Nucleic Acids Research, 2005, Vol. 33, No. 21 6895-6905
doi:10.1093/nar/gkil001

Down-regulation of interferon regulatory factor 4 gene
expression in leukemic cells due to hypermethylation
of CpG motifs in the promoter region

Christina A. Ortmann, Andreas Burchert, Katharina Hélzle, Andreas Nitsche',
Burghardt Wittig>3, Andreas Neubauer and Manuel Schmidt®*

Klinik fir Hamatologie, Onkologie and Immunologie, Zentrum Innere Medizin, Klinikum der Philipps-Universitat,
Marburg, Germany, "Robert-Koch-Institut, Berlin, Germany, 2MOLOGEN AG, Berlin, Germany and
SAbteilung Molekularbiologie und Bioinformatik, Universitatsmedizin Berlin, Charité—Campus Benjamin Franklin,

Berlin, Germany

Received August 23, 2005; Revised October 10, 2005; Accepted November 15, 2005

ABSTRACT

Although the ber-abltranslocation has been shown to
be the causative genetic aberration in chronic myeloid
leukemia (CML), there is mounting evidence that the
deregulation of other genes, such as the transcription
factor interferon regulatory factor 4 (IRF-4), is also
implicated in the pathogenesis of CML. Promoter
methylation of CpG target sites or direct deletions/
insertions of genes are mechanisms of a reversible
or permanent silencing of gene expression, respect-
ively. Therefore, we investigated whether /IRF-4 pro-
moter methylation or mutation may be involved in the
regulation of IRF-4 expression in leukemia cells.
Whereas promoter mutations or structural rearrange-
ments could be excluded as a cause of altered IRF-4
expression in hematopoietic cells, the IRF-4 promoter
methylation status was found to significantly influ-
ence IRF-4 transcription. First, treatment of IRF-4-
negative lymphoid, myeloid and monocytic cell lines
with the methylation-inhibitor 5-aza-2-deoxycytidine
resulted in a time- and concentration-dependent
increase of IRF-4 mRBNA and protein levels.
Second, using a restriction-PCR-assay and bisulfite-
sequencing we identified specifically methylated CpG
sites in IRF-4-negative but not in IRF-4-positive cells.
Third, we clearly determined promoter methylation as
a mechanism for IRF-4 down-regulation via reporter
gene assays, but did not detect an association of
methylational status and mRNA expression of DNA
methyltransferases or methyl-CpG-binding proteins.
Together, these data suggest CpG site-specific IRF-4

promoter methylation as a putative mechanism of
down-regulated IRF-4 expression in leukemia.

INTRODUCTION

Chronic myeloid leukemia (CML) is a clonal myeloprolifer-
ative disorder with a typical three phased course (chronic,
accelerated and blastic phase) reflecting the loss of differen-
tiation and malignant progress which inevitably leads to death
after the blastic phase (1,2). The hallmark genetic aberration of
CML is a reciprocal chromosomal translocation t(9;22) lead-
ing to expression of a bcr-abl fusion gene, an aberrant activ-
ated tyrosine kinase (2). Treatment with interferon oo (IFN-ox)
prolongs survival of CML patients and is associated with a
complete cytogenetic response in 5-33% of CML patients
(1,2). Recently, we described an impaired expression of the
interferon regulatory factor 4 (IRF-4) in CML, correlating with
poor response to IFN-a treatment (3). The cause of the silen-
cing of IRF-4 level remained unclear.

Interferon regulatory factors (IRFs) are a family of tran-
scriptional regulators defined by a characteristic homology in
their DNA-binding domain. They play an important role in the
regulation of various genes (such as IFNs, interleukins, MHC
class I/II), apoptosis and differentiation/maturation (4-6).
IRF-4 (ICSAT/Pip/MUMI1/LSIRF) is one member with very
restricted expression pattern: Predominately B- and activated
T-lymphocytes are IRF-4 positive (7-11). In contrast to other
IRFs, expression of IRF-4 cannot be induced by IFNs, but by
antigen stimulation, crosslinking of T- or B-cell receptors or
phorbol-myristate-acetate (10,11). Consistent with the restric-
tion of expression to immunocompetent cells, mice with dele-
tion of /IRF-4 failed to develop mature and functionally active
B- and T-lymphocytes (12), and the impaired expression of
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IRF-4 in CML was predominately found in T-cells (3). These
data suggest a crucial role for IRF-4 in the function of immune
cells.

