
Somatostatin analogues labeled with copper radioisotopes:
current status

Aleksandra Marciniak1 • Justyna Brasuń1
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Abstract Peptide receptor radionuclide therapy (PRRT) is

a promising way to treat patients with inoperable tumors or

metastatic neuroendocrine tumors. This therapeutic strat-

egy is using radiolabeled peptides, which are capable of

selective biding to receptors overexpressed in the cancer

cells. One of the group of receptor-avid peptide used in the

PRRT are the analogues of somatostatin (SST) connected

to the complexes of radionuclides (e.g. 90Y, 177Lu or 111In).

Many studies have shown that radiopharmaceuticals based

on Cu radioisotopes are promising for the diagnosis and

treatment of various cancers. This mini-review focuses on

recent developments and summarises the results of multi-

ple studies addressing SST agonists and antagonists radi-

olabeled to Cu radioisotopes.
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Introduction

Somatostatin (SST) is a naturally occurring peptide hor-

mone first isolated in the 1970s from sheep hypothalamus

[1]. In the human body, SST is found in the central nervous

system, mainly in the hypothalamus, but may also be

present in the dorsal root ganglia and sensory nerves, liver,

lungs, pancreas, thyroid, small intestine, bone marrow, and

adrenal glands [2–4]. In the central nervous system, SST

acts as a neurotransmitter and neuromodulator. In the

anterior pituitary gland, SST acts as a strong inhibitor of

growth hormone and thyrotropin (TSH). It is also modu-

lates cell proliferation, inhibits the secretion of insulin and

glucagon in the gastrointestinal system, and affects peri-

stalsis and the absorption of nutrients and ions. SST is

active in the immune system, influencing the proliferation

of lymphoid cells and the formation of immunoglobulins

and cytokines [2, 4–6]. It is also noteworthy that SST has

demonstrated an anti-proliferative activity on certain can-

cer cells [7].

SST exists in two bioactive forms, SST-14 and SST-28,

characterised by the presence of a cyclic motif obtained by

the formation of a disulphide bond between two cysteinyl

moieties (Fig. 1a, b) [4].

It has been shown that four amino acids, Phe, Trp, Lys,

and Thr (Fig. 1), located in the cyclic motif, are respon-

sible for the biological activity of both naturally occurring

forms of SST. Studies by Patel [2] have shown that while

the presence of Trp and Lys is necessary for biological

function, Phe and Thr can be replaced by other amino

acids, e.g., Phe for Tyr and Ser to Thr or Val, without

significantly impacting biological activity [2].

The biological activity of native hormones and their

analogues is based on their interaction with somatostatin

receptors (sstr). Five types of sstr have been defined (sstr1–

sstr5). These are G-protein coupled receptors, encoded by

different genes located on different chromosomes

[2, 8–10]. The extracellular component of an sstr is

responsible for its binding to the target peptide while the

intracellular component is responsible for signal transduc-

tion [9]. Note that sstrs have been identified in both normal

and pathological cells. The overexpression of sstr is com-

monly observed on the surface of cancer cells, e.g., pitu-

itary tumours, neuroendocrine tumours, kidney cancer,

colon cancer, glioblastoma, meningioma, and many others.
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However, the occurrence of different types of receptors is

diverse [9].

Despite the wide spectrum of SST action, its application

in vivo and in vitro is limited by its relatively short half-life

of 1–3 min [11]. To address this limitation, effective SST

analogues with longer half-lives were synthesised in the

1980s: ocreotide, lanreotide, and vapreotide (Fig. 2a, b, c).

These compounds are still used in the diagnosis and

treatment of a variety of illnesses [4, 11–13]. The charac-

teristic feature of these compounds is the presence of a

peptide chain fragment responsible for the biological

activity of the native hormone. Shortening the peptide

chain and inserting D-amino acids inhibits proteolysis and

extends half-life. These alterations have significantly

broadened the application range of SST analogues in

medicine [14, 15].

