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Abstract

Background: Glioblastoma (GBM) is the most aggressive and prevalent primary brain
tumor, with a median survival of 15 months. Advancements in multi-omics profiling
combined with computational algorithms have unraveled the existence of three
GBM molecular subtypes (Classical, Mesenchymal, and Proneural) with clinical
relevance. However, due to the costs of high-throughput profiling techniques, GBM
molecular subtyping is not currently employed in clinical settings.

Methods: Using Random Forest and Nearest Shrunken Centroid algorithms, we
constructed transcriptomic, epigenomic, and integrative GBM subtype-specific
classifiers. We included gene expression and DNA methylation (DNAm) profiles from
304 GBM patients profiled in the Cancer Genome Atlas (TCGA), the Human
Glioblastoma Cell Culture resource (HGCC), and other publicly available databases.

Results: The integrative Glioblastoma Subtype (iGlioSub) classifier shows better
performance (mean AUC = 95.9%) stratifying patients than gene expression (mean
AUC = 91.9%) and DNAm-based classifiers (AUC = 93.6%). Also, to expand the
understanding of the molecular differences between the GBM subtypes, this study
shows that each subtype presents unique DNAm patterns and gene pathway
activation.

Conclusions: The iGlioSub classifier provides the basis to design cost-effective
strategies to stratify GBM patients in routine pathology laboratories for clinical trials,
which will significantly accelerate the discovery of more efficient GBM subtype-
specific treatment approaches.
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Introduction
Despite aggressive multimodal treatments, the median survival of glioblastoma (GBM)

patients is 15 months, with only 5 % survival beyond 5 years [1]. Some factors influen-

cing the resistance to treatments include sub-optimal drug selection, intra-tumor het-

erogeneity, tumor genetic background, and epigenetic alterations [2–5]. Epigenetic
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mechanisms involving DNA methylation (DNAm) and histone modifications play a sig-

nificant role in cancer progression and resistance [6, 7]. Currently, GBM molecular fea-

tures are gaining more attention, given their critical role in clinical decision-making.

For example, tumors harboring mutations on the IDH1 gene showed an increase in glo-

bal DNAm levels, defined as the glioma CpG island Methylator Phenotype (G-CIMP),

associated with a better prognosis [8–10]. Additionally, hypermethylation of the

MGMT gene promoter region is the best-known prognostic factor for a favorable re-

sponse to Temozolomide [11]. However, other factors such as ZNF7 expression levels,

or transcriptional profiling of the tumor microenvironment, have emerged as potential

prognostic markers for GBM [12, 13].

Originally, GBM was classified into four major molecular subtypes: i.e., Classical,

Mesenchymal, Neural, and Proneural [14]. However, in the last years, different studies

have shown that the Neural subtype may be a consequence of contamination by oligo-

dendrocytes and neurons from tumor margins instead of being characteristic of the

tumor itself [15]. Identification of GBM subtypes is essential for prognosis, as they have

different clinical outcomes and molecular characteristics [3]. Nevertheless, while the

anatomic-pathologic diagnosis of GBM is a well-established routine procedure that aids

oncologists in deciding clinical management, an accurate molecular stratification of

GBM still requires high-throughput molecular profiling, which is expensive, requires

extensive data processing, and is not routinely available on regular health care centers.

Increased accessibility to multi-omic profiles of clinically annotated cancer specimens

has accelerated the identification of molecular classification systems [16, 17]. To date,

several classifiers based on gene expression or DNAm features have been generated to

guide the treatments of multiple cancer types [14, 18]. However, most of these need to

perform whole-transcriptome or epigenome-wide profiling, requiring technology that is

not accessible in all health centers. To override this limitation, we and others have con-

structed classifiers using data reduction techniques that provide the minimum and

highly informative number of features necessary for stratifying cancer specimens [19–

22]. For instance, these methodologies have already been used to construct various

gene expression-based panels, including a 44-gene panel to classify renal cell carcin-

omas [23] or a 13-gene panel to estimate radiation sensitivity in the head and neck

squamous cell carcinomas [24]. DNAm-based panels have also shown utility for clinic-

ally relevant cancer stratification [25, 26]. For example, identification of the tissue-of-

origin in cancer of unknown primary tissue [25], determining the diagnosis of primary

tumors affecting the central nervous system [27], and discerning primary from meta-

static brain tumors [28, 29]. As a result, these molecular classifiers with a minimum

number of features have emerged as a cost-effective alternative that requires low com-

plexity techniques, such as qPCR, methylation-specific PCR, pyrosequencing, etc., that

are usually available in pathology laboratories [19, 22].