Methylation of dinucleotide cytosine-guanosine motifs
(CpG), especially in CpG islands located in promoter regions,
is one of the mechanisms of gene regulation in mammals and a
common event of gene silencing in human neoplasias (13,14).
As opposed to normal cells, hypermethylation of CpG islands
is a frequently observed phenomenon in every cancer type.
De novo DNA methylation of genes such as cell cycle, DNA
repair, apoptosis and tumor suppressor genes is therefore
thought to be involved in tumorigenesis (15-17). Examples
for such aberrated genes are MGMT, DAPK, p14ARF R p151 b ,
pl6™V&% BRCAI, CDHI3 and APAF-1 (17-19). In CML,
methylation is known to regulate expression of the c-abl,
the ber gene and others (20-23), and the extent of methylation
in the c-abl promoter has been shown to be associated with
advanced disease (24). Hypermethylation due to overexpres-
sion of DNA methyltransferases (DNMTSs) remains one pos-
sible explanation for de novo methylation in tumorigenesis.
Recently, DNMTs have been shown to be up-regulated in
hematopoietic malignancies (25). Methyl-CpG-binding pro-
teins (MBPs) are thought to inhibit the binding of transcrip-
tional factors to the promoter and are therefore discussed as
one mechanism of transcription inhibition by hypermethyla-
tion (26).

In this work, we studied mechanisms of /RF-4 gene expres-
sion silencing in leukemic cells. We analyzed the IRF-4 pro-
moter region for genetic aberrations and methylational status
in IRF-4-positive and -negative hematopoietic cells.

MATERIALS AND METHODS
Cell lines

K-562, Jurkat and U-937 were obtained from the ATCC
(American Type Culture Collection, Rockville, USA) and
EM-2, LAMA-84, CML-T1, BV-173, SD-1 and RPMI-8226
from the DSMZ (Deutsche Sammlung von Mikroorganismen
und Zellkulturen GmbH, Braunschweig, Germany). All
cell lines, except BV-173, SD-1 and RPMI-8226, were IRF-
4-negative.

Cell culture and stimulation

All cell lines were maintained at 5% CO, in RPMI 1640
medium with 1% glutamine (Gibco/BRL Eggenstein,
Germany) supplemented with 10% fetal calf serum (Gibco/
BRL), 1% penicillin/streptomycin (Biochrom, Berlin,
Germany). When indicated, cells were treated with 5-aza-2-
deoxycytidine (AzadC) or 5-azacytidine (AzaC) (Sigma,
Taufkirchen, Germany) for different time periods. Owing to
their chemical instability fresh substances were re-added
every 24 h.

Sequencing of the IRF-4 promoter

For analysis of the IRF-4 promoter region for permanent
aberrations such as insertions/deletions or mutation, we
PCR-amplified two fragments from genomic DNA, which
was extracted from depicted cell lines with a commercial
kit (Qiagen, Hilde, Germany) as recommended. The primers

were 1-forward: 5-TTGAGATGGAGTCTTGCTCTGT-3’, 1-
reverse: 5-CCAGGACCTCAGGAGGCCAGTCA-3"; 2-
forward: 5'-AGCGGTGAAACTGAGAGTGCGAGGT-3, 2-
reverse: 5'-GCCACATCGCTGCAGTTTAG-3'. The prod-
ucts were cloned with the “TOPO TA cloning kit’ (Invitrogen,
Groningen, The Netherlands). After bacterial amplification
of the cloned PCR fragments by standard procedures, at
least three clones from each sample were sequenced with
an automated sequencer (ABI Prism 377, Applied Bio-
systems, Foster City, USA) as recommended by the
manufacturer.

Expression analysis

To analyze the IRF-4 transcriptional level, RNA was extracted
from cells using the commercial RNAzol-kit (Paesel, Frank-
furt, Germany). An aliquot of 1 ug total RNA was used for
cDNA synthesis as described previously (27). RNA expression
analysis for IRF-4 and the reference gene B-actin was carried
out by semi-quantitative PCR as described previously (3,27).
PCR products were verified by automated sequencing. PCR
primers and conditions for expression analysis of DNMT or
MBP (DNMT1 DNMT3A, DNMT3B, MeCP, MBD1, MBD2
and MBD4) were published elsewhere (28).

