaningful and, second, a
notion of cyclical consistency (14, 15) between the forward and
inverse models. For the former, we use an autoencoder to embed
all output quantities into a low-dimensional manifold, Z , and
repose surrogate modeling as F :X 7→Z , i.e., to predict into the
latent space in lieu of Y . To enforce the cycle consistency, we
propose to penalize predictions of the forward model that are
“inconsistent” with the inverse model. In other words, a predic-
tion from the forward model, when put through the inverse G,
must give back the initial set of parameters; i.e., G(F(X ))≈X .
In the context of unsupervised image–image translation, cycle
consistency has been shown to be an effective regularization
technique (14, 15). On the contrary, our inverse formulation uses
paired examples, yet suffers from severe ill-posedness. Both con-
sistencies are illustrated in Fig. 1 and described in detail in the
next section.

Notations
Since we have several networks interacting with each other, we
clarify our notation for the rest of this paper. We refer to the
inputs corresponding to a set of samples by matrix X , while
each sample is denoted as x. Similarly, the collections of out-
puts and latent representations are denoted as Y and Z , while
their individual realizations are y and z, respectively. The predic-
tions from the trained models F and G are referred to as ŷ and
x̂. Finally, we denote a cyclical prediction, i.e., x→ ŷ→ ˆ̂x, with a
double hat indicating predictions from both the forward and the
inverse.
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Fig. 1. MaCC surrogates. The proposed architecture uses a pretrained autoencoder (A) for ensuring manifold consistency and an inverse model (B) for
cyclical consistency and robustness. ENC, encoder; DEC, decoder; FWD, forward; INV, inverse.
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Methods
Multimodal Prediction Using an Autoencoder. Exploiting the cor-
relation between multimodal outputs should lead to a better
forward model because it disambiguates simulations that may
otherwise appear similar in some aggregated response func-
tion. A straightforward multimodal forward model F : X→Y
has access to the correlation structure present in Y , but the
task of inferring the correlations from training data is com-
bined with learning the forward model. Instead, MaCC splits
both tasks by first designing an autoencoding neural network to
capture the correlation and then explicitly utilizing this informa-
tion to the forward model by predicting into the inferred latent
space. We jointly infer an encoder E : Y 7→Z to map a multi-
modal observation onto the latent vector z∈Z and a decoder
D : Z 7→Y that reconstructs the multimodal outputs from the
latent representation.

Design. As shown in Fig. 1A, the output space in our setup is
composed of a set of images (treated as different channels)
and diagnostic scalars (s1, · · · sm). The encoder is split into two
branches: one that uses a convolution neural network to encode
image features and another with fully connected layers to process
the set of scalars. Both branches are then merged (by con-
catenation) using another fully connected layer to capture the
relationships between image features and scalars. The joint out-
put layer forms the overall latent representation and serves as
a compressed description of the output space. The decoder is
built symmetrically to reconstruct the original outputs. In addi-
tion to aiming for a high-fidelity reconstruction at the decoder,
we encourage the latent space to be approximately uniform by
placing a statistical prior in the latent space. This is a form of a
Wasserstein autoencoder (WAE) (21) which reduces statistical
dependencies between latent factors and helps to regularize the
autoencoder training. It also enables us to sample from the latent
space efficiently after training. Mathematically, this is achieved
by placing a uniform prior p(z) in the latent space and ensur-
ing that the discrepancy H(p(z), q(z|x)) is minimized, where H
denotes a suitable divergence measure.

Since the exact parameterization of q(z|x) is unknown, we
adopt an adversarial training strategy (two-sample test) that uses
an additional discriminator network to ensure that one cannot
distinguish between the generated latent representations and
realizations from a uniform distribution. Formally, the training
objective Lae can be written as

∑
y∈Y

‖yimg− ŷimg‖22 + γs‖ysca− ŷsca‖22 + γaLadv, [1]

where z= E(yimg, ysca), and ŷimg, ŷsca =D (z),

and Ladv is the discriminator cross-entropy loss that attempts to
classify the latent representation as arising from a fake distribu-
tion, while assuming the real distribution to be uniform random
(21). γs is a weight chosen to adjust the bias toward images, and
we fix it at γs =1× 102, and γa =1× 10−3. Given a pretrained
autoencoder, we encode all training data to form (x, z) pairs and
reformulate the surrogate as learning F :X 7→Z .

