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Introduction
Defects in the attachment of microtubules to kinetochores acti-

vate the spindle checkpoint to delay mitotic progression by 

transiently inhibiting the anaphase-promoting complex (also 

called the cyclosome) (Rieder and Maiato, 2004). Genes in-

volved in the spindle checkpoint were fi rst isolated from 

Saccharomyces cerevisiae and include MAD1, MAD2, and MAD3 

(mitotic arrest–defi cient) (Li and Murray, 1991); BUB1, BUB2, 

and BUB3 (budding uninhibited by benzimidazole [a microtubule-

depolymerizing drug]) (Hoyt et al., 1991); and MPS1 (monopolar 

spindle) (Wells and Murray, 1996).

The spindle checkpoint proteins and their functions are 

highly conserved between yeast and humans, and defects in the 

spindle checkpoint result in substantial aneuploidy (Kitagawa 

and Hieter, 2001; Kops et al., 2005). Much evidence also indi-

cates a role of the spindle checkpoint in tumorigenesis, e.g., 

mutations in human homologues of Bub1 (BUB1 and BUBR1) 

have been found in subtypes of colorectal cancer cells that 

exhibit chromosome instability (CIN) (Cahill et al., 1998). The 

CIN phenotype has been associated with mutations in spindle 

checkpoint genes (Ohshima et al., 2000; Tsukasaki et al., 2001; 

Ru et al., 2002), decreased levels of spindle checkpoint proteins 

(Shigeishi et al., 2001; Saeki et al., 2002), and loss of spindle 

checkpoint activity (Wang et al., 2002; Yoon et al., 2002). 

Mad2+/– mice frequently develop lung tumors after a long la-

tency (Michel et al., 2001). Bubr1+/− mice and Bub3/Rae1 hetero-

zygotes are prone to tumor development (Babu et al., 2003; Dai 

et al., 2004). These results strongly suggest a close relation 

between altered activity of the spindle checkpoint and tumori-

genesis. Also, many tumor cells have a diminished, but not absent, 

spindle checkpoint response (Kops et al., 2005).

When the function of mouse Bub1 is compromised cells 

appear to escape apoptosis and continue to progress through the 

cell cycle, despite leaving mitosis with an altered spindle (Taylor 

and McKeon, 1997). However, opposing evidence indicates 

that the spindle checkpoint regulates apoptosis: mutations in 

bub1 cause chromosome missegregation and fail to block apop-

tosis in Drosophila (Basu et al., 1999), and Mad2-null mouse 

embryos undergo apoptosis at embryonic day (E) 6.5 to E7.5 

(Dobles et al., 2000). In all of these cases, apoptosis appeared to 

occur in the subsequent G1 phase; thus, the role of the spindle 

checkpoint in apoptosis remained unclear.

When cells cannot satisfy the spindle checkpoint after a 

long mitotic delay, several cell fates can occur: some cells die 

during mitosis, some exit mitosis but die via apoptosis in the 
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G1 phase, and some exit mitosis but are tetraploid and repro-

ductively dead (Rieder and Maiato, 2004). Microtubule inhibi-

tors induce mitotic arrest by activating the spindle checkpoint; 

eventually, these inhibitors cause cytotoxicity. The cytotoxicity 

of microtubule inhibitors and resultant cell death has been 

described as either apoptosis in G1 or reproductive death 

(Mollinedo and Gajate, 2003). However, questions about cell 

death during mitosis have remained. Although much evidence 

suggests that apoptosis occurs during mitosis (Woods et al., 

1995; DeLuca et al., 2002; Burns et al., 2003; Yang et al., 2005; 

Blank et al., 2006), in-depth analyses of mitotic cell death have 

not been performed; therefore, the mechanism involved remains 

obscure, especially the relation between the spindle checkpoint 

and cell death during mitosis. Here, we report the mechanism of 

the programmed cell death in early mitosis that is induced by 

defects in the kinetochore–microtubule attachment in BUB1-

defi cient cells.

Results
Substantial BUB1 depletion does not 
affect mitotic delay induced by defects 
in kinetochore–microtubule attachment
Treatment with nocodazole (a microtubule-depolymerizing drug), 

paclitaxel (Taxol, a microtubule-stabilizing drug) (Mollinedo and 

Gajate, 2003), or 17-allylaminogeldanamycin (17-AAG, an HSP90 

inhibitor that induces delocalization of several kinetochore 

proteins from kinetochores) (Niikura et al., 2006) caused sub-

stantial mitotic delay (Fig. 1 A). We depleted HeLa cells of 

either BUB1 or MAD2 (both are spindle checkpoint compo-

nents) by treating the cells with synthetic small interfering 

RNA (siRNA) (Fig. 1 B). The cells were then incubated in 

nocodazole, paclitaxel, or 17-AAG to induce mitotic arrest. The 

depletion of MAD2 (but not BUB1) substantially diminished 

the arrest (Fig. 1 A). These results are consistent with the fi nd-

ing by Johnson et al. (2004), i.e., depletion of BUB1 does not 

compromise the mitotic delay either during normal mitosis or in 

response to spindle damage induced by nocodazole (Johnson 

et al., 2004). Although a small remaining quantity of BUB1 may 

be suffi cient to induce mitotic delay (Meraldi and Sorger, 2005), 

�90% depletion of BUB1 did not affect mitotic delay induced 

by defects in kinetochore–microtubule attachment.

Depletion of BUB1 or MAD2 sensitizes 
cells to 17-AAG or paclitaxel
Synthetic lethality occurs between spindle checkpoint mutants 

and kinetochore mutants in yeast, presumably because of syner-

gistic, substantial chromosome loss (Hyland et al., 1999; Tong 

et al., 2001). In human cells, simultaneous depletion of the 

 kinetochore protein HEC1 and MAD2 causes premature cata-

strophic exit from mitosis (Martin-Lluesma et al., 2002). Because 

17-AAG causes kinetochore defects (Niikura et al., 2006), we 

examined whether 17-AAG treatment in conjunction with defects 

in the spindle checkpoint induces synthetic lethality. MAD2 or 

BUB1 was depleted from HeLa cells by siRNA treatment. The 

cells were then exposed to 100 nM 17-AAG, which did not kill 

most control cells, and viability was evaluated by a colony out-

growth assay (Fig. 1 C, top). The proportion of cells killed by 

MAD2 siRNA or BUB1 siRNA alone did not differ from that 

seen with control luciferase siRNA, but treatment with either 

MAD2 siRNA or BUB1 siRNA and 17-AAG caused substantial 

synergistic lethality (Fig. 1 C).

Figure 1. Mitotic delay induced by defects 
in kinetochore-microtubule attachment was 
not affected by substantial depletion of BUB1. 
(A) The proportion of cells in mitotic arrest 
caused by 17-AAG (+17AAG), nocodazole 
(+NOC), or paclitaxel (+Taxol) was reduced 
by MAD2 siRNA, but not by BUB1 siRNA. We 
added 17-AAG (500 nM), NOC (0.5 μg/ml), 
or Taxol (10 nM) 48 h after transfection with 
MAD2 siRNA, BUB1 siRNA, or luciferase (Luc) 
siRNA, and the cells were incubated for 24 h. 
Cells were fi xed, stained with DAPI, and sub-
jected to fl uorescence microscopy. The mean 
percentages (± SD) of cells in prophase, 
prometaphase, or metaphase are shown, as 
determined by analyzying 500 cells in three 
independent experiments. (B) Western blot 
analysis of total HeLa cell lysates harvested 
48 h after transfection with siRNA duplexes 
directed against MAD2 (left) and BUB1 (right) 
revealed protein depletion. Luc siRNA was 
transfected into the cells as a control. The 
level of β-tubulin protein was used as a load-
ing control. (C) Depletion of MAD2 or BUB1 
sensitizes cells to 17-AAG (top) and Taxol 
(bottom). Colony outgrowth assays of HeLa 
cells transfected with siRNAs against MAD2, 
BUB1, or Luc. We normalized the percent 
 viability; the percentage of surviving colonies in 
control wells (Luc siRNA and no drug) was set 
to 100. Three independent experiments were 
performed for each drug.
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Spindle checkpoint mutants in yeast are also sensitive to 