For analysis of IRF-4 protein expression, a standard immun-
oblotting assay was performed as described previously (29).
Briefly, protein lysates were generated by incubating 1 x 10°
cells in 100 pl RIPA buffer (1% NP-40, 0.5% sodiumdesoxy-
cholate, 0.1% SDS, 100 pg/ml phenylmethylsulfonyl fluoride,
10 pl/ml protease-inhibitory-mix, 1 wmol/ml sodiumortho-
vanadate in phosphate-buffered saline) for 30 min on ice.
After centrifugation, protein concentration of the supernatant
was determined by BCA-method (Pierce, Rockford, IL) as
recommended. Protein lysates (70—100 ng) were electrophore-
sed on polyacrylamide gels and transferred to a PVDF-
membrane (Immobilon P, 0.45 um; Millipore, Eschborn,
Germany). Membranes were blocked with 2.5% blocking
reagent (Boehringer Mannheim, Germany) in TBST buffer
(4.44 ¢/l Tris—HCL, 2.65 g/l TrisOH, 8.07 g/l NaCl, 0.2 g/l
KClI and 500 pl/l Tween-20 in H,O) and subsequently incub-
ated with primary antibody as indicated and horseradish
peroxidase-conjugated secondary antibody, anti-mouse or
anti-goat IgG (DAKO, Hamburg, Germany), respectively.
The membranes were then developed with an ECL detection
kit (Amersham Pharmacia Biotech, Freiburg, Germany). The
primary antibodies were goat anti-IRF-4/ICSAT (M-17)
(Santa Cruz Biotechnology, Santa Cruz, CA) and mouse
anti-B-actin (AC-74) (Sigma).

Methylation-specific restriction-PCR-assay

DNA was extracted with a commercial kit (Qiagen) as recom-
mended. Since the restriction ability of several endonucleases
is inhibited by methylation of their target sequence, we used
methylation-sensitive enzymes Hpall and Haell-isochizomer
Bspl143Il and Bsh12361 (MBI Fermentas, St Leon-Rot,
Germany) (20,24). As control the methylation-resistant
enzyme Mspl and an enzyme with no recognition site in
the target promoter, EcoRI, were used. DNA (0.8 pg) was
digested by 40 U the respective enzyme for 6 h and, to ensure
complete cleavage, additional 20 U for 16 h. Thereafter 100 ng
of digested DNA was used to a PCR amplification of two



fragments (F1 and F2) spanning part of the /RF-4 promoter
(30) (GenBank U52683; see Figure 3A). The sequences of the
primers were Fl-forward: 5-TTGAGATGGAGTCTTGCT-
CTGT-3', Fl-reverse: ATCACTTCCAGACTTCAGTTCAC-
CT-3’ (341 bp); F2-forward: 5'-AAGGTGAACTGAAGTCT-
GGAAGTGA-3', F2-reverse: 5-CCAGGACCTCAGGAGG-
CCAGTCA-3' (474 bp). The PCR conditions were described
elsewhere (3). PCR was performed with an annealing temper-
ature of 62°C and 35 cycles. When DNA was methylated at
specific sites, the sensitive enzymes were not able to digest the
DNA and amplification took place; in case of no methylation,
DNA was digested and no product was generated. The PCR
products were electrophoresed on a 3% agarose gel, were
stained with ethidium bromide and photographed. PCR pro-
ducts were verified by automated sequencing.

Bisulfite treatment

DNA was extracted as described above. Bisulfite treatment of
DNA, leading to conversion of unmethylated cytosine to uracil
residues and no change of methylated cytosine residues, was
performed as described as follows. Briefly, 1 ug of DNA and
2 ug of poly(dA—dT)(poly(dA—dT) copolymers (Amersham
Pharmacia Biotech) were denaturated for 20 min at 42°C in
0.3 M NaOH in a volume of 50 pl. Fresh solutions of 30 ul of
10 mM hydrochinon (Sigma) and 530 ul of 3 M sodium
bisulfite (pH 5.0; Sigma) were added, the solution was gently
mixed, overlayed with mineral oil and incubated in the dark for
12-13 h at 50°C. The aqueous phase was recovered using
the ‘Wizard DNA clean-up system’ (Promega, Mannheim,
Germany). The purified DNA was subsequently mixed with
1 M NaOH to a final concentration of 0.3 M and incubated for
20 min at 37°C to ensure complete desulfonisation. DNA was
ethanol precipitated in the presence of 1/10 vol of 3 M sodium
acetate, washed with 70% ethanol and resuspended in 50 ul
H,0. Subsequent PCR amplification of 4 ul bisulfite-treated
DNA was used for cloning of two fragments of the /IRF-4
promoter (BS-I and BS-II) into pCR2.1 vector with the
‘TOPO TA cloning kit’ (Invitrogen) (see Figure 3A). The
primers used for PCR amplification of the BS-I and BS-II
fragments contain the putative altered sequence of the sense
strand due to bisulfite treatment (converted cytosine residues
are written in bold letters): BS-I-forward 5-TATTTG-
GATTTTTAGGGAGTTTTTTTT-3, BS-I-reverse 5'-ACC-
CAACTCCCTTAAACTATTAAACT-3' (187 bp); BS-II-
forward 5-AGTTTAATAGTTTAAGGGAGTTGGGT-3/,
BS-II-reverse  5'-CTCACCCTAAACTCAAAACTAAAA-
AC-3’ (674 bp). After bacterial amplification of the cloned
PCR fragments by standard procedures, eight clones from each
sample were sequenced with an automated sequencer (ABI
Prism 377, Applied Biosystems).