To contribute to evaluating GBM subtypes in clinical settings, we aimed to construct

classifiers that can be adapted to routinely used screening assays. We have employed

machine learning, computational biology algorithms, and prioritization of highly in-

formative transcriptomic and epigenomic features to construct and validate three types

of classifiers: (1) a gene expression-based classifier, (2) a DNAm-based classifier, and

(3) a novel Glioblastoma Subtype classifier (hereinafter referred as iGlioSub) containing

both features.
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Methodology
Data access, collection, and normalization

The Cancer Genome Atlas (TCGA) clinical data [2], containing annotations from 1,122

glioma patients, was obtained from the Broad Institute Genome Data Analysis Center

(GDAC) Firehose [30] on 20/2/2019. This data was curated, excluding low-grade gli-

oma (LGG) cases or incomplete clinical and demographic information, such as age,

gender, Karnofsky Performance Score, tumor purity, subtype information, or IDH mu-

tation status, to reduce the variability between the groups and avoid confounding fac-

tors (Suppl. Figure 1). These patients were classified into Classical, Mesenchymal, and

Proneural subtypes using the “Transcriptome subtype” or the “Original Subtype” anno-

tation. The agreement between these two annotations, representing transcriptome-

based and immunohistochemistry (IHC)-based stratification of patients, was computed

using the kappa coefficient using the R/psych. Due to the conflicting evidence, all cases

classified as Neural were excluded from downstream analyses [15, 31]. The resulting

cohort included 238 GBM patients (Suppl. Figure 1). Gene expression data (Affymetrix

u133a array data (“ht_hg_u133a-gene_rma (MD5)”) was downloaded from Firehose

Broad on 5/3/2019. In addition, gene expression data (u133a microarray) from 44

established primary GBM cultures with previously established molecular subtypes were

downloaded from the Human Glioblastoma Cell Culture resource (HGCC) [32].

DNAm data was downloaded from Genomic Data Commons (GDC) using R/TCGAbio-

links [33] on 11/3/2019 using R 4.0.2 and Bioconductor 3.11. After filtering missing

probes, DNAm data generated with the HumanMethylation27 (HM27K; n = 133 pa-

tients) and the Infinium HumanMethylation450 (HM450K; n = 44 patients) BeadChip

arrays were combined and included in the study. Probes common to all Illumina Bead-

Chip generations and passing the GenomeStudio QC (Illumina; n = 22,330 probes) were

employed as input for the downstream analyses. Furthermore, HM450K DNAm data

from 35 additional patients were downloaded from the NCBI-GEO repository

(GSE128654 [34]). Principal Component Analysis (PCA) was performed using the

prcomp function on R to identify potential batch effects in DNAm and gene expression

datasets.

Data processing and statistical analysis

For the gene expression analysis, this process was performed using the training cohort

from TCGA (n = 234). First, the mean expression of all genes was computed, and the

25 % of genes with the lowest overall expression levels were removed from the dataset

(n = 3,011). The expression values of the remaining genes (n = 9,031) were normalized

to Z-Score using the ‘scale’ command in R. As a general analytical scheme, the differ-

ences between ‘Subtype’ and ‘Control’ (all subtypes except the selected one) were com-

puted by Z-Ratio. The Student’s t-test was employed to evaluate the statistical

significance of differences between Z-Scores. The obtained p-values were corrected for

multiple comparisons (q-value) by the “False discovery rate” (FDR) method using the

command p.adjust in R. The differences between the groups were considered signifi-

cant when the absolute Z-Ratio was over 1.5, with q-value < 0.05. All significantly differ-

entially expressed genes (DEG) were selected for downstream analyses. Heatmaps were

employed to visualize hierarchical cluster analyses based on Euclidean distance using
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R/gplots, and t-distributed Stochastic Neighbor Embedding (t-SNE) was performed to

identify the data’s distribution using R/Rtsne (perplexity = 30, maximum iterations =

5,000, theta = 0).