microtubule inhibitors (Hoyt et al., 1991; Li and Murray, 1991), 

presumably because of synergistic substantial chromosome 

loss. Therefore, we examined whether paclitaxel treatment, in 

conjunction with defects in the spindle checkpoint, induces 

synthetic lethality. Like 17-AAG, paclitaxel with either MAD2 

siRNA or BUB1 siRNA caused substantial synergistic lethality 

(Fig. 1 C). Death induced by MAD2 siRNA and 17-AAG or 

 paclitaxel is presumably caused by the failure of checkpoint-

 induced mitotic arrest, which results in premature mitotic exit 

and synergistic aneuploidy (Fig. 2 A). The resulting abnormal 

nuclei (i.e., fragmented/aggregated nuclei, micronuclei, or chro-

mosome bridges; Fig. 2 B) are similar to those of cells that are 

MAD2 depleted for several cell divisions (Kops et al., 2004); 

this lethal phenotype can be explained by premature mitotic 

exit, i.e., the current understanding of how the spindle check-

point protects cells from aneuploidy (Mollinedo and Gajate, 

2003) (Fig. 2 A). Moreover, the abnormal nuclear phenotypes 

are associated with the degree of MAD2 depletion (Fig. 2, 

C and D). However, BUB1-depleted cells treated with 17-AAG or 

paclitaxel did not appear to exit mitosis (Fig. 1 A). This fi nding 

raises a provoking question: How does simultaneous treatment 

with BUB1 siRNA and 17-AAG or paclitaxel cause substantial 

synergistic lethality, when BUB1 depletion does not cause pre-

mature mitotic exit? The spindle checkpoint appeared func-

tional (Fig. 3 A).

Microtubule inhibitors or 17-AAG induce 
mitotic cell death in BUB1-depleted cells
To evaluate the lethal phenotype caused by 17-AAG and either 

MAD2 siRNA or BUB1 siRNA, we used the TUNEL assay. 

When cells were treated simultaneously with 17-AAG and 

BUB1 siRNA, but not with MAD2 siRNA, most of the TUNEL+ 

cells were in prophase, prometaphase, or metaphase (Fig. 3, 

B and C). Furthermore, agarose gel electrophoresis directly 

detected DNA fragmentation in the mitotic cells (Fig. 3 E).

To exclude the possibility of off-targets of siRNA, we 

used several siRNA oligos to induce DNA fragmentation (un-

published data; see Fig. S4 A, available at http://www.jcb.org/

cgi/content/full/jcb.200702134/DC1). Overexpression of BUB1 

suppressed DNA fragmentation when siRNA targeted the 3′ 
UTR region of BUB1 (Fig. S1, A and B). Although the BUB1-

depleted cells appeared to be arrested in mitosis, they must have 

been dead or dying, because the DNA had already fragmented 

Figure 2. MAD2 depletion causes premature exit from mitosis. 
(A) A model showing how chromosome loss or nondisjunction 
occurs in spindle checkpoint–defective cells. In spindle check-
point mutant cells, the spindle checkpoint is not activated, 
even if kinetochore–microtubule attachment is defective. No 
mitotic delay occurs, and premature exit from mitosis results. 
Thus, substantial chromosome loss or nondisjunction occurs 
and presumably cell death will follow. (B) MAD2-depleted 
and 17-AAG–treated cells have abnormal nuclei. After 48 h 
of transfection with MAD2 siRNA, HeLa cells were incubated 
with 17-AAG (500 nM) for 24 h at 37°C. Cells were fi xed, 
and DNA was visualized by staining with DAPI (blue). Type 1 
refers to fragmented and aggregated nuclei; type 2, to 
 micronuclei (arrows); and type 3, to chromosome bridges 
(arrowheads). Bars, 10 μm. (C) The siRNA dilution experiment 
using MAD2 targets that deplete MAD2 almost completely. 
(Top) Quantifi ed MAD2 expression levels are shown. The 
X-axis indicates dilutions of MAD2 siRNA oligos. The Y-axis 
indicates the remaining MAD2 signals. (Middle) The mitotic 
index induced by 17-AAG is reduced as MAD2 is depleted. 
(Bottom) The number of 17-AAG–induced abnormal nuclei 
also increased in proportion as MAD2 is depleted. (D, top) 
The mitotic index induced by NOC is reduced as MAD2 is 
depleted. (bottom) The number of NOC-induced abnormal nuclei 
also increased in proportion as MAD2 is depleted.
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during early mitosis (Fig. 3 F). This fi nding answers the ques-

tion posed above.

Cells treated with BUB1 siRNA and either nocodazole or 

paclitaxel underwent mitotic cell death (Fig. 3 C; Fig. S1 C). 

Interestingly, �90% of the mitotic cells were TUNEL+ (Fig. 3 D). 

These drugs commonly cause defective kinetochore–microtubule 

attachment. Therefore, these results strongly suggest that this 

mitotic cell death occurs when the kinetochore–microtubule 

attachment is altered and BUB1 function is disrupted.

Caspase-independent mitotic death
We detected no caspase activity (caspases 1, 3–9) in cells ex-

posed to 17-AAG and BUB1 siRNA (Fig. 4 A). Furthermore, 

caspase inhibitors BAF and zVAD did not inhibit DNA frag-

mentation induced by 17-AAG and BUB1 siRNA (Fig. 4 B, see 

Fig. S1 D for drug evaluation controls). Therefore, this mitotic 

cell death was caspase independent. Apoptosis caused by spin-

dle checkpoint defects is thought to occur during the G1 phase, 

and the type of cell death that we identifi ed does not meet the 

criteria for other defi ned types of cell death (Okada and Mak, 

2004); thus, we designated this type of cell death as caspase-

 independent mitotic death (CIMD).

Because CIMD occurs in HeLa cells with compromised 

p53 activity (Hoppe-Seyler and Butz, 1993), CIMD appeared to 

be independent of p53. We confi rmed that CIMD occurs in  cells 

that lack p53 (Figs. 4 C; Fig. S1 E and Table S1). Next, we ex-

amined whether CIMD depends on p73, a homologue of p53, 

because a mitotic function of p73 has been suggested (Fulco 

et al., 2003; Merlo et al., 2005). Overexpression of the dominant-

negative mutant p73DD (Irwin et al., 2000) suppressed CIMD 

Figure 3. CIMD occurs in BUB1-depleted cells in the 
presence of microtubule inhibitors or 17-AAG. (A) A 
model showing BUB1-depleted cells. When cells had 
defective kinetochore–microtubule attachment, mitotic 
delay occurred, and the spindle checkpoint appeared 
to be active (ON). The substantial synthetic lethality 
cannot be explained because there is no premature 
exit from mitosis. (B) HeLa cells that are BUB1-
 depleted and 17-AAG–treated exhibit DNA fragmen-
tation (TUNEL+) during mitosis. 48 h after HeLa cells 
were transfected with siRNA against MAD2, BUB1, 
or Luc, they were incubated with 17-AAG (+17AAG, 
500 nM) for 24 h at 37°C. Fixed samples were 
stained by using an in situ cell death detection system 
that contained TMR red (red), an anti-phosphorylated 
histone H3 (p-H3) mouse monoclonal antibody, and 
FITC-conjugated secondary antibodies (green). DNA 
was stained with DAPI (blue) to visualize prophase, 
prometaphase, and metaphase cells. Bar, 10 μm. 
(C) A histogram summarizing TUNEL assay results 
of BUB1- or MAD2-depleted cells. HeLa cells trans-
fected with siRNA against MAD2, BUB1, or Luc were 
treated with 17-AAG (500 nM), NOC (0.5 μg/ml), 
or Taxol (10 nM) for 24 h at 37°C. DNA fragmenta-
tion was detected by the TUNEL assay, and samples 
underwent indirect fl uorescence microscopy using 
anti–p-H3 as a primary antibody. More than 200 
cells in three independent experiments were counted, 
and the mean percentages (± SD) of TUNEL+ cells 
and mitotic TUNEL+ cells (mitotic cells were those that 
were positive for p-H3 and had characteristic chromo-
some morphology) were calculated. Gray bars rep-
resent the mean percentages of TUNEL+ cells in the 
population, and black bars indicate the mean per-
centages of mitotic TUNEL+ cells. (D) Almost 90% of 
the BUB1-depleted mitotic cells that were treated with 
17-AAG, NOC, or Taxol were TUNEL+. A histogram 
summarizing TUNEL assay results of 17-AAG-treated 
and BUB1- or MAD2-depleted mitotic cells is shown in C. 
The number of TUNEL+ cells among more than 200 
mitotic cells was counted, and the percentages (i.e., 
the number of mitotic TUNEL+ cells per that of total 
mitotic cells) are shown. MAD2 or Luc siRNA did not 
induce any mitotic TUNEL+ cells. (E) DNA fragmenta-
tion in BUB1-depleted and 17-AAG–treated mitotic HeLa cells was detected by electrophoresis. 48 h after HeLa cells were transfected with BUB1 siRNA, 
they were treated with 17-AAG (500 nM) for 6 h. Mitotic cells were isolated by pipetting (�90% of the isolated population consisted of mitotic cells), and 
DNA was extracted and subjected to electrophoresis in a 1% agarose gel (lane 2). As a negative control, DNA extracted from mitotic HeLa cells treated 
with 17-AAG (500 nM) was loaded (lane 1); and as a positive control, we loaded DNA extracted from HeLa cells treated with staurosporine (1 μM), a 
known inducer of apoptosis (lane 3). The molecular size markers (1-kb DNA ladder; New England Biolabs) are indicated (lane M). Fragmented DNA pre-
pared from the same amount of cells was loaded into each lane. Our method of DNA isolation isolated only fragmented DNA; therefore, if cells contained 
little or no fragmented DNA, the same was observed in that lane. (F) A model showing BUB1-depleted cells in which defects in kinetochore–microtubule 
attachment induce lethal DNA fragmentation. Because cells are still arrested in mitosis, the mitotic index is unchanged. Therefore, the spindle checkpoint 
appears to be active (ON).
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(Figs. 4 D; Fig. S1 F), depletion of p73 diminished CIMD (Fig. 