In vitro methylation and reporter gene assays

The IRF-4 promoter-reporter gene construct was generously
provided by J. Hiscott (31). Constructs were methylated
in vitro with CpG Methylase (M.Sss I) as recommended by
the manufacturer (NE Biolabs) and complete methylation was
checked via restriction analysis (Figure 5A). Reporter gene
assays using the dual luciferase assay (Promega) were per-
formed similar to previous reports (29). Briefly, 5 nM of the
reporter construct and the transfection control construct
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expressing the renilla luciferase gene were transiently
co-expressed via electroporation. The control construct served
as an internal reference for transfection efficiency. Forty-eight
hours after transfection, luciferase activity was measured with
a LB 96 P microlumat (EG&G Berthold, Bad Wildbad, Ger-
many). IRF-4 promoter activation was quantified as a ratio of
measured firefly light units (flu) relative to renilla (rlu). Each
experiment was carried out at least three times.

RESULTS

Absence of IRF-4 expression in leukemia cells is not due
to promoter alterations

We have previously demonstrated a lack of IRF-4 expression
in leukemia patients and specifically in CML T-cells (3). Here,
we demonstrate the absence of IRF-4 expression in various
hematopoietic cell lines, such as Jurkat, a T-cell leukemia,
CML-T1, a bcr-abl-positive T-cell line, K-562, a bcr-abl-
positve erythroleukemia, U-937, a monocytic leukemia,
EM-2 and LAMA-84, bcr-abl-positve myeloid leukemia,
but not in SD-1, a bcr-abl-positive acute lymphoblastic leuk-
emia (pre B-ALL), RPMI-8226, a multiple myeloma and BV-
173, a ber-abl-positive B-cell line (Figures 1A and 5D). After
sequencing of the IRF-4 promoter, it could be excluded that
absence of IRF-4 expression in any of the above cell lines was
due to genetic aberrations. However, 2 bp changes (nucleotide
—1081, T—C and —1068, A—C) could be detected in both the
IRF-4-positive BV-173 and the IRF-4-negative LAMA-84,
EM-2 and K-562 (Figure 1B). At position —116 an A—C
substitution was found in EM-2, K-562 and CML-T1, whereas
Jurkat, BV-173 and SD-1 exhibited a mixed A/C sequence and
U-937, LAMA-84 and RPMI-8226 no substitution at all
(Figure 1B). Consequently, these alterations are unlikely to
affect IRF-4 expression.

Increase of IRF-4 expression in hematopoietic
cells after demethylating treatment

We next analyzed whether promoter methylation could be
responsible for down-regulation of IRF-4 expression. A region
including exonl in the /RF-4 promoter exhibited a large num-
ber of CpG-rich sequences (Figure 3A). Several chemical
substances such as 5-aza-2-deoxycytidine (AzadC) or
5-azacytidine (AzaC) inhibit de novo and maintenance
methylation, and thus can be used to discern promoter methyl-
ation (32,33). We used AzadC to generate unmethylated DNA.
A 72 h AzadC-treatment resulted in a concentration-dependent
activation of IRF-4 transcription in Jurkat and CML-T1 T-
cells as well as in U-937, K-562 and EM-2 cell lines
(Figure 2A). IRF-4 transcription was induced in a time-
dependent manner and was observed as early as 24 h after
treatment with AzadC and increased over time until 72 h
(Figure 2B). Time and strength of the appearance of IRF-4
transcripts varied among cell lines, i.e. CML-T1 responded
strongest to AzadC-treatment (data not shown). In line with
this, AzadC-treatment of CML-T1 and LAMA-84 cells also
translated in an induction of IRF-4 protein expression
(Figure 2C). Accordingly, treatment of the IRF-4-positive
cell line BV-173, SD-1 and RPMI-8226 with AzadC had
no effect on IRF-4 expression (Figure 2D). There was no
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Figure 1. Correlation of IRF-4 mRNA expression and nucleotide changes in the /RF-4 promoter. (A) RT-PCR of different hematopoietic cell lines. (B) nucleotide
changes in the promoter of IRF-4-positive or -negative cells in comparison to the germline sequence at positions 98, 111 and 1063 (GenBank accession no. U52683),
representing nucleotide —1081, —1068 and —116 (30) or —1094, —1081 and —129 (31), respectively.

difference in the effects of AzaC versus AzadC, as both
increased the IRF-4 mRNA level in CML-T1 cells as well
(data not shown). This implied that promoter methylation
may control IRF-4 expression, but an alternative explanation
may be activation of positive transcriptional regulators of
IRF-4 by AzadC (or AzaC).