For the analysis of the DNAm data, we merged three databases (TCGA-HM27K,

TCGA-HM450K, and GSE128654 -HM450K-) to construct and validate DNAm-based

classifiers. The batch effect associated with the different data sources was identified by

PCA and corrected using the ComBat function on the R/sva package (Suppl. Figure 2).

The DNAm levels were converted to M-value to transform the data from a bimodal to

a normal distribution [35]. The differentially methylated sites (DMS) were identified in

a training cohort (70 %; see Suppl. Table 1). Genomic regions with differences in M-

value between subtype and control of at least 1.0 and q-value < 0.05 were considered

DMS (Fig. 1).

Generation of machine learning-based classifiers

First, the initial number of features was reduced by Random Forest (RF) algorithms

applying the varSelRF command from R/varSelRF package to all the DEG or DMS

Fig. 1 Schematic representation of the methodology for obtaining the gene expression-based, DNAm-
based, and iGlioSub panels to classify GBM subtypes
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(varSelRF parameters: mtryfactor = 1, ntre = 1000, ntreeIterat = 500, vars.drop.frac =

0.2). This method uses RF and, in each iteration, discards the 20 % of features with

the lowest relevance in stratifying the patients, and, finally, selects the combination

of features with the lowest Out-Of-Bag (OOB) error, the variable with the highest

importance in the selection of the best combination of features [36, 37]. Then, a

classification system using the nearest shrunken centroid (NSC) method was cre-

ated, according to the potential of each feature to discriminate the subtype and

control groups. The R/pamr package was employed for the elaboration of this sys-

tem. 234 patients were included in the training phase for the gene expression clas-

sifier and 126 patients for the DNAm classifier. A 10-fold cross-validation strategy

was employed to test each classifier. The top five highly ranked features meeting

the required conditions were selected using the pamr.listgenes command. These

five features mandatorily included at least two positively and two negatively associ-

ated features for the specific subtype. This process, beginning with R/varSelRF, was

repeated 300 times for each subtype, and then the most repeated sequence of

genes was chosen.

Sub-cohorts containing the same number of patients per subtype were created

randomly selecting cases from the initial set of patients to evaluate centroids’ as-

signment. For the gene expression data, the data was re-normalized for this new

cohort using the ‘scale’ command in R. The centroids for the selected features

were calculated using R/pamr. This process was repeated 300 times with different

randomly selected subtype-balanced cohorts. In each iteration, we calculated the

centroids, the standard error of each centroid, and the error rate of the panel. The

efficiency of the final centroids was assessed by establishing the Receiver Operating

Curve (ROC) and calculating the Area Under the Curve (AUC) using the R/ROCR

package in each iteration. Finally, the mean of all iterations was calculated for all

parameters. Error rates and AUC differences between gene expression, DNAm, and

integrative panels were independently analyzed in each subtype by ANOVA

(Tukey’s multiple comparison test for individual comparison between panels) using

R commands aov and TukeyHSD (Fig. 1).

HGCC gene expression data (n = 44) was used as an independent validation cohort

for the gene expression-based classifier, and the performance of the DNAm classifier

was assessed in a validation cohort (30 %, n = 54; see Suppl. Table 1). The centroids

generated in our study were used to obtain scores for each GBM subtype and patient,

and the subtype with the highest score in each sample was selected. Agreement be-

tween our subtype assignment and the preset classification was evaluated using the

kappa coefficient using the R/psych.