4 E), and CIMD did not occur effi ciently in p73−/− MEF cells 

(Irwin et al., 2000) (Fig. S2 A, available at http://www.jcb.org/

cgi/content/full/jcb.200702134/DC1). These results indicate that 

CIMD depends on p73 but not on p53.

Mitochondria release apoptosis-inducing factor (AIF) and 

endonuclease G (EndoG) (Susin et al., 1999; Li and Hoffman, 

2001; van Loo et al., 2002), which are thought to regulate caspase-

independent cell death (Susin et al., 2000; Joza et al., 2001; 

Cregan et al., 2002; Yu et al., 2002). Therefore, we examined 

whether AIF and EndoG are required for CIMD. Substantial 

amounts of AIF and EndoG were released from mitochondria in 

mitotic cells treated with 17-AAG and BUB1 siRNA (Fig. 5, 

A and C). AIF and EndoG immunostaining resulted in a pattern that 

resembled that of mitochondria stained with 3,3′-dihexyloxacarbo-

cyanine iodide (DiOC6) in mitotic cells, as described previously 

(Barni et al., 1996). We confi rmed that AIF and EndoG immuno-

staining was colocalized with MitoTracker Red CM-HsXRos 

staining (Fig. S2 B). The proportion of AIF- and EndoG-releasing 

mitotic cells was comparable to that of cells undergoing CIMD 

(compare Fig. 5, B and D with Fig. 4 B); this similarity strongly 

suggests that AIF and EndoG are effectors of CIMD.

Next, we examined whether CIMD depends on AIF and 

EndoG. Depletion of AIF and EndoG by siRNA treatment sub-

stantially reduced TUNEL signals that were induced by 17-AAG 

treatment and BUB1 depletion (Fig. 5 E; Fig. S2 C), whereas 

depletion of AIF, EndoG, or both did not affect the  mitotic 

delay induced by 17-AAG (Fig. S2 D). These results indicate that 

DNA fragmentation is dependent on AIF and EndoG.

We examined whether depletion of EndoG and AIF res-

cues the lethality caused by CIMD. Although depletion of AIF 

or EndoG alone did not rescue the lethality, of both EndoG and 

AIF substantially suppressed it (Fig. 5 F), indicating that both 

effectors are involved in the death-signaling pathway of CIMD. 

These fi ndings lead us to conclude that CIMD is an active cell 

death system mediated by these apoptosis effectors.

CIMD occurs rapidly after the kinetochore–
microtubule attachment is altered
Inhibition of DNA decatenation arrests cells at metaphase, and 

the disruption of MAD2, but not BUB1, suppresses this meta-

phase arrest (Skoufi as et al., 2004). Therefore, we examined 

whether CIMD occurs when BUB1-depleted cells are arrested 

with ICRF187, a topoisomerase II inhibitor. Although we ob-

served a substantial mitotic delay after ICRF187 treatment (un-

published data), the number of TUNEL+ BUB1-depleted cells 

was unchanged (Fig. S2 E). This fi nding suggests that inhibition 

of DNA decatenation does not induce CIMD and supports the 

hypothesis that CIMD occurs specifi cally when the kinetochore–

microtubule attachment is altered.

To investigate the timing of CIMD after the kinetochore–

microtubule attachment is altered, we added 17-AAG or micro-

tubule inhibitors to BUB1-depleted cells that were arrested by 

ICRF187. We then monitored TUNEL+ cells. CIMD began 

to occur within 20 min, and most of the mitotic cells were 

TUNEL+ within 2 h (Fig. 6 A). This fi nding indicates that CIMD 

occurs during mitosis and relatively rapidly after the kinetochore–

microtubule attachment is altered, which supports our conclusion 

that CIMD is an active cell death system.

We also tested whether cold shock induces CIMD. Cold 

treatment depolymerizes microtubules, which activates the spin-

dle checkpoint (Rieder and Cole, 2002). When cells were incu-

bated at 23°C, CIMD occurred in >90% of the mitotic cells within 

3 h (Fig. 6 B). This is the fourth piece of evidence that supports 

the hypothesis that CIMD is caused by defects in kinetochore–

 microtubule attachment when BUB1 function is disrupted.

Figure 4. CIMD is independent of caspase and p53 but dependent on 
p73. (A) Mitotic cell death induced by BUB1 siRNA and 17-AAG treatment 
did not activate caspases. 48 h after transfection of HeLa cells with BUB1 
or Luc siRNA, they were incubated with 17-AAG (500 nM) for 24 h at 
37°C. As a positive control, HeLa cells were treated with 1 μM stau-
rosporine (STS) for 6 h. Cells were incubated in the FAM-VAD-FMK FLICA 
(fl uorochrome inhibitor of caspases) solution (Immunochemistry Technolo-
gies, LLC) for 60 min at 37°C to detect activated caspases 1, and 3–9. 
Samples were examined under a fl uorescent microscope, and the number 
of FLICA+ cells among more than 200 cells was counted. The calculated 
percentages are shown. Black bars represent the mean percentages 
(± SD) of interphase FLICA+ cells, whereas gray bars indicate the mean 
percentage (± SD) of all cells that were FLICA+. No mitotic FLICA+ (striped 
bars) were observed. (B) Pan-caspase inhibitors VAD (zVAD; 50 μM) or 
BAF (50 μM) did not suppress mitotic cell death induced by BUB1 siRNA 
and 17-AAG treatment. Black bars represent the mean percentages (± SD) 
of mitotic TUNEL+ cells, whereas gray bars indicate the mean percentage 
(± SD) of all TUNEL+ cells. Pan-caspase inhibitors zVAD (50 μM) or BAF 
(50 μM) were applied 1 h before 17-AAG treatment, and they remained 
in the medium during 17-AAG treatment. (C) CIMD is independent of p53. 
DNA fragmentation that was caused by BUB1 depletion and treatment 
with 17-AAG or microtubule inhibitors occurred in p53− cells, i.e., 
HCT116-p53−/− cells. (D) Overexpression of the dominant-negative mu-
tant p73DD can suppress CIMD. We transfected HeLa cells with p73a 
plasmid, p73DD plasmid, or GFP vector only. At 48 h after transfection, 
we treated cells with 17-AAG, NOC, or Taxol and incubated them for 24 h. 
Cells were fi xed, and only GFP+ cells were detected under a microscope. 
(E) DNA fragmentation induced by BUB1 siRNA and 17-AAG or Taxol 
treatment was suppressed when p73 was depleted. HeLa cells were 
cotransfected with siRNA against BUB1 and Luc or BUB1 and one of three 
siRNAs against p73 (#1, #2, or #3). 48 h later, the cells were incubated 
with 17-AAG (500 nM) for 24 h at 37°C. Fixed samples were stained by 
using an in situ cell death detection system.
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The fate of cells in which CIMD occurred
To learn the fate of cells in which DNA was fragmented during 