Methylation-sensitive enzymes do not cut specific sites
in the IRF-4 promoter in hematopoietic cells

To further investigate promoter methylation as a regulatory
mechanism of /RF-4 gene expression, restriction-PCR-assays
were performed (20,24), where only methylated DNA would
not be cut enabling subsequent PCR amplification and vice
versa. Genomic DNA from leukemic cells Jurkat, CML-T1,
U-937, K-562, EM-2 and BV-173 was digested with the
methylation-sensitive enzymes Hpall, Bsh12361 and Haell-
isochizomer Bsp143Il. EcoRI, which has no recognition site
within the /RF-4 promoter, and the methylation-resistant
enzyme Mspl served as controls. Two separate amplification
reactions were performed, generating two fragments, F1 and
F2 (Figure 3A). After digestion with Hpall and Bsp143II a
sufficient PCR amplification of F1 and F2 was detected in
DNA from IRF-4-negative Jurkat, CML-T1, U-937, K-562
and EM-2 cells, suggesting a promoter methylation (and
restriction protection) at the respective recognition sites
(Figure 3B and C). Notably, in IRF-4-positive SD-1 cells
digestion with the methylation-sensitive enzymes completely
inhibited amplification of F1 and F2. In IRF-4-positive BV-
173 cells a Hpall, but not a Bsh1236I digestion, significantly
reduced the amplifiable DNA message of F2 (Figure 3C),
whereas amplification of F1 was not affected (Figure 3B).
This implied that /RF-4 transcription in SD-1 and BV-173
cells is associated with less promoter methylation (in BV-173

especially at Hpall sites) as compared with the tested IRF-4-
negative cells.

Specific CpG sites in the IRF-4 promoter are methylated
in hematopoietic cells

In order to exactly map the methylation sites within the IRF-4
promoter, we treated DNA of Jurkat, CML-T1, U-937, K-562
and EM-2 cells as well as of SD-1, RPMI-8226 and BV-173
control cells with bisulfite, which chemically converts
unmethylated cytosine to uracil, whereas it has no effect on
methylated cytosine, i.e. in CpG (34). This technique is espe-
cially useful for detection of unknown methylation patterns.
PCR amplification, cloning and sequencing of the bisulfite-
treated DNA showed a specific methylation pattern of the
analyzed 62 CpG sites in all cell lines (Figure 4 and
Table 1). In general, the methylational status ranged from
one cell line with a nearly non-methylated /RF-4 promoter
(SD-1, IRF-4-positive) to a completely methylated /RF-4 pro-
moter in CML-T1 (IRF-4-negative). Interestingly, the percent-
age of CpG methylation in the /IRF-4 promoter from IRF-4-
positive cells was very low (mean 24%) as compared with
IRF-4-negative cells (mean 94%) (Figure 4A and Table 1).
A 5'-region (R1) with 13 hypermethylated CpG sites (mean
number of methylated clones 5.5 of 8 with 77% methylated
CpGs) was found in most cells (except SD-1 and RPMI-8226)
and a 3'-region (R3) of 6 hypomethylated CpG sites (mean
number of methylated clones 1.7 of 8 with 33% methylated
CpGs) was found in most cells (except CML-T1 and U-937)
(Figure 4A and Table 1).

Intriguingly, a stretch of 13 CpG sites (#10-22; R2) was
detected in between these regions, which were highly methyl-
ated in IRF-4-negative (mean number of methylated clones 7.1
of 8 with 89% methylated CpGs) but totally non-methylated in
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Figure 2. Expression of IRF-4 in hematopoietic cells after treatment with AzadC. Representative cells and experiments are shown. (A) RT-PCR after incubation of
CML-T1 and EM-2 with 0.5, 1 and 3 uM AzadC for 72 h; (B) RT-PCR after treatment of CML-T1 and EM-2 with 3 uM AzadC for 24, 48 and 72 h;
(C) immunoblotting after treatment of CML-T1 and LAMA-84 with 1 and 3 uM AzadC for 72 h; (D) RT-PCR after treatment of BV-173 for 24, 48 and 72 h

and RPMI-8226 for 72 h with 3 uM AzadC.

IRF-4-positive cells (Figure 4A and B). Furthermore, three
CpG sites at the 5" end (#54, 56, 58) and two CpG motifs at
the 3’ end (#1, 2) showed this direct correlation between high
methylation status and absence of IRF-4 expression. In addi-
tion, two CpG sites located in a NFkB (#48) and a SP1 element
(#45) are less methylated in IRF-4-positive than in IRF-4-
negative cells (mean number of methylated clones: 1/8 versus
8/8). These results indicate the involvement of CpG methyla-
tion in the regulation of IRF-4 expression in leukemic cells.