Generation of integrative classifiers

The informative features from the gene expression and DNAm final classifiers were

used to construct the integrative classifier. The integrative classifier centroids were gen-

erated as described for gene expression- and DNAm-based panels classifiers, but skip-

ping the step of feature selection. The efficiency was assessed in a validation cohort

(30 %, n = 49; see Suppl. Table 1).
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Assessment of tumor subtype heterogeneity and potential impact in classification

performance

Single-cell RNA-seq (scRNA-seq) data from 25 GBM cases [4] was downloaded from

BROAD Institute Single Cell Portal. All cells (n = 7,860) were individually classified

using GlioVis, which was previously proved to classify GBM cells using scRNA-seq data

[38, 39], and our gene expression-based classifiers. The percentage of cells classified as

Classical, Mesenchymal, and Proneural established by GlioVis and our methods was es-

timated for each patient. The mean expression of each gene was estimated for each

GBM patient, and the resulting gene expression profiles were classified using GlioVis

and the gene expression classifier.

Gene enrichment analysis and identification of potential druggable targets

The Metascape data analysis resource [40] was used to evaluate gene ontology and gene

pathway enrichment analyses. The data was loaded as a Multiple Gene List with config-

uration to obtain Gene Ontology terms (GO) enrichment. All genes included in the

analysis (n = 9,031) were used as background genes. We manually curated each GO

term to include molecular functions relevant for GBM progression. The selected GO

terms were represented using the R/ggplot2 package. A subset of clinically relevant

pathways was selected and evaluated using Gene2Drug [41] to obtain a list of drugs po-

tentially targeting the subtype-specific pathways.

Identification of association between DMS and gene regulatory elements

The Genomic Regions Enrichment of Annotations Tool (GREAT) [42] was employed

to identify associations between DMS and gene regulatory elements for each GBM sub-

type. Briefly, two Browser Extensible Data (BED) files per subtype containing hyper-

methylated and hypomethylated DMS were evaluated using all the genomic regions

used in the initial analysis as background (n = 22,330). Genes located up to 5 kb up-

stream or downstream of the genomic coordinate of the DMS were considered prox-

imal, and genes up to 1 Mb were considered distal. The most relevant pathways

associated with GBM were plotted using R/ggplot2.

Results
Machine learning-based transcriptomic and epigenomic classifiers efficiently classify GBM

subtypes

DEG and DMS were estimated by comparing the transcriptomic or epigenomic profiles of

each subtype with the rest of the samples. Unsupervised hierarchical clustering analysis and t-

SNE representation using subtype-specific DEG or DMS showed a modest overall perform-

ance in segregating the cases according to the annotated GBM subtype, even when combining

DEG and DMS (Suppl. Figures 3 and 4). We, therefore, employed RF to identify informative

genomic features amongst DEG and DMS to stratify GBM specimens into molecular sub-

types. The initial RF-based signatures were reduced by applying NSC approaches. This add-

itional step allowed to exclude correlated and possibly redundant features to generate

signatures with a minimum number of genes or CpG sites. We identified that five features per

subtype were the minimum number of features with high accuracy and low error rates (Suppl.

Figure 5). Each classifier included features positively and negatively associated with each
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subtype to construct gene expression (Suppl. Table 2), DNAm (Suppl. Table 3), and integra-

tive (iGlioSub; Suppl. Table 4) classifiers.

The machine learning-based classifiers improved the stratification of GBM cases ac-

cording to the annotated subtype compared to the DEG and DMS (Figs. 2 and 3). Each

classifier was designed to stratify a specific GBM subtype (Classical, Mesenchymal, or

Proneural) from the rest. Thus, combining all the features into a unified classifier, inde-

pendently of the data type, had a worse performance than stratifying GBM specimens

using subtype-specific classifiers (Suppl. Figures 6 and 7).

iGlioSub is more effective in stratifying specimens into GBM subtypes than the DNAm-

and gene expression-based classifiers

The predictive performance of the classifiers was compared by establishing the ROC

curves and calculating the AUC (Fig. 4A). Our analysis showed that iGlioSub had

higher AUC to identify the Classical (97.5 ± 1.0 %) and the Mesenchymal (95.0 ± 1.3 %)

subtypes compared to the gene expression (90.5 ± 2.1 %, 90.5 ± 1.3 %) and DNAm

Fig. 2 t-SNE plots representing the clustering of GBM specimens using (A) the 5 genes included in each
gene expression-based panel, B the five CpG sites included in each DNAm-based panel, and C the ten
features included in each iGlioSub panel. All plots show a significant subtype-specific patient stratification
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Fig. 3 Hierarchical cluster analysis using Euclidean distance using (A) 5 genes included in each gene
expression-based panels or (B) 5 CpG sites included in DNAm-based panels for each GBM subtype. All plots
show a significant classification potential of hierarchical clustering