mitosis, we performed time-lapse experiments. Most BUB1-

 depleted cells that remained in mitosis for �6 h after the addition 

of 17-AAG eventually collapsed directly from mitosis within 12 h 

(Fig. 6, C–E). In contrast, most luciferase siRNA–treated cells 

(a negative control) remained in mitosis up to 12 h later (Fig. 6, 

C and D). Therefore, the cells in which CIMD occurred looked 

Figure 5. CIMD is dependent on EndoG and AIF. (A) BUB1 siRNA and 17-AAG treatment release EndoG from mitochondria of mitotic cells. Fixed cells 
were stained using anti-EndoG rabbit polyclonal antibody and anti–p-H3 mouse monoclonal antibody as primary antibodies. FITC- and Texas red–conjugated 
secondary antibodies (green and red signals, respectively) were added to visualize specifi c proteins. DNA was stained with DAPI (blue). Samples were 
 analyzed by fl uorescence microscopy, and images were captured. Bar, 10 μm. (B) HeLa cells transfected with MAD2 siRNA, BUB1 siRNA #1, BUB1 siRNA 
#2, or Luc siRNA were treated with 17-AAG (500 nM), NOC (0.5 μg/ml), or Taxol (10 nM) for 24 h at 37°C. The number of mitotic EndoG-releasing cells 
was counted among more than 200 cells; mitotic cells were those that were p-H3+ and had characteristic chromosome morphology. The mean percentages 
(± SD) are shown. EndoG was not released in cells treated with siRNA against MAD2 or Luc. (C) An anti–apoptosis-inducing factor (AIF; green) rabbit poly-
clonal antibody was used to detect the release of AIF from mitochondria in response to BUB1 siRNA and 17-AAG treatment. Bar, 10 μm. (D) Bars represent 
the percentages of the mitotic AIF-releasing cells (i.e., cells positive for AIF release p-H3 and mitotic condensed chromosomes). AIF was not released from 
cells treated with siRNAs against MAD2 or Luc. (E) DNA fragmentation induced by BUB1 siRNA and 17-AAG treatment was suppressed when EndoG and 
AIF were depleted. HeLa cells were cotransfected with BUB1 siRNA and Luc siRNA; BUB1 siRNA and EndoG siRNA; BUB1 siRNA and AIF siRNA; or Luc 
siRNA. 48 h later, the cells were incubated with 17-AAG (500 nM) for 24 h at 37°C. Fixed samples were stained using an in situ cell death detection system, 
and TUNEL signals (black bars) were quantifi ed by using Openlab version 4.0.4. Scientifi c Imaging Software (Improvision). (F) Depletion of EndoG and 
AIF rescues the lethality of cells treated with 17-AAG and BUB1 siRNA. Results from colony outgrowth assays of HeLa cells transfected with siRNAs directed 
against the indicated proteins are shown. We normalized the percent viability; the percentage of surviving colonies in control wells (Luc siRNA and no 
drug) was set to 100. Three independent experiments were performed.



CIMD, CASPASE-INDEPENDENT MITOTIC DEATH • NIIKURA ET AL. 289

normally arrested in mitosis for several hours after the kinetochore–

microtubule attachment was altered.

Most conventional apoptosis detection methods (i.e., 

annexin V assay, chromatin condensation, and other morphologic 

analyses by light microscopy) were not applicable to mitotic 

cells (unpublished data). Therefore, we performed transmission 

electron microscopy (TEM) to look at the ultrastructural features 

of cells in which CIMD had occurred. When DNA fragmentation 

was induced by BUB1 depletion and 17-AAG or paclitaxel, we 

observed increased numbers of abnormal mitochondria (con-

densed, whorled, or onion-skin) and autophagosomes (Fig. 6 F; 

Fig. S3, A and C, available at http://www.jcb.org/cgi/content/

full/jcb.200702134/DC1). The mitochondria were signifi cantly 

smaller than those in control cells (Fig. 6 G), suggesting that 

 mitochondrial fragmentation occurred. These changes indicated 

active cell death, possibly through autophagy (Perkins et al., 2004; 

Eskelinen, 2005; Barsoum et al., 2006; Perez et al., 2007).

Partial, but not complete, depletion 
of BUB1 causes CIMD
BUB1 depletion does not compromise mitotic delay during nor-

mal mitosis or in response to nocodazole-induced spindle dam-

age (Johnson et al., 2004). Our fi ndings support that earlier 

study, and we believe that we can now explain this phenomenon. 

Because CIMD occurred, the mitotic index appeared to be 

unchanged. When a small amount of BUB1 remains in the cell 

Figure 6. CIMD occurs rapidly after defects in ki-
netochore–microtubule attachment occur. (A) 48 h 
after HeLa cells were transfected with BUB1 siRNA, 
they were incubated with ICRF187 (1 mM) for 6 h 
at 37°C. Mitotic cells were collected, and 17-AAG, 
NOC, or Taxol was added. TUNEL assays were 
performed at 0, 10, 20, and 40 min, and 1, and 
2 h after the addition of 17-AAG, NOC, or Taxol. 
(B) 48 h after HeLa cells were transfected with 
BUB1 siRNA, they were incubated with ICRF187 
(1 mM) for 6 h at 37°C. Mitotic cells were col-
lected, and the temperature was shifted from 37 to 
23°C. TUNEL assays were performed at 0, 10, 20, 
and 40 min, and 1, 2, and 3 h after the tempera-
ture shift. (C) Live-image analysis of BUB1- depleted 
cells after treatment with 17-AAG. Phase-contrast 
images were taken at the indicated time points 
 after addition of 17-AAG. (Top and middle) Exam-
ples of BUB1-depleted cells that collapsed during 
mitosis. (Bottom) Examples of Luc siRNA–treated 
cells arrested in mitosis for 8 h. (D) The fate of the 
cells in which CIMD occurred. The morphologic 
phenotypes that were observed for 12 h after 
addition of 17-AAG were categorized into four 
types: those that collapsed during mitosis (gray), 
those that arrested in mitosis (striped), those that 
entered G1 (white), and those that  entered G1 
and collapsed (black). (E) Time course of mitotic 
collapse within 12 h  after addition of 17-AAG. Bars 
indicate the percentages of the mitotic cells that 
collapsed at the indicated time points out of the 
mitotic cells that eventually collapsed. (F) Electron 
microscopy images of BUB1-depleted cells that 
were treated with 17-AAG for 3 h. Orthodox or 
swollen  mitochondria (black arrowheads), con-
densed mitochondria (white arrowheads), whorls 
or  onion-skin mitochondria (white arrows), and auto-
phagosomes (asterisks) are indicated. Bar, 1 μm. 
(G) Histogram of mitochondrial cross-sectional areas 
in images of treated and control cells. The cross-
sectional area, measured with the program ImageJ, 
is an estimate of the volume of the mitochondria. 
Mitochondria were classifi ed according to ortho-
dox and condensed morphology. The condensed 
mitochondria not only had a condensed matrix but 
also were smaller than the  orthodox mitochondria 
in the same cells. The control (17AAG_Luc siRNA) 
samples had orthodox but few condensed mitochon-
dria, hence the cross-sectional area was meas-
ured for only the orthodox mitochondria. Both the 
17AAG_BUBsiRNA and Tax_BUBsiRNA cross-
 sectional areas were �3 times less than the control, 
suggesting that fi ssion of the mitochondria occurred. 
Error bars represent the SEM. The value over the 
error bar is the number of mitochondria measured 
per condition.
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it is suffi cient to induce mitotic delay, but when BUB1 is com-

pletely depleted, cells prematurely exit mitosis (Meraldi and 

Sorger, 2005). Therefore, we attempted to determine how much 

BUB1 would have to be depleted to induce CIMD.

We performed an siRNA dilution experiment using BUB1 

targets to deplete BUB1 almost completely. When BUB1 was 

nearly depleted, CIMD occurred or the mitotic index was signif-

icantly reduced (Fig. 7, A and B; Fig. S4 A, available at http://

www.jcb.org/cgi/content/full/jcb.200702134/DC1). Therefore, 

complete depletion of BUB1 causes premature mitotic exit. The 

number of abnormal nuclei was also increased similarly to that 

seen after MAD2 depletion (Fig. 7 C), and partial depletion of 

MAD2 did not induce CIMD (Fig. 2; Fig. S4 B).