In vitro methylation of an IRF-4 promoter-reporter
construct decreases its activity

To provide evidence for a direct effect of methylational
status on [/RF-4 promoter activity we performed reporter

gene assays with [RF-4 promoter constructs before
and after their in vitro methylation. A complete methyla-
tion of these constructs was checked via restriction assays
with methylation-sensitive endonucleases (Figure 5A).
Intriguingly, methylation of the /RF-4 promoter significantly
decreased promoter activity in IRF-4-positive SD-1 cells by
85.0% (Figure 5B). The silencing effect of CpG methylation
was not restricted to IRF-4-positive cells, since in vitro
methylation led to a 92.9% abrogation of promoter activity
in IRF-4-negative Jurkat cells (Figure 5C). In contrast, control
methylation of a reporter construct with a different promoter
(FasL) as well as an empty vector had no effect on the
reporter activity (data not shown). These data proved a direct
association between methylation and activity of the /RF-4
promoter.
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Figure 3. Restriction-PCR-assay of the /RF-4 promoter in hematopoietic cells. (A) Simplified structure of the CpG sites in the human /RF-4 promoter region
including exon 1. Each CpG motif is shown as circle and numbered (above, labeling beginning from the 3’ end moving upstream). Restriction sites, fragments (F1, F2)
of the restriction-PCR-assay and regions amplified after bisulfite treatment for sequencing are shown below. The numbers in italics refer to the sequence data by
Grossman et al. (30). (B and C) Restriction-PCR-assay. Restriction of DNA with EcoRI (E, no recognition site), Hpall (H, sensitive), Bsp143II (BII, sensitive),
Bsh1236I (BI, sensitive) and Mspl (M, resistant) and subsequent PCR amplification. Three representative IRF-4-negative (K-562, CML-T1, EM-2) and two IRF-4-
positive cell lines (SD-1, BV-173) are shown. IRF-4 expression is denoted on the right. (B) PCR-fragment 1 (F1); (C) PCR-fragment 2 (F2).

mRNA expression of DNA methyltransferases and
methyl-CpG-binding proteins may not be associated
with IRF-4 promoter methylation

Since abundance of DNMT and MBP contribute to promoter
regulation via methylation (25,26,28), we studied their mRNA
expression to investigate a possible mechanism for the
observed methylation differences in the /RF-4 promoter. To
this end, we did not detect a significant difference in DNMT
(DNMT1, DNMT3A and DNMT3B) or MBP (MBD1, MBD2,
MBD4 and MeCP) mRNA expression between IRF-4-positive
and -negative cells (Figure 5D). In fact, all analyzed cells had
moderate to high mRNA levels of these tested DNMT/MBPs
and differences in expression were not correlated with IRF-4
status. These results indicate a distinct cause of the methyla-
tion differences in IRF-4-positive and -negative cells rather
than changes in the DNMT and MBP mRNA transcription.

DISCUSSION

Many genetic lesions are known to influence gene
expression of tumor suppressor genes. Whereas mutations

and deletions or insertions have permanent effects, revers-
ible mechanisms are gene methylation, or expression and
activation of transcription factors, respectively. We studied
a putative cause for absent IRF-4 expression in leukemia
cells and first focused on genetic aberrations of the promoter.
We observed no genetic alterations in the IRF-4 promoter,
which can account for the lack of IRF-4 expression: The
detected base pair changes at position —1081 (T—C sub-
stitution), at position —1068 (A—C substitution) and at posi-
tion —116 (A—C substitution) are unlikely responsible for
absent IRF-4-expression since the first two mutations were
found both in IRF-4-positive and -negative cells whereas the
latter change was not detected consistently in all IRF-4-
negative or -positive cells and may thus be a polymorphism.
All three substitutions did not change any known putative
transcription factor binding sites (30,31) and also do not
affect any restriction sites or primer binding sites of the
used assays. However, permanent genetic variations in the
IRF-4 coding sequence, such as deletions or mutations res-
ulting in stop-codons have not been excluded by sequence
analysis. Since IRF-4 expression in cell lines and CML can be
induced by demethylation and successful IFN-o therapy (3),
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--8--8--B--B8--8--B--B--B8--6-~-5--B--6--6- | EM-2

--8--8--8--8--8--8--B--2--8--8--2--8--8- | U-937

--8--8--B--8--8--8--8--8--8--8--8--8--8- | CML-T1

Figure 4. Methylation pattern of CpG sites in the /RF-4 promoter region. Methylation is detected via sequencing of bisulfite-treated DNA from hematopoietic cells.
(A) Schematic figure of the /RF-4 promoter region (see Figure 3A) for each cell line. Each CpG motif is shown as circle and numbered (above, labeling beginning
from the 3’ end moving upstream), white circles mean no methylated clone (from eight), gray circles mean one to four methylated clones and black circles mean five to
eight methylated clones. IRF-4 expression is denoted on the right. Below, CpG sites maybe responsible for methylation-dependent /RF-4 silencing (arrows); R1,
region with generally high methylation; R2, region with correlation between methylation and IRF-4 expression; R3, region with generally low methylation. Putative
binding sites for transcription factors are shown above (5x AP1, 3x Sp1, 2x Ets-1, 2x kB, Ix NF-3, 1x CD28RE, 1x PU.1). (B) Schematic figure of specific region 2
(R2): CpG sites from #10 to #22 are shown above. Number of methylated clones (from eight) is shown for each cell line.