Fig. 4 A ROC Curves for the gene expression, DNAm, and iGlioSub panels for the Classical, Mesenchymal,
and Proneural subtypes. A black line represents a representative ROC Curve of each panel. B-C Radar plot
representing the (B) AUC and (C) Error Rate of the gene expression, DNAm, and iGlioSub panels for the
three GBM subtypes. iGlioSub displays a better performance in both AUC and Error Rate than DNAm and
gene expression-based panels for the Classical and Mesenchymal subtypes (p < 0.01) but not for the
Proneural subtype
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(94.2 ± 1.4 %, 91.4 ± 2.1 %) classifiers (p < 0.01). The iGlioSub Proneural panel (95.3 ±

0.5) displayed better performance than the gene expression classifier (94.8 ± 0.6 %; p <

0.01) but was not significantly better than the DNAm classifier (95.2 ± 0.5 %; p > 0.05;

Fig. 4B). The error rate was also inferior in the iGlioSub panel for the Classical (0.07 ±

0.019) and the Mesenchymal (0.11 ± 0.021) subtypes compared to the gene expression

(0.12 ± 0.013, 0.20 ± 0.024; p < 0.01) and the DNAm panels (0.12 ± 0.020, 0.16 ± 0.024;

p < 0.01). Similar to the AUC, the iGlioSub panel for the Proneural subtype displayed a

significantly higher error rate (0.10 ± 0.020) than the DNAm-based classifier (0.07 ±

0.017, p < 0.01), but no different to the gene expression classifier (0.10 ± 0.012, p > 0.05;

Fig. 4C).

An external cohort of 44 tumors from the HGCC resource was used to validate the

gene expression-based panels. Prediction of GBM subtypes in these samples showed a

moderate agreement (κ = 0.68; p < 0.01), thus exhibiting an overall high accuracy of our

gene expression-based panel. The agreement was slightly variable in different GBM

subtypes, ranging from 0.60 for the Classical subtype and 0.68 for the Mesenchymal

subtype to 0.78 for the Proneural subtype (Suppl. Tables 5 and 6).

In a validation cohort (n = 54 cases), the DNAm-based classifier exhibited a higher

agreement than the gene expression-based classifier (κ = 0.82, p < 0.01). This was ob-

served for every subtype (Classical = 0.84; Mesenchymal = 0.77; Proneural = 0.85; Suppl.

Tables 7 and 8).

The iGlioSub efficiency was assessed in a validation cohort (n = 49). The agreement

of this classifier was superior to the DNAm-based and the gene expression-based classi-

fiers (κ = 0.9, p < 0.01), and consistent in all subtypes (Classical = 0.87; Mesenchymal =

0.88; Proneural = 1; Suppl. Tables 9 and 10).

Machine learning transcriptomic classifiers identify GBM subtype heterogeneity

scRNA-seq data from 25 cases were used to assess the capacity of the machine learning

transcriptomic classifier to identify subtype-heterogeneity in GBM. All the cells (n =

7,860) were initially classified using the GlioVis method [39]. In line with prior observa-

tions [43], all the cases presented a variable proportion of the GBM subtypes (Suppl.

Figure 8). Twenty-one out of twenty-five patients showed a prevalent subtype (> 50 %

of all the cells) using the transcriptomic classifier. Importantly, our gene expression

classifier showed similar results in the classification of each GBM cell and the propor-

tion of each subtype per sample (p-value < 0.01; Suppl. Figure 8). To evaluate how the

GBM heterogeneity may impact the identification of GBM subtypes, we simulated bulk

RNA-sequencing (RNA-seq) profiling for each of the 25 cases by establishing the mean

value for each gene. We found that GlioVis identified the predominant GBM subtype

in 19 out of 25 cases (κ = 0.63) and our classifier in 23 out of 25 (κ = 0.88; Suppl.