Cyclical Regularization in Surrogates. While the surrogate model
introduced above performs well, it is important to recognize a
number of implicit assumptions in the process and consider how
they might affect the quality of the model. One of the most
important and often disregarded assumptions is the choice of
loss function used to construct F . We formulate the training
objective for the surrogate as

min
F

ρ (F(x; θ)− z), [2]

where ρ denotes a measure of fidelity and F represents the
parameterized surrogate model with parameters θ. Partially for
convenience and partially due to a lack of prior knowledge on
the residual structure, ρ is often chosen to be an `p norm. This
implicitly assumes that the data manifold, i.e., the space of all
outputs F(x) for x∈X, is Euclidean which is most certainly not
the case. Furthermore, the choice of norm also assumes a dis-
tribution of discrepancies between the model and the ground
truth. Specifically, if we express F(x)=F∗(x)+ ε(x), where F∗
is the ground-truth mapping, then choosing, for example, the `2
norm is implicitly assuming that ε follows a Gaussian distribu-
tion. In practice, neither the Euclidian space nor the Gaussian
error assumptions are likely to be correct. However, designing
a more appropriate and robust loss function in the latent space
is difficult especially for the complex, multimodal data of inter-
est here. Accordingly, we propose a regularization strategy based
on self-consistency to produce more generalizable and robust
forward models.

Conceptually, the challenge in using [2] to define F is twofold:
First, since we cannot build a customized ρ and the space of
θs is large, there likely exist many different Fis with an accept-
able error that may represent physically better surrogates than
the chosen F . Second, the true error is unlikely to be isotropic,
meaning some deviations from F∗ are more plausible or less
damaging than others. To choose among these Fs we impose
a cycle consistency requirement defined as follows: We jointly
train a pseudoinverse of F∗, i.e., G :Y 7→X , and introduce a
regularization term δ(F ,G) computed as

δ(F ,G)=
∑

x∈X ,z∈Z

‖z− ˆ̂z‖
2

2 + ‖x− ˆ̂x‖
2

2, [3]

where ˆ̂z=F(G(D(z))) and ˆ̂x=G(D(F(x))) are the cyclical pre-
dictions for z and x, respectively. Note that different from F ,
the pseudoinverse takes the decoded outputs Y instead of Z .
The use of the `2 norm in Eq. 3 still makes the Euclidean
assumption, but is more appropriate in the latent space Z, which
is trained to be close to a full-dimensional, Euclidean space
[although this cannot be guaranteed (22)]. We also expect the
cyclical regularization to account for some of the nonisotropic
error behavior. The cycle regularization directly in the data (or
pixel) space can be unstable when the mapping between the two
domains is not isomorphic, as is likely the case in a surrogate
problem. Although this problem still persists, it is mitigated to a
large extent by including cycle regularization in the latent space
instead (similar observations have been reported by ref. 23 for
image translation tasks). We explore this further in Experiments
and Results.

Consequently, the optimization objective for MaCC surro-
gates can be expressed as

min
F,G

ρ (F(x; θ)− z)+λcycδ(F ,G). [4]

Note that in general G cannot be a true inverse since F∗ might
not be bijective. In this case constructing G as a function, i.e.,
a neural network, induces a mode collapse in the estimated
posterior p(x|z). However, we see that even a pseudoinverse G
encodes a better local residual structure than F alone.

In this context, the bidirectional consistency penalty in Eq. 3
encourages the surrogate F to be consistent with the pseudoin-
verse in different ways. The first term is not affected by the mode
collapse in the inverse since it is entirely computed in the out-
put space alone. As a result, it encourages the high-dimensional
output function to be smoothly varying, while the second term
constrains the forward model to make predictions closer to the
data manifold.
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Fig. 2. (A) The proposed model is able to match the simulator’s prediction very closely, across all of the four energy bands. Here we show a random sample
comparing the simulator’s outputs to predictions from a MaCC surrogate. (B) Residual images (absolute), with respect to the ground truth, for 16 examples
(only one energy band shown). The intensities of images for both the baseline (B) and MaCC (P) are normalized to a global scale. Except for a small number
of cases (highlighted with red border), MaCC produces improved quality predictions, when compared to the baseline.

We observe that due to the ill-conditioned nature of the
inverse problem, a neural network takes significantly longer to
converge than the forward network. To address this challenge,
we first pretrain the inverse network; i.e., we train a standalone
pseudoinverse neural network until convergence. We then load
this pretrained model and resume training with the forward
model which is trained from scratch using the cyclical consis-
tency. This process is sometimes referred to as a “warm start.”
During cyclic training, the pseudoinverse continues to train with
the loss

min
G

∑
z∈Z

ρ (G(D(z); θI )− x)+λcyc‖z− ˆ̂z‖
2

2, [5]

where θI is the set of parameters of G, and the other terms
are the same as in Eq. 3. Note that optimizing F according
to Eq. 4 necessarily biases the model toward a particular pseu-
doinverse G. However, as is discussed in more detail below, the
resulting F is highly consistent with a diverse set of Gs, different
from the one used during training, constructed by bootstrapping
the training data. In other words, by including the consistency
regularization, the surrogate F converges to a solution where
the resulting residuals are better guided by the characteristics
of G. This achieves the same effect as explicitly constructing
a specialized loss function ρ to better fit the data character-
istics. As we show in our experiments, surrogates obtained
using existing neural network solutions are inconsistent with
the inverse model and result in nonsmooth, nonrobust models
in practice.