These results indicate that CIMD does not occur when 

BUB1 is almost completely depleted; the remaining BUB1 ap-

pears to be required to induce CIMD. A substantial number of 

cells with abnormal nuclei did not result from CIMD, which 

raises the possibility that CIMD might kill the cells that are go-

ing to have abnormal nuclei. Furthermore, a kinase-dead BUB1 

mutant failed to suppress CIMD, which suggests that the kinase 

activity is important for inhibition of CIMD (Fig. 7 D).

CIMD is a major cell death mechanism 
of tumors with CIN that is induced 
by microtubule inhibitors or 17-AAG
CIMD depends on BUB1 depletion, which suggests that micro-

tubule inhibitors or 17-AAG induces CIMD of tumor cells that 

have a defi cient spindle checkpoint. We tested whether micro-

tubule inhibitors or 17-AAG induces CIMD of cells derived from 

tumors with CIN in which the spindle checkpoint is compro-

mised and of tumor cells with microsatellite instability (MIN) 

in which the spindle checkpoint is intact (Cahill et al., 1998). 

CIMD occurred in tumor cell lines with CIN (Caco-2, SW480, 

and HT29) but not in those with MIN (SW38, DLD-1, and 

HCT116) (Fig. 7 E). CIMD occurred in 70–90% of the tumor 

cells with CIN that were TUNEL+ (unpublished data).

We did not detect any caspase (caspases 1, 3–9) activity in 

mitotic tumor cells with CIN (Fig. S4 D), and caspase inhibitors 

BAF and zVAD did not inhibit DNA fragmentation (Fig. S4 E). 

These results suggest that the tumor cell lines with CIN have de-

fective BUB1 pathways. In an early study, BUB1 mutations were 

not found in these cells (Cahill et al., 1998). Therefore, we mea-

sured the BUB1 protein levels in tumor cells with CIN; the level of 

BUB1 expression in tumors with CIN was lower than that in tumor 

cells with MIN or in HeLa cells (Fig. 7 F). The BUB1 levels in the 

tumor cells with CIN were �40% of that in HeLa cells (Fig. S4 F). 

Partial reduction of BUB1 in HeLa cells can induce CIMD; there-

fore, the low level of BUB1 expression could explain why the tu-

mors with CIN induce CIMD. To test this theory, we overexpressed 

BUB1 in tumor cells with CIN to see whether restoring BUB1 

levels suppresses CIMD. As expected, overexpression of BUB1 

suppressed CIMD in the colon tumor cell lines with CIN (Fig. 7 G; 

Fig. S1 B). Furthermore, the expression of the Bub1 mutant allele 

Bub1*V400, which was found in a tumor cell with CIN, (Cahill 

et al., 1998) induced CIMD in HeLa cells (Fig. 7 H; Fig. S1 B). 

These fi ndings suggest that CIMD is a main mechanism by which 

microtubule inhibitors and 17-AAG kill tumor cells with CIN.

Discussion
When the spindle checkpoint detects defects in the attachment of 

microtubules, it induces mitotic delay (Rieder and Maiato, 2004). 

The loss of the spindle checkpoint activity, especially in cells with 

chromosome segregation defects, is thought to result in aneuploidy. 

The apoptosis of aneuploid cells during the subsequent G1 phase 

may prevent tumorigenesis (Mollinedo and Gajate, 2003). We 

found that CIMD occurs in BUB1-defi cient cells that have defects 

in kinetochore–microtubule attachment. When BUB1 is com-

pletely depleted, premature mitotic exit occurs rather than CIMD.

CIMD, mitotic catastrophe, and apoptosis
The combination of cell damage and defi cient cell cycle check-

points, in particular the DNA structure checkpoints and the 

spindle checkpoint, cause mitotic catastrophe (Castedo et al., 

2004; Okada and Mak, 2004). Multinucleate and giant cells 

that contain uncondensed chromosomes form after mitotic catas-

trophe (Okada and Mak, 2004); these features obviously differ 

from those observed during CIMD and are rather similar to 

those observed in MAD2-depleted cells. Two types of mitotic 

catastrophe have been defi ned: in the fi rst type, the cell dies 

in a p53-dependent manner during or near metaphase; in the 

second type, death occurs in a partially p53-dependent manner 

after failed mitosis and during the activation of the polyploidy 

checkpoint (Castedo et al., 2004). Mitotic catastrophe also is 

accompanied by chromatin condensation, mitochondrial release 

of proapoptotic proteins, caspase activation, and DNA degra-

dation (Castedo et al., 2004). In contrast, CIMD occurs in a 

p53-independent manner. Furthermore, the spindle checkpoint 

is required for mitotic catastrophe induced by DNA-damaging 

agents (Nitta et al., 2004). Therefore, we conclude that the fea-

tures of CIMD differ from those of mitotic catastrophe.

Several reports have described apoptosis during mitosis. 

High concentrations of paclitaxel (>25 nM for HeLa cells) are 

very cytotoxic (Woods et al., 1995). When 100–200 nM pacli-

taxel was used, p53-independent, TUNEL+ cells appeared to be 

in prophase. The morphology of the TUNEL+ cells also resem-

bled that of cells undergoing apoptosis (i.e., the nuclei were 

bubble-shaped and fragmented); this appearance differs from 

that observed during CIMD. High concentrations of paclitaxel 

induce apoptosis by activating kinase pathways that include Akt 

and mTOR (Asnaghi et al., 2004). In our study, we used 10 nM 

paclitaxel at a low concentration (10 nM; see a comparison of 

the effects of different paclitaxel doses in Fig. S1 C) that was 

suffi cient to cause substantial mitotic delay but did not induce 

apoptosis in most cells (Woods et al., 1995). Several hours after 

treatment with paclitaxel or nocodazole, 80% of Snk/Plk2-

depleted p53+ cells contain active caspase 3, and 4N cells are 

cyclin B+ (Burns et al., 2003). Mitosin/CENP-F depletion induces 

premature chromosome decondensation followed by cell death 

with caspase activation (Yang et al., 2005).

Cells depleted of hNuf2 exit directly from prolonged mitotic 

arrest, exhibit apoptotic cell morphology, and contain DNA that 

 resembles DNA in cells undergoing apoptosis (DeLuca et al., 2002). 

Because hNuf2 depletion blocks stable kinetochore– microtubule 

attachment, one could argue that hNuf2 depletion– induced cell 
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death occurs downstream of BUB1 depletion. However, if that was 

the case, BUB1 depletion should cause substantial CIMD, which it 

does not. Also, BUB1 is not required for the kinetochore localiza-

tion of hNuf2 (Meraldi and Sorger, 2005). Therefore, hNuf2 

depletion–induced cell death is unlikely to be CIMD, although 

further investigation is required. Neither the above-mentioned 

studies nor the previously described mitotic cell death fi ndings 

exemplify the CIMD detected by the TUNEL assay during early 

mitosis and is independent of caspases and p53.

Is CIMD a type of apoptosis?
Some think that apoptosis is a type of cell death that involves 

caspases (Chipuk and Green, 2005), then CIMD is not a type of 

apoptosis. However, some think that apoptosis is defi ned as a physio-

logic “cell suicide” program characterized by lethal DNA frag-

mentation (Okada and Mak, 2004). Because mitotic chromosomes 

are fragmented during CIMD, the cells can no longer survive. 

Although TUNEL+ chromosomes are observed, there is no 

 apparent reason for the cells to die immediately, unless the DNA 

becomes fragmented (e.g., only 5% of TUNEL+ metaphase cells 

had misaligned chromosomes [unpublished data]). Also, this 

DNA fragmentation occurs rapidly (within 20 min) after the 

 kinetochore–microtubule attachment is disrupted (when the check-

point fails, death should occur immediately because the check-

point stops the cell  cycle). Therefore, there must be an “active” cell 

death system to induce DNA fragmentation in the cells that are 

depleted of BUB1 and have defects in kinetochore–microtubule 

attachment  during mitosis.