Figure 8).

Differential activation of immune-related pathways among GBM subtypes

The classical subtype showed enrichment in upregulated genes in the ErbB receptor

tyrosine kinase family signaling pathway and cell fate commitment, among other path-

ways. In contrast, the downregulated genes were enriched in immune system-related

pathways, such as regulation of cytokine secretion and myeloid leukocyte activation
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(Fig. 5A, Suppl. Figure 9). Furthermore, many hypermethylated sites were involved in

immunity pathways, such as leukocyte migration and activation, supporting the obser-

vation from the gene expression analysis (Fig. 5A, Suppl. Figure 10).

The patients with the Mesenchymal subtype showed higher expression of genes in

the ERK1/2 cascade and pro-inflammatory, cytokine secretion, and myeloid leukocyte

activation pathways. On the other hand, downregulated genes were enriched in RNA

splicing pathways and DNA repair genes (Fig. 5B, Suppl. Figure 9). In these patients,

the hypermethylated sites were enriched in genes in chemokine-mediated signaling and

granulocyte migration pathways, while hypomethylated sites were enriched in immune

response, regulation of immune system process, and leukocyte activation pathways

(Fig. 5B, Suppl. Figure 10).

Finally, the Proneural subtype showed upregulated genes enriched in cell division

pathways, including G1/S and G2/M transition, and downregulated genes enriched in

inflammatory pathways, such as myeloid leukocyte activation and cytokine receptor

binding, and ERK1/2 cascade (Fig. 5C, Suppl. Figure 9). Surprisingly, only 58 sites (4 %)

were hypermethylated in Proneural samples, which involved varied pathways such as

Fig. 5 Analysis of differentially expressed genes and differentially methylated sites in GBM Subtypes. Left
panel: Gene Enrichment Analysis of downregulated genes (red bars) and hypomethylated CpG sites (blue
bars) in each subtype. Vertical lines represent the p-value cutoff (p = 0.05). Middle panel: Volcano Plot,
representing differential gene expression (Z-Ratio; red dots) and differentially methylated CpG sites (M-value
fold change; blue dots). Horizontal lines indicate the q-value threshold (Student’s t-test, corrected by FDR =
0.05). Right panel: Gene Enrichment Analysis of upregulated genes (red bars) and hypermethylated CpG
sites (blue bars) in each subtype, being (A) Classical subtype, B Mesenchymal subtype, and C Proneural
subtype. Vertical lines represent the p-value cutoff (p = 0.05)
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central nervous system neuron differentiation. The hypermethylated sites were enriched

in pathways related to chemokine-mediated signaling pathways and leukocyte migra-

tion, matching the gene expression results, which showed downregulation of these

pathways (Fig. 5C, Suppl. Figure 10).

Using the ‘Gene2Drug’ algorithm, several drugs were identified to target enriched

pathways in each subtype. For instance, azacitidine and quercetin, two FDA-approved

drugs, diminish the ERBB signaling pathway, a hallmark of the Classical subtype. Fur-

thermore, erastin, a drug tested as a sensitizer for TMZ in GBM [44], reduces the levels

of genes in the ERK1/2 cascade, which are typically upregulated in the Mesenchymal

subtype. Flupentixol, an antipsychotic drug used by schizophrenia patients, diminishes

genes related to G1/S and G2/M transition, specifically upregulated in the Proneural

subtype. Furthermore, this drug has been proposed as a novel anticancer therapy in

lung cancer [45].

Discussion
Even though GBM subtypes were first described more than a decade ago [14], there are

still no subtype-specific treatments. This is partly due to the lack of systematic classifi-

cation methods that can be routinely employed in clinical laboratories. Current ap-

proaches based on transcriptome or genome-wide DNAm profiling have high costs and

complexity [46]. Thus, a simplified and cost-effective classification methodology could

overcome this limitation and allow neuro-oncologists to assess subtype-specific treat-

ment efficiency.