The native hormone has a high affinity for all types of

sstr [16], but these synthetic SST analogues have affinity

for only specific receptors (Fig. 3) [3].

After binding of the hormone or its analogue to the

receptor, the resulting complex is easily internalised by the

cell (Fig. 4). This process, called receptor-mediated endo-

cytosis, is the primary means of cellular penetration by

these compounds [17, 18].

When bound to radionuclides, synthetic agonists of sstr

can be used in nuclear medicine in receptor-targeted

diagnoses and therapies. Peptide-based radiopharmaceuti-

cals are built from three components: a peptide, linker, and

radioisotope complex (Fig. 5) [10].

The radioisotope complex is formed between a

radionuclide, e.g., 111In or 90Y [10], and organic ligands

such as DOTA, TETA, or DTPA, which act as chelators

[12, 19]. It is important to note that it is not only the type or

sequence of peptide that can affect the affinity of a SST

analogue for sstr. In a radioisotope complex, modifications

to the chelator, linker, or radioactive isotope can alter

interactions with different types of receptors [19, 20].

OctreoScan (111In-DTPA-D-Phe1-octreotide) was the

first radiopharmaceutical containing a SST analogue

approved by the United States Food and Drug Adminis-

tration in 1994 as an agent for the diagnosis of neuroen-

docrine tumours [21, 22]. However, clinical applications of

OctreoScan were limited by its high affinity only to sstr2

and sstr5, making it unsuitable for imaging tumours

expressing other receptors [20].

At higher doses, OctreoScan was also used in peptide

receptor radionuclide therapies (PRRTs) [23]. However,

somatostatin analogs radiolabeled with radioisotopes such

as 90Y and 177Lu yielded better results than those
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Fig. 3 The affinity of octreotide, lanreotide and pasireotide to sstr [3]
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radiolabeled with 111In [24–26]. Results obtained from the

application of PRRT to patients with neuroendocrine

tumours have been satisfactory and promising. Therefore,

new SST analogues having high affinities for all five types

of sstr are still being actively explored.

Copper radionuclides in medicine

Natural copper occurs in two stable isotopes: more than

69% as 63Cu and about 31% as 65Cu [27]. There are 27

known radioisotopes of copper. Six of them are potentially

useful in medicine, 60Cu, 61Cu, 62Cu, 64Cu for diagnosis,

and 64Cu, 66Cu, 67Cu in targeted radiotherapy [27–29].

Their physical properties and means of application are

presented in Table 1.

Currently there are no radiopharmaceuticals containing

copper radioisotopes that are acceptable for widespread use

in humans [28], although some variants have yielded

promising results in preclinical and clinical trials. The

well-known coordination chemistry of copper simplifies

the search for new radiopharmaceuticals incorporating Cu-

radioisotopes in their structure. The resulting complexes

can be potentially attached to antibodies, proteins, pep-

tides, and other small, biologically important molecules

[27, 29, 30].

Copper radionuclides exhibit several features that make

them potentially useful in medicine.
60Cu and 60Cu are emitters b?-radiation ([93%

[27, 28]) and are therefore potentially useful in positron

emission tomography (PET). Moreover, due to the short

half-life time they are especially useful if one considers the

characteristically faster kinetics of smaller ligands [31].

However, due to relatively high positron energy and

emission of c radiation of 60Cu, copper radioisotope 62Cu is

potentially more preferred as PET imaging agent [28]. 61Cu

has a longer half-life than 60Cu and 62Cu, making it par-

ticularly appropriate for nuclear medicine and studies of

copper metabolism. Furthermore, it can be used to image

receptor

ligand

drug or 
radionuclide

ligand-receptor 
complex

early endosome

lysosome

recycled receptor

Fig. 4 Scheme of the process

of the internalization by

receptor-mediated endocytosis

[17, 18]

radionuclide 
complex linker peptide

sstr

Fig. 5 Construction of peptide-based radiopharmaceuticals [13]