AIF and EndoG play important roles in caspase-independent 

cell death and are released from the mitochondria during CIMD 

activation. Depletion of EndoG and AIF suppressed DNA frag-

mentation and rescued the lethality caused by CIMD. Suppression 

Figure 7. Partial BUB1 depletion induces CIMD. 
(A) The siRNA dilution experiment using BUB1 tar-
gets that deplete BUB1 almost completely. Per-
centages indicate dilutions, e.g., 100% means no 
dilution and 0% means no oligo was used. A 
different siRNA oligo set was used for 100%-2. 
(Top) Western blotting using anti-BUB1 antibody. 
(Bottom) Quantifi ed BUB1 expression levels are 
shown. The X-axis indicates dilutions of BUB1 
siRNA oligos. The Y-axis indicates the remaining 
BUB1 signals. (B) Mitotic index and mitotic TUNEL+ 
cells (CIMD/mitotic cells) are shown. CIMD cells 
or the mitotic index is signifi cantly reduced when 
BUB1 is depleted almost completely (100% and 
100%-2). These data indicate that complete deple-
tion of BUB1, like that of MAD2, causes premature 
mitotic exit. (C) The number of abnormal nuclei 
also increased to that seen after MAD2 depletion. 
(D) A kinase-dead BUB1 mutant failed to suppress 
CIMD. Ecotopic expression of wild-type (WT) 
BUB1 but not a kinase-dead mutant BUB1K821A 
(Cahill et al., 1998) suppresses CIMD when siRNA 
targets the 3′-UTR region of BUB1. (E) TUNEL 
assays were performed on three tumor cell lines 
with CIN (Caco-2, SW480, and HT29) and on 
three tumor cells lines with MIN (SW48, DLD-1, and 
HCT116) treated with 17-AAG (500 nM), NOC 
(0.5 mg/ml), or Taxol (10 nM) for 24 h at 37°C. 
Note that BUB1 was not depleted in these experi-
ments. The number of TUNEL+ cells among more 
than 200 cells was counted. Bars represent the 
mean percentages (± SD) of TUNEL+ mitotic cells. 
Three independent experiments were performed. 
(F) The BUB1 level of expression in the cells from 
tumors with CIN was lower than that in the cells 
from tumors with MIN or that in HeLa cells. Ap-
proximately 30 μg of each cell lysate was loaded, 
and immunoblotting was performed using anti-
BUB1 antibody. Anti-GAPDH served as a loading 
control. (G) Overexpression of BUB1 suppressed 
CIMD in three colon cancer cell lines with CIN. 
We transfected each cell line that exhibited CIN 
with pBI-GFP-BUB1-WT mammalian expression 
vector that expresses BUB1. At 24 h after AMAXA 
nucleofector transfection, we incubated cells with 
Taxol and continued incubation for 24 h. Cells 
were fi xedand only GFP+ cells were detected. 
We observed that only Taxol-treated and BUB1-

 expressing cells suppressed CIMD in the condition that induced CIMD in the cells transfected with the GFP control vector. (H) Overexpression of a dominant-
negative mutant of Bub1 (Bub1*V400) induces CIMD. We transfected HeLa cells with pBI-GFP-Bub1-V400 mammalian expression vector that expresses the 
mutant (the N-terminal region of BUB1) that was found in a tumor with CIN (Cahill et al., 1998). At 48 h after transfection, we treated cells with NOC and 
incubated them for another 24 h. Cells were fi xed and only GFP+ cells were detected.
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of DNA fragmentation by depletion of AIF was weaker than 

that by depletion of EndoG, probably because AIF digests DNA 

into large molecules (50–100 kb) (Susin et al., 1999).

On the basis of these results, we conclude that CIMD is a 

previously uncharacterized type of active cell death. We did not 

observe cytochrome c release from the mitochondria during 

CIMD, which is consistent with CIMD being caspase indepen-

dent (Cregan et al., 2004).

Our TEM analyses revealed that after CIMD, cells contain 

increased numbers of abnormal mitochondria, which are seen in 

apoptotic cells, and autophagosomes, especially in 17-AAG–

treated and BUB1-depleted cells. Autophagy promotes cell death 

when cells are triggered to die, but authentic apoptosis cannot 

occur (Eskelinen, 2005). Therefore, our TEM analyses support 

that CIMD is an active cell death. Substantial numbers of holes 

or vesicles were observed in cells after CIMD occurred, but we 

do not know how they were generated. Autophagy may generate 

the holes or vesicles via the autophagy/autolysosome pathway.

Mitotic death pathways
On the basis of our fi ndings and those of others, we propose 

a model of BUB1 and MAD2 function in the spindle check-

point pathway to determine the fate of cells with mitotic errors 

(Fig. 8 A). BUB1 binds kinetochores in mammalian cells before 

BUBR1 or MAD2 does, and BUB1 is required for the sub-

sequent localization of CENP-F, BUBR1, CENP-E, and MAD2 

(Johnson et al., 2004). These fi ndings and ours suggest that 

BUB1 functions upstream of MAD2 in the checkpoint pathway. 

When kinetochore–microtubule attachment is defective and BUB1 

function is partly altered, cells still undergo arrest in mitosis, but 

CIMD occurs. Thus, the full activity of BUB1 is required to pro-

tect cells from CIMD.

Many tumor cells have a diminished, but not absent, spin-

dle checkpoint response (Kops et al., 2005). In fact, we found 

that in tumors with CIN BUB1 expression levels were altered, 

which induced CIMD, and expression of a Bub1 mutant derived 

from a tumor with CIN also induced CIMD. One could argue 

against CIMD being a cellular mechanism that guards against 

aneuploidy, because CIMD-inducing conditions appear to be rare. 

However, CIMD occurs in a low percentage of untreated BUB1-

depleted cells. Also, CIMD is induced by cold shock (23°C), 

which is a very common stress in nature. Therefore, we speculate 

that CIMD is an alternative death pathway that protects cells 

from aneuploidy and probably from tumorigenesis. This hypo-

thesis should be examined using the mouse model system in vivo.

To evaluate the model that BUB1 determines the fate of 

cells with defects in kinetochore–microtubule attachment up-

stream of MAD2, we performed double depletion of BUB1 and 

MAD2. Approximately 80% of mitotic cells that are BUB1 

and MAD2 depleted showed CIMD (Fig. 8 B), and depletion 

of BUB1 inhibited premature mitotic exit induced by depletion of 

MAD2 partly (Fig. S4 G), which supports the hypothesis that 

BUB1 functions earlier than does MAD2.

The mitotic function of p73
The p53-related p73 proteins regulate the development of the 

central nervous system and the immune system. They also mediate 

the cell cycle and apoptosis in response to DNA damage (Ramadan 

et al., 2005; Coates, 2006). At the G2/M transition, p73 is phos-

phorylated at Thr-86 by the p34cdc2/cyclin B complex (Fulco 

et al., 2003). This M phase–specifi c phosphorylation of p73 

generally hinders its transcriptional activity. However, p73-

specifi c transcriptional targets during mitosis such as the cyclin-

dependent kinase inhibitor Kip2/p57 exist (Merlo et al., 2005). 

Therefore, CIMD may be induced by p73-specifi c transcriptional 

target proteins during mitosis. DNA microarray analyses should 

be performed to identify these genes.

MAD2 depletion
The synthetic lethality caused by MAD2 siRNA and 17-AAG or 

paclitaxel was higher than that induced by BUB1 siRNA, which 

suggests that, rather than apoptosis or CIMD, another mechanism 

of death (e.g., reproductive death) occurs in cells treated with 

17-AAG or paclitaxel and MAD2 siRNA. Although defects occur 

Figure 8. A model of the checkpoint function of BUB1. (A) BUB1 functions 
upstream of MAD2; the checkpoint signaling pathway is presumably more 
complicated, but the fate (i.e., type of death) of the cells is the focus in this 
model. Purple arrows indicate the events that occur when the proteins fail 
to perform their functions. When defects in the kinetochore-microtubule at-
tachment occur in BUB1-depleted cells, the cells enter CIMD. If MAD2 is 
absent, chromosomes are lost or gained. The resulting aneuploid cells then 
enter the subsequent G1 phase, and apoptosis, mitotic catastrophe–like 
death, or reproductive death occurs. (B) If the model in A is correct, then 
when BUB1 and MAD2 functions are disrupted, CIMD occurs, because 
BUB1 function is upstream in the pathway. MAD2 depletion did not sub-
stantially affect CIMD induced by BUB1 depletion, which strongly supports 
the model in A.
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in the kinetochore of 17-AAG–treated cells, MAD2-depleted cells 

do not arrest in mitosis because of defects in spindle checkpoint 

activity. Therefore, abnormal chromosome segregation is expected 

to occur and result in aneuploidy because of the premature exit 

from mitosis. In fact, the number of abnormal nuclei, including 

micronuclei, was increased substantially in 17-AAG–treated and 

MAD2-depleted cells but not in 17-AAG–treated and BUB1-

 depleted cells. Although these phenotypes are more drastic, they 

resemble those of MAD2- or BUBR1-depleted cells (Kops et al., 

2004). Therefore, mitotic catastrophe–like death that is presumably 

caused by premature exit from mitosis appears to occur in most 

MAD2-depleted and 17-AAG– or paclitaxel-treated cells.