Table 1. Sequencing of bisulfite-treated DNA from hematopoietic cells

Cell lines IRF-4 Methylated CpGs® (%) Level of methylation® (mean)

Total R1 R2 R3 Total R1 R2 R3
SD-1 + 1/62 (2%) 0/13 (0%) 0/13 (0%) 0/6 (0%) 0.0 0.0 0.0 0.0
RPMI-8226 + 9/62 (15%) 0/13 (0%) 0/13 (0%) 0/6 (0%) 0.3 0.0 0.0 0.0
BV-173 + 34/62 (55%) 13/13 (100%) 1/13 (8%) 0/6 (0%) 2.8 5.8 0.1 0.0
Mean + 15/62 (24%) 4/13 (31%) 0/13 (0%) 0/13 (0%) 1.0 1.9 0.0 0.0
Jurkat - 53/62 (85%) 13/13 (100%) 13/13 (100%) 2/6 (33%) 5.7 7.5 72 0.7
EM-2 - 56/62 (90%) 13/13 (100%) 13/13 (100%) 3/6 (50%) 6.0 7.5 7.3 1.0
K-562 — 58/62 (94%) 100% 13/13 13/13 (100%) 2/6 (33%) 5.4 7.2 6.1 0.3
U-937 - 98% 61/62 100% 13/13 13/13 (100%) 5/6 (83%) 7.2 7.9 7.1 3.7
CML-TI - 62/62 (100%) 13/13 (100%) 13/13 (100%) 6/6 (100%) 79 8.0 8.0 8.0
Mean - 58/62 (94%)° 13/13 (100%) 13/13 (100%)* 4/6 (67%) 6.4° 7.6 71° 2.7

R1,region 1 with relative high methylation (13 CpGs #23-35); R2, region with specific, possibly IRF-4 expression-determining methylation (13 CpGs #10-22); R3,
region with low methylation (6 CpGs #4-9). Bold numbers were compared statistically (mean IRF-4 positive versus IRF-4 negative): °p<0.001 (chi-square); 4p<0.01
(chi-square); “p<0.001 (r-test); *p<0‘0001 (t-test).

“Percentage of methylated CpGs with 1-8 clones methylated at this site (methylated CpG motifs/all CpG motifs).

®Mean number of methylated clones per eight analyzed clones.
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Figure 5. Investigation of putative mechanisms for IRF-4 deregulation. (A—C) Influence of in vitro methylation on the activity of an /[RF-4 promoter-reporter gene
construct. (A) Control of complete methylation via restriction. Digestion of the construct before (lanes 2, 4 and 6) and after methylation (lanes 1, 3 and 5) with
respective methylation-sensitive (Hpall, lanes 1 and 2) and -resistant endonucleases (Mspl, lanes 3 and 4). (B and C) Reporter gene assays with non-methylated
control (co) and in vitro methylated (met) /RF-4 promoter constructs and SD-1 (B) or Jurkat cells (C). The promoter activity is displayed as fold increase to non-
methylated construct (via ratio of firefly to renilla luciferase). (D) Expression of DNMT and MBP mRNA in various hematopoietic cells. RT-PCR of various
hematopoietic cells: SD-1 (lane 1), RPMI-8226 (lane 2), BV-173 (lane 3), U-937 (lane 4), CML-T1 (lane 5), LAMA-84 (lane 6), Jurkat (Iane 7), EM-2 (lane 8) and

K-562 (lane 9). B-Actin is used as reference.

respectively, the existence of such genetic aberrations seems
unlikely.