Our study provides alternatives to the current classification methodologies by reducing

the number of required informative features. These classifiers based on gene expression,

DNAm, or an integration of these data types, provide similar performances to the current

classification. The main advantage of these novel classifiers is the potential adaptability to

low complexity techniques such as qPCR or pyrosequencing, as we have previously shown

to identify primary and metastatic brain tumors [28]. In fact, pyrosequencing is already

being routinely used to determine DNAm levels of the MGMT gene promoter region, one

of the most important prognostic and predictive factors in GBM [47].

Importantly, we showed that iGlioSub reaches a classification efficiency, assessed by

the kappa agreement coefficient, similar to the TCGA IHC-based classification [48] and

superior to other machine learning-based strategies for the classification of GBM sub-

types (accuracy = 0.9) [49]. This efficiency is also comparable to classifiers applied in

other tumors (accuracy = 0.9–0.95) [23, 28]. This excellent performance of the reduced

classifiers was achieved by consecutively combining two machine learning approaches,

RF and NSC, to identify robust minimum feature signatures. Of note, we found that

using as little as five features per molecular subtype in the final classifier showed an op-

timal performance. Furthermore, we identified that the gene expression-based classifier

could successfully identify subtype-heterogeneity in scRNA-seq data, suggesting that

our classifiers identify the predominant GBM molecular subtype in each patient. Unfor-

tunately, due to the lack of single-cell DNAm datasets, the iGlioSub and DNAm-based

classifiers could not be evaluated.

Interestingly, we found a significant overlap between our classifiers and Wang’s 150-

genes signatures (Exact hypergeometric test = 47, p < 0.001) [15]. Six out of 15 genes in

our classification signatures were present in Wang’s 150-genes signatures (GPR17,
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SLC1A1, ARPC1B, CTSC, VAV3, and FGFR3), suggesting a potential functional associ-

ation of these genes with the GBM subtypes. While both gene expression and DNAm-

based classifiers have demonstrated a great potential for GBM subtype classification,

the DNAm-based classifier exhibited a higher performance with significantly lower

error rates. These results are consistent with previous studies demonstrating the auspi-

cious classification potential of DNAm signatures for the molecular classification of

tumor samples [25, 28, 50, 51]. Furthermore, iGlioSub, which contains gene expression

and DNAm features, outperformed individual methods, with the lowest error rate and

the highest AUC in the Classical and Mesenchymal subtypes classification and the best

accuracy the classification of an external cohort. Due to the strategy used in this study,

the panels perform better when used to discriminate between one subtype and the rest.

When we combine the three subtype-specific panels into one single classifier, the per-

formance of the classifier worsens. Nevertheless, in this scenario, iGlioSub outper-

formed the gene expression and the DNAm combined classifiers. These findings

suggest that integrative classifiers using multi-omic data could become a powerful tool

for future molecular diagnostic applications in GBM and potentially in other tumors.

Our study also provides insights into the subtype-specific molecular alterations that

could be targeted by selective treatments to settle the bases for novel experimental

treatments. For example, patients with GBM Mesenchymal subtype present activation

of pathways associated with immunity and inflammation processes, such as the produc-

tion of cytokines or myeloid leukocyte activation. Our DNAm analysis revealed that

genomic regions associated with immune-related pathways remained hypomethylated

in the GBM with Mesenchymal subtype, suggesting an epigenetic regulation of these

traits. These observations agree with recent evidence showing that the Mesenchymal

subtype presents a higher immune activity than Proneural and Classical subtypes [52].

Overall, these findings could be particularly relevant to contextualize the clinical obser-

vations of GBM patients undergoing immunotherapy [53, 54]. Based on in silico ana-

lysis, we were able to identify several drug candidates that target different active

pathways, which are specifically upregulated in each subtype. Further analysis in this

matter would help elucidate the potential applications of these drugs, either individually

or in combination with immunotherapy or chemotherapy.

Conclusions
This study provides three novel classification methods for GBM molecular subtypes,

one based on gene expression, a second based on DNAm, and a system that integrates

both types of feature, called iGlioSub. Given the ease of using our molecular classifiers,

these classifiers could be easily adapted to most clinical laboratories to stratify GBM pa-

tients routinely. In addition, this initiative might facilitate a significant data collection

that could lead to personalized GBM subtypes treatments and improve the clinical

management of this disease.
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