Sudo et al. (2004) suggested that inactivation of MAD2 

increases cell survival upon paclitaxel treatment (Sudo et al., 

2004). This fi nding is inconsistent with ours. We believe that 

this difference can be explained by Sudo et al.’s use of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and trypan 

blue assays to evaluate cell viability, as neither of those methods 

detect reproductive cell death.

Survivin
The inhibitor of apoptosis protein survivin is also known as a 

chromosome passenger protein that associates with kineto-

chores transiently and is required for the spindle checkpoint 

function (Li et al., 1998; Skoufi as et al., 2000; Carvalho et al., 

2003; Lens et al., 2003). Disruption of survivin–microtubule 

interactions inhibits the anti-apoptosis function of survivin and 

induces caspase-3 activity (Li et al., 1998). Survivin regulates 

mitochondrial apoptosis and caspase-9 recruitment to the Apaf-1 

apoptosome (Marusawa et al., 2003). Therefore, survivin does 

not appear to be involved in CIMD. Overexpression of survivin 

does not suppress CIMD (Fig. S5, A and B, available at http://

www.jcb.org/cgi/content/full/jcb.200702134/DC1), though it does 

suppress paclitaxel- or geldanamycin-induced, caspase-mediated 

apoptosis (Li et al., 1998; Fortugno et al., 2003).

EndoG-null mice
Although EndoG was initially shown to be required for early 

embryogenesis and normal apoptosis in mice (Zhang et al., 

2003), recently reports in EndoG-null mice have shown that 

EndoG is dispensable in embryogenesis and apoptosis (Irvine 

et al., 2005; David et al., 2006). However, the results from these 

reports do not exclude the involvement of EndoG in CIMD nor 

deny the potential signifi cance of CIMD in antitumorigenesis. 

We showed that EndoG is required for CIMD but redundantly 

with AIF. Bub1 transgenic mice did not show increased pre-

disposition to spontaneous tumors (Cowley et al., 2005), raising 

the possibility that CIMD protects these animals from tumori-

genesis. Further investigation is needed to address the function 

of CIMD in mice with multiple mutations of key factors.

CIMD of tumor cells with CIN treated 
with microtubule inhibitors or 17-AAG
Successful Phase I trials of 17-AAG have recently been completed; 

17-AAG was well tolerated at doses that modulate the level of 

Hsp90 client proteins (Banerji et al., 2005; Glaze et al., 2005; 

Goetz et al., 2005; Grem et al., 2005; Ramanathan et al., 2005). 

CIMD may be a main mechanism by which 17-AAG and micro-

tubule inhibitors kill tumor cells with CIN. The similarity be-

tween the cell death response induced by 17-AAG and that 

induced by microtubule inhibitors, which are classic anti-cancer 

agents (Mollinedo and Gajate, 2003), suggests that similar 

mechanisms are involved, although 17-AAG uses multiple 

mechanisms (Miyata, 2005).

Last but not least, the mitotic index has been used to evalu-

ate spindle checkpoint activity. Our fi ndings suggest that previ-

ous studies probably failed to detect defects in the BUB1 

pathway, because the mitotic index appears to be normal during 

CIMD. Thus, the results of those earlier studies, especially those 

involving tumor cells, should be reevaluated with consideration 

of the occurrence of CIMD. Furthermore, the detection of CIMD 

could be a novel method for diagnosing tumors with CIN.

Materials and methods
siRNA
The siRNAs targeting MAD2 and luciferase have been described previously 
(Elbashir et al., 2001; Martin-Lluesma et al., 2002). We used three BUB1 
siRNAs: 5′-G C C U G C C A A C C C C U G G G A A T T -3′(BUB1siRNA#1), 5′-C A A C-
A C U A U A C U A A C A A G A T T -3′(BUB1siRNA#2), and 5′-C C A G G C U G A A C C-
C A G A G A G T T -3′ for the studies described in the main text. Similar data were 
obtained when these independent sets of siRNAs were used. The siRNA target-
ing AIF has been described previously (Bidere et al., 2003). We also designed 
another AIF siRNA: 5′-C U U G U U C C A G C G A U G G C A U U U -3′. Similar data 
were obtained when these two independent sets of siRNAs were used. We 
designed three sets of EndoG siRNAs: 5′-A A G A G C C G C G A G U C G U A-
C G U G -3′, 5′-A A C G C A C C U G U G G A U G A G G C C -3′, and 5′-C G G G C U U C G-
G G G C U G C U C U U U -3′, and similar data were obtained when these three 
independent sets of siRNAs were used. The siRNAs targeting MAD2, BUB1, 
AIF, and EndoG were synthesized by the Hartwell Center for Bioinformatics 
and Biotechnology at St. Jude Children’s Research Hospital (Memphis, TN).

Antibodies
Table S2 lists the antibodies used in this study (available at http://www
.jcb.org/cgi/content/full/jcb.200702134/DC1).

Colony outgrowth assay
The colony outgrowth assay was performed as described previously 
(Blasco et al., 1997; Reilly et al., 2002; Kranc et al., 2003) with a minor 
modifi cation. HeLa cells were transfected with siRNAs by using Lipo-
fectamine 2000. 24 h after transfection, the cells were incubated with 
100 nM 17-AAG or 1.5 nM Taxol for 2 d, and the drug was removed by 
washing. Transfected cells (including mitotic cells that were recovered from 
the supernatant; n = 2,000) were spread in one well of a six-well cluster 
(Corning Costar) and incubated 12–14 d to allow colony formation. 
Colonies stained with Giemsa solution (HEMA-QUIK stain solution; Fisher 
Scientifi c) were counted. The viability (%) was normalized; the percentage 
of surviving colonies of untreated cells transfected with control luciferase 
siRNA was arbitrarily set to 100.

TUNEL assay
48 h after siRNA transfection, HeLa cells, tumor cells with CIN, or tumor 
cells with MIN were incubated with 500 nM 17-AAG (A.G. Scientifi c) for 
24 h. Cells were fi xed with 4% paraformaldehyde in phosphate-buffered 
saline (pH 7.4), and the TUNEL assay was performed by using an in situ 
cell death detection system that contained TMR red (Roche).

Caspase assay
HeLa cells were transfected with siRNA, and 48 h later the cells were incu-
bated in 500 nM 17-AAG for 24 h. The FLICA caspase assay was performed 
by using the carboxyfl uorescein FLICA (Poly-Caspases FLICA [FAM-VAD-FMK]) 
apoptosis detection system (Immunochemistry Technologies, LLC).

Cell culture and transfection
All human cell lines were purchased from American Type Culture Collection 
(Manassas, VA). HeLa and SW480 cells were cultured in high glucose 
DME (BioWhittaker) with 10% fetal bovine serum (FBS; Invitrogen); Caco-2 
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and RKO cells, in Eagle’s minimum essential medium (ATCC) with 10% FBS; 
HT29 and HCT116 cells, in McCoy’s 5A medium (ATCC) with 10% FBS; 
and DLD-1 cells, in RPMI-1640 medium (ATCC) with 10% FBS. All cell lines 
were grown at 37°C in 5% CO2 in a humidifi ed incubator. Cells were trans-
fected with annealed double-stranded siRNA or mammalian expression 
plasmids by using Lipofectamine 2000 (Invitrogen) or Fugene 6 (Roche).

Immunoblotting
The method of immunoblotting has been described in detail elsewhere 
(Lamb et al., 1995; Kitagawa et al., 1999). Cells were added to lysis buffer A 
(Panaretou et al., 2002), and the mixture was frozen in liquid nitrogen, 
thawed, and sonicated. Before electrophoresis, cell lysates were mixed with 
an equal volume of 2× SDS sample buffer.