We then investigated whether the previously described
down-regulation of IRF-4 expression in human myeloid
leukemias was due to a differential hypermethylation of the
promoter, since the presented re-expression due to AzadC-
treatment might also be a result of activation of positive tran-
scriptional regulators of IRF-4. Methylation of CpG sites is a
common mechanism of silencing genes in leukemia and has
also been shown for another IRF, IRF-7 (35) and for PU.1 (36),
an interacting partner of IRF-4. To elucidate the relevance of
this mechanism for the regulation of IRF-4 expression, various
leukemic cells were treated with demethylating agents and
promoters were sequenced after bisulfite treatment. We
found that IRF-4 expression could indeed be connected to
the methylation status of distinct CpG motifs in the IRF-4
promoter. In Figure 4A, those CpG sites are shown (bottom
line), whose hypermethylation may account for the absence of

IRF-4 expression in the respective cells. One of them (#54) is
adjacent to an identified regulatory element (NFxB-site),
indicating a possible involvement of this site. At two further
CpG sites (#48, 45) the methylation status in IRF-4-positive
was lower than that of IRF-4-negative cells. These CpG sites
are located in an NFxB and an SP1 element (31) and thus may
also play a role in regulation of IRF-4 expression. It has been
shown that NFxB elements play an important role in IRF-4
induction as IRF-4 expression depends on binding of the trans-
activator c-Rel to these elements in the IRF-4 promoter
(31,37). Furthermore, methylation of the central CpG in the
NFxB element inhibits binding of the NFkB protein com-
plexes (38), promoting the significance of the observed
methylation differences in IRF-4-positive and -negative cells.

Via in vitro methylation and reporter gene assays we could
clearly appoint the silencing of the IRF-4 promoter to a
methylation effect, which may thus be the mechanism of
IRF-4 deregulation in vivo. One possible cause for the aberrant
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Figure 6. Expression of ICSBP in hematopoietic cells after treatment with AzadC. Representative experiments are shown. (A) RT-PCR after treatment of CML-T1
and EM-2 with 3 uM AzadC for 24, 48 and 72 h; (B) RT-PCR after treatment of LAMA-84 and U-937 with 3 uM AzadC for 24, 48 and 72 h.

methylation in tumorigenesis is an increased level of DNMTs
during the pathogenetic process. In colon, lung and hemato-
logic malignancies, overexpression of DNMT 1, a maintenance
DNMT, has been detected (39—41). Furthermore, it has been
shown that CML cells in the acute phase exhibited elevated
levels of the three known DNMTs, while CML cells in chronic
phase expressed normal levels of DNMTs if compared with
normal bone marrow cells (25). Interestingly, a positive cor-
relation between DNMTI1 expression levels and hyper-
methylation of p15”V%*” has been detected in AML (25).
In this work, we did not detect significant mRINA expression
differences of selected DNMT or MBP, making it an unlikely
cause for the observed methylation and thus IRF-4 expression
differences in leukemia cells.

The finding that IRF-4 expression is silenced by promoter
hypermethylation might represent a mechanism that accounts
for the previously observed loss of IRF-4 expression in CML.
Indeed, several clinical trials with leukemia patients and
patients with myelodysplastic syndromes demonstrated the
potential clinical benefit of a treatment with demethylating
agents (42-45).

The expression of another IRF, IFN consensus sequence
binding protein (ICSBP/IRF-8), is impaired in myeloid leuk-
emias especially CML (27,46,47). But in contrast to IRF-4, the
loss of this IRF could not be reverted in ICSBP-negative cell
lines (EM-2, CML-T1, K-562 and LAMA-84) by treatment
with AzadC (Figure 6) and AzadC has no effect on ICSBP
levels in ICSBP-positive U-937 cells (Figure 6). These data
suggest a distinct regulatory mechanism for these two IRFs.

IRF-4, similar to many other classical tumor suppressor
genes pl5™V&# 1654 or p53, may thus be a subject of
alterations in the promoter methylation status leading to
expression changes, which might contribute to the initiation
and/or progression of cancer. Still, the obvious functional
diversity of IRF-4 remains remarkable and cannot be fully
explained by the /RF-4 promoter methylation status. For
example, IRF-4 is primarily known for its oncogenic features.
In multiple myeloma (MM) a translocation on chromosome

14q was reported to lead to a fusion gene of immunoglobulin
heavy-chain (/gH) and IRF-4 resulting in a subsequent over-
expression of IRF-4 (48,49). In addition, abundant IRF-4
expression was found to be a marker for various subsets of
lymphomas, such as diffuse large B-cell lymphomas, primary
effusion lymphoma, and marginal zone lymphoma, and adult
T-cell leukemia (11,31,50-52). This draws a more complex
picture of the role of IRF-4. Down-regulation of IRF-4 may
promote leukemogenesis in myeloid cell context (3), which
was recently confirmed in IRF-4~'~ ICSBP~"~ double knock-
out mice (53), while IRF-4 up-regulation may induce a growth
advantage in lymphomas or MM (48).

Taken together, our data suggest that IRF-4 promoter
methylation regulates IRF-4 expression, and that aberrant
expression of IRF-4 in certain types of leukemia may be a
consequence of /RF-4 promoter hypermethylation.
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