A New Self-Consistency Test for Surrogates. Given the limitations
of commonly used error metrics in surrogate evaluation, we
introduce a metric for surrogate fidelity that couples the perfor-
mance of both the forward and inverse models. We create a test
set by varying only a single input parameter using a linear scan
of 100 steps (from min to max), while fixing all other parameters.
These 100 samples are then passed through the forward model
and subsequently through the inverse model before obtaining
back input parameter predictions. We check whether the pre-

dictions are consistent with the “ground truth,” i.e., the linear
scan. This is conceptually similar to partial dependency tests in
statistics and effectively captures sensitivities of the forward and
inverse models.

Given the underdetermined nature of the inverse process, it
is possible that the achieved self-consistency is biased by the spe-
cific solution of G. Hence, we propose to evaluate the consistency
with respect to different solutions from the space of possible
pseudoinverse models. To this end, we use multiple random sub-
sets of the original training set (bootstraps) and obtain indepen-
dent estimates of G. We find that the cyclical consistency remains
valid for MaCC across all of these models, indicating that the
self-consistency achieved is actually statistically meaningful. The
consistency measure is given by

Lc =

5∑
i=1

R2(xscan,Gi(D(F(xscan)))). [6]

Here R2 denotes the R-squared statistic and Gi corresponds to
the inverse model inferred from the i th bootstrap.

Experiments and Results
Dataset. Our training dataset is composed of input parameter
settings and the corresponding outputs from the semianalyti-
cal ICF simulator described in ref. 12, where each output is a

Table 1. Surrogates with MaCC show superior predictive
performance as measured by mean squared error

Metric Baseline (no MaCC ) Baseline + MaCC

Mean R2 scalars 0.9990 0.9974
MSE image (band 0) 0.0476 ± 0.0449 0.0351 ± 0.0296
MSE image (band 1) 0.0458 ± 0.0446 0.0374 ± 0.0371
MSE image (band 2) 0.08745 ± 0.1355 0.0736 ± 0.1236
MSE image (band 3) 0.2035 ± 0.4441 0.1742 ± 0.4010

Here we use a cyclical weight λcyc = 0.05. Boldface indicates better
performance.
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Fig. 3. Cycle consistency results in improved generalization with fewer
training samples. RF (+AE) is a non-NN baseline that uses random forest
with the auto-encoder.

collection of four multienergy images sized 64× 64 and 15 diag-
nostic scalar quantities such as yield, ion temperature, pressure,
etc. Our dataset was constructed as a random subset (100,000
samples) of a Latin hypercube experiment design containing 1
million samples in the five-dimensional input parameter space.
All model evaluation is carried out using a held-out 10,000 vali-
dation set, which contains no overlap with the training set. Next,
we describe the training strategies adopted for different compo-
nents of a MaCC surrogate in our experiments. All models were
trained using the Adam Optimizer (24), with the learning rate
set at 1× 10−4 and the minibatch size fixed at 128 samples. The
architectures for all of the models are included in SI Appendix.

Experimental Details. First, we train the autoencoder with a 32-
dimensional latent space until convergence requiring about 600
epochs. Additionally, we use a pretrained inverse that is trained
for about 2,500 epochs. The architectural details for all networks
are available in SI Appendix.

Baselines. We compare the performance of the surrogate across
all of the proposed metrics with several baselines which we
describe next: 1) For non-NN baseline, we train an extremely

randomized tree model that predicts directly into the latent
space, Z, coupled with the pretrained decoder. This is simi-
lar to recent work (20) in ICF where they use decision trees
to initialize a surrogate that maps only to scalars. 2) For NN
baseline, we consider an NN baseline (trained with and with-
out cycle consistency) that takes in the inputs and predicts the
images via two separate networks. We construct a baseline with
similar architecture, with approximately the same number of
parameters, the main difference being that it does not use the
manifold consistency. In addition, we also create other baselines
using ablation studies of the λcyc parameter, keeping the archi-
tecture exactly the same. More details about the baselines are in
SI Appendix.

Results.
Qualitative evaluation. Fig. 2A shows random samples from the
simulator and their corresponding predictions obtained using
our surrogate, demonstrating that MaCC captures details very
accurately, across the four energy channels. Next, Fig. 2B illus-
trates the residual error images for 20 randomly chosen examples
(only one energy band shown) obtained using predictions from
the baseline and MaCC. All images are intensity normalized
by the same maximum intensity value. In most cases, MaCC
predicts higher-quality outputs, where smaller residuals indicate
higher-fidelity predictions.