Immunofl uorescence
Methods of indirect immunofl uorescent staining have been described previ-
ously (Tugendreich et al., 1995; Yoda et al., 1996), but were slightly modi-
fi ed. HeLa cells were grown for 48 h on coverslip slides (seeding, �2.0 × 
105 cells). Asynchronous populations of HeLa cells were fi xed in 4% para-
formaldehyde in phosphate-buffered saline at 4°C for 30 min and then 
treated with 0.5% Triton X-100 in KB (10 mM Tris HCl, pH 7.5, 150 mM 
NaCl, and 0.5% bovine serum albumin) at room temperature for 30 min. 
The cells were then incubated with a specifi c primary antibody for 1 h at 
37°C. After the cells were washed once with KB, they were incubated with 
the fl uorescent secondary antibodies fl uorescein isothiocyanate–conjugated 
Affi niPure IgG or Texas red–conjugated Affi niPure IgG (Jackson Immuno-
Research Laboratories) for 1 h at 37°C. Slides were washed once with KB 
and then incubated in KB containing 0.1 μg/ml DAPI (Sigma-Aldrich). Cells 
were observed through an Axioskop2 (Carl Zeiss MicroImaging, Inc.) motor-
ized fl uorescence microscope equipped with a Plan Apochromat 63× oil 
immersion lens (Carl Zeiss MicroImaging, Inc.), an HBO 100 microscope 
 illuminator (Attoarc), and a microMAX CCD camera (Princeton Instruments, 
Inc.). Appropriate fi lters were used to photograph stained cells. Image ac-
quisition and processing was performed with IP Lab Scientifi c Imaging Soft-
ware (Scanalytics). Alternatively, we observed cells through a DM IRE2 
motorized fl uorescence microscope (Leica) equipped with an HCX PL APO 
63× oil immersion lens (Leica), an ARC LAMP power supply HBO100 DC 
IGN (Ludl Electronic Products, Ltd.), and an ORCA-ER high-resolution digital 
CCD camera (Hamamatsu). Image acquisition and processing were performed 
using Openlab version 4 Scientifi c Imaging Software (Improvision).

DNA fragmentation assay
A DNA fragmentation assay was performed as described previously 
(Sonoda et al., 1997, 1999, 2000). In brief, cells were gently lysed for 
30 min at room temperature in buffer containing 5 mM Tris-HCl (pH 7.4), 
20 mM EDTA, and 0.5% Triton X-100. After centrifugation at 15,000 rpm 
for 15 min, supernatants containing soluble, fragmented DNA were collected 
and treated with RNase (20 μg/ml; Sigma-Aldrich) and then with protease K 
(20 μg/ml). DNA fragments were precipitated in 99% ethanol. Samples 
were then subjected to electrophoresis in a 2% agarose gel and visualized 
by staining with ethidium bromide.

Time-lapse imaging and analysis
HeLa cells were plated on 10-mm-diameter tissue culture plates with glass 
bottoms (MatTek Corp.) that had been coated with poly-D-lysine. Cells were 
then transfected with either human BUB1 siRNA or luciferase siRNA using 
Lipofectamine 2000 (Invitrogen). After 48–54 h, cells were incubated with 
1 mM ICRF-187 (cardioxane; Chiron Corp.). After 54 h, cells were trans-
ferred to L15 Leibovitz medium to which 2.05 mM L-glutamine (HyClone) had 
been added. The medium was then supplemented with 10% fetal bovine 
serum and 1% penicillin-streptomycin (both from Invitrogen). At the same 
time cells were coincubated with 1 mM ICRF-187 and 500 nM 17-AAG, 
over which Sigma mineral oil had been placed. Cells were then main-
tained at 37°C. Phase-contrast images were captured every half hour for 
24 h (after 54–78 h of transfection). Cells were imaged on a DM IRE2 
motorized microscope equipped with an HCX PL FLUOT AR 40× lens 
(Leica), an ARC LAMP power supply HBO100 DC IGN (Ludl Electronic 
Products, Ltd.), and an ORCA-ER high-resolution digital CCD (charge-coupled 
device) camera (Hamamatsu). Images were acquired and processed using 
Openlab version 4.0.4 Scientifi c Imaging Software (Improvision). Pictures 
images were saved in Openlab’s LIFF format, converted to TIFF format, and 
then exported to Adobe Photoshop.

Electron microscopy
Mitotic HeLa cells were collected by gentle pipetting and fi xed briefl y with 
a 37°C solution of 2% paraformaldehyde, 2.5% glutaraldehyde in 0.15 M 

sodium cacodylate (pH 7.4). Low-melting point agarose (4%) was mixed 
with an equal volume of fi xed cells and was transferred to a box with 
cold packs for shipment to National Center for Microscopy and Imaging 
Research (NCMIR). The samples arrived cold at NCMIR and were rinsed 
three times for 5 min with 0.15 M sodium cacodylate plus 3 mM calcium 
chloride (pH 7.4) on ice and then post-fi xed with 1% osmium tetroxide, 
0.8% potassium ferrocyanide (Sigma-Aldrich), and 3 mM calcium chloride 
in 0.15 M sodium cacodylate (pH 7.4) for 2 h and then washed three 
times for 5 min with ice-cold distilled water. The cells were stained for 2 h 
with 2% uranyl acetate at 4°C, dehydrated in graded ethanol incubations, 
and embedded in Durcupan resin (Fluka). Ultrathin (80 nm) sections were 
post-stained with uranyl acetate for 10 min and Sato lead for 2 min and 
imaged with a JEOL 1200FX transmission electron microscope operated at 
80 kV. Mitotic cells were imaged on fi lm at 3,000–5,000 magnifi cation on 
a JEOL 1200FX electron microscope. The negatives were digitized at 
1,800 dpi using a Nikon Coolscan system, giving an image size of 4034 × 
6009 pixel array. All reagents were purchased from TED PELLA, Inc., unless 
otherwise indicated.

Online supplemental material
Fig. S1A shows that overexpression of BUB1 can suppress CIMD when 
siRNA that targets the 3′-UTR region of BUB1 and 17-AAG were used. Fig. 
S1 B shows a control immunoblot to confi rm the transfection of the plasmids 
that were used in Fig. S1A and Fig. 7 H. Fig. S1 C shows that increased 
concentrations of paclitaxel (Taxol; 10–1,000 nM) treatment of BUB1-
 depleted cells do not affect the levels of mitotic TUNEL-positive (black bars) 
cells substantially. Fig. S1 D shows determination of the concentration of 
inhibitors needed to suppress caspase activity in HeLa cells. Fig. S1 E 
shows that CIMD is independent of p53. Fig. S1 F shows overexpression 
of p73DD. Fig. S2 A shows CIMD did not occur in p73−/− MEF cells effi -
ciently. Fig. S2 B shows AIF and EndoG (green) are colocalized with mito-
chondria (red). Fig. S2 C shows protein depletion by AIF siRNA and 
EndoG siRNA. Fig. S2 D shows mitotic arrest caused by 17-AAG was not 
affected by either AIF siRNA #1 or #2 or EndoG siRNA #1 or #2. Fig. S2 E 
shows TUNEL assay of mitotic BUB1-depleted and ICRF187-treated cells 
indicated that ICRF187 did not induce CIMD in BUB1-depleted cells. Fig. 
S2 F shows kinetics of Endo G release and TUNEL signals after addition of 
17-AAG or microtubule inhibitors to BUB1-depleted cells. Fig. S3 (A–C) 
shows electron microscopy images of BUB1-depleted cells that were treated 
with 17-AAG. Fig. S4 A shows depletion of BUB1 by using various sets of 
siRNAs. Fig. S4 B shows the mitotic index is the same as that shown in Fig. 
2 C. Mitotic TUNEL-positive cells were not observed when MAD2 was par-
tially depleted. Fig. S4 C shows immunoblotting of HeLa cells that were 
transfected with the indicated plasmid vectors by using anti-BUB1 anti-
body. Fig. S4 D shows CIMD induced by 17-AAG treatment did not acti-
vate caspases in tumor cells with CIN. Fig. S4 E shows CIMD induced by 
treatment with 17-AAG was not suppressed by Pan-caspase inhibitors VAD 
(zVAD; 50 μM) or BAF (50 μM). Fig. S4 (F and G) shows overexpression 
of survivin did not inhibit CIMD. Online supplemental material is available 
at http://www.jcb.org/cgi/content/full/jcb.200702134/DC1.
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