We evaluate the quantitative performance of the surrogates
using widely adopted metrics, namely MSE and R2. More specif-
ically, we report the following quantities: 1) for mean R2 scalars,
average coefficient of determination (R2 statistic) across the 15
scalar outputs, and 2) for MSE image (band), mean squared
error of prediction for the entire 10,000 test set, in each of the
energy bands. The results are shown in Table 1, where we include
the performance of the baseline approach and MaCC with λcyc =
0.05. From the results for image prediction, it is evident that
MaCC outperforms the baseline neural network solution. In con-
trast, it is fairly straightforward to predict the scalar diagnostic
outputs, with both models achieving an R2 score of∼0.99. Com-
parisons across more baselines and ablation studies are shown
in Fig. 4A.
Cycle-consistency score. We show the results for one particu-
lar pseudoinverse trained with a random 50% of the training
data. The results for other cases are reported in SI Appendix.
In Fig. 4A, we show how cyclical regularization impacts the
quality of the surrogate model, against its tendency to be self-
consistent. We observe that a small λcyc does not adversely
affect the quality of the surrogate model as measured by mean

BA

Fig. 4. (A) Ablation study of λcyc and mean squared error. A higher weight leads to more cyclically consistent predictions. Except for extreme cases, the
training is fairly robust to values of λcyc, leading to a better performance than the baseline. (B) Cyclic consistency results in robustness to small local
perturbations, as a result of smoothing the high-dimensional output prediction space. This also leads to better predictions in smaller data regimes as seen
in Fig. 3.

Anirudh et al. PNAS | May 5, 2020 | vol. 117 | no. 18 | 9745

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916634117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916634117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916634117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916634117/-/DCSupplemental


squared error. As can be seen, until λcyc =0.10 all of the mod-
els consistently perform better than the baseline. However, with
a significant weight, the model tends to underfit, resulting in a
higher MSE.

Benefits of Cyclical Consistency. Cyclical consistency acts as a reg-
ularization technique that helps in smoothing out the prediction
space, and as a result we expect to see gains in predictive per-
formance of the forward model when there are fewer training
data available, as well as in improved robustness to perturbed
inputs. We see both of these to be the case and discuss the
results next.
Behavior in small data regimes. We observe improved predictive
performance of the forward model when there are significantly
fewer training samples, as shown in Fig. 3. We train different
surrogates while providing access only to a fraction of the train-
ing set. It must be noted that the autoencoder is used in this
experiment, which has been trained on the 100,000 dataset, but
it is unsupervised; i.e., it only approximates the physics manifold
without any knowledge of the forward process. We evaluate the
performance of all models on the same 10,000 validation set as
before to make them comparable Additionally, we show general-
ization when an “oracle” inverse is available, in which the inverse
has access to the entire dataset as an upper bound. The benefit
makes it clear that the inverse has useful gradients to improve
the quality of the forward model, sometimes reducing prediction
error by nearly ∼30%.
Robustness to sampling artifacts. At test time, we add a small
amount of uniform random noise, x̂= x+σ ∗U to the five input

parameters, and measure how much the output has changed with
regard to the ground-truth value at x . This is a measure of how
smooth the predictions in the output (image) space are. Partic-
ularly of relevance to surrogates of scientific models, we expect
the function value to change gradually in regions where there are
few or no samples around a given test sample. This can be useful
in scenarios with sampling artifacts or a poor design of experi-
ments. We observe that cyclical consistency has a direct impact
on the smoothness of the predictions as shown in Fig. 4B. On
the y axis we show the sensitivity to local perturbations, i.e., the
difference in MSE between F(x) and F(x̂), with the consistency
measure described in Eq. 6 on the x axis. We observe that the
cyclical regularization results in significantly more robust mod-
els, while having very similar prediction errors on clean data,
as seen in Fig. 4A. To ensure that the perturbations are not
extreme, we pick σ=0.1 for all samples. This was chosen by
ensuring that the distance of the clean test set to the perturbed
one is smaller than its distance of the nearest neighbor in the
training set.
Discussion. In this paper, we introduced MaCC surrogates,
which contain two distinct elements: a pretrained autoencoder
that enforces the surrogate to map input parameters to the
latent space, i.e., X 7→Z instead of the traditional X 7→Y, and
a pseudoinverse trained alongside the surrogate with a cycli-
cal consistency objective, which encourages the predictions
from G(F(x )) to be close to the input x . These proper-
ties lead to robust, data-efficient, and interpretable surrogates,
which are properties critical for surrogate models in scientific
applications.
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