Table 1 Characteristics of

medically important copper

radioisotopes [27–29]

Radionuclide Half-life time Application Radiation Source

60Cu 23.7 min Diagnosis b?, c Cyclotron
61Cu 3.32 h Diagnosis b?, c Cyclotron
62Cu 9.7 min Diagnosis b?, c Generator/cyclotron
64Cu 12.7 h Diagnosis/therapy b?, b-, c Reactor/cyclotron
66Cu 5.4 min Therapy b- Reactor/cyclotron
67Cu 61.4 h Diagnosis/therapy b-, c Reactor/cyclotron
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slow biological processes [32]. However, the plausibility of

widespread use is limited by the high cost of production

[32, 33]. 62Cu exhibits several atypical properties that are

still being investigated extensively [27]. It is a b?-emitter

with almost 100% purity of radiation with a simultaneously

short half-life. This nuclide can be produced in a 62Zn/62Cu

generator system [31]. A medical cyclotron with proton- or

deuteron-induced reactions on Ni targets can be used to

produce all three of the aforementioned radionuclides [31].
66Cu is a b-emitter that is applicable to radiotherapies

for the treatment of tumours larger than 1 cm [34]. 67Cu

has the longest half-life of the copper isotopes, making it

potentially useful for both diagnosis and treatment, but is

difficult to produce [32, 35].
64Cu is themost studied andwell-described radionuclide of

copper. It is a versatile isotope with potential applications in

studies of copper metabolism, biodistribution tracking of

potential drugs, and PET imaging [28]. Due to its half-life,

emitted radiation, and stable complex formation with chelat-

ingmolecules, it is themost promising of theCu radionuclides

for use in medicine [27]. 64Cu can be produced in a reactor

[36]. However, the Washington University School of Medi-

cine has developed a new, low-costmethod of producing 64Cu

using a biomedical cyclotron [37].

Copper chemistry

In copper chemistry, two oxidation states are dominant,

Cu(I) and Cu(II). Thus, the coordination chemistry of

copper is relatively simple and well-known [34]. Cu(I),

with a d10 configuration, forms stable complexes with soft

donors in aqueous solution. These complexes usually adopt

a tetrahedral geometry when the coordination number is

four. With two or three donors, a respective linear or

trigonal planar geometry is typical [34, 38]. Cu(II) with a

d9 configuration forms complexes with four, five, or six

coordination points. Complexes with four donors usually

exhibit a square-planar or tetrahedral geometry. In 5-co-

ordinated and 6-coordinated complexes, square-pyramidal

and octahedral geometries, respectively, are most common.

Jahn–Teller distortion is often observed in tetrahedral and

octahedral complexes [34, 38].

Cu(I) complexes are more labile toward ligand exchange

than are Cu(II) complexes. Therefore, Cu(I) complexes

usually do not exhibit satisfactory kinetic stability for use

in radiopharmaceuticals. In contrast, Cu(II) forms ther-

modynamically stable and kinetically inert complexes with

macrocyclic chelators. Therefore, the design of ligands for

copper radiopharmaceuticals has focused on Cu(II) com-

plexes [34, 38]. An overview of chelators that have been

evaluated for this purpose has been provided by Smith [29].

Somatostatin agonists with copper radionuclides

SST agonists conjugated to copper radionuclide complexes

behave similarly to the native hormone and the radioiso-

tope is readily internalised by the cell [2]. As mentioned

above, 64Cu is the most comprehensively studied copper

radioisotope and complexes of 64Cu have been bound to

SST analogues. Studies of two sstr agonists with 64Cu,

TETA-D-Phe1-octreotide, and CPTA-D-Phe1-octreotide

(Fig. 6) were published in 1995 [39] and described new

conjugates for PET imaging. In vitro studies have been

conducted using mouse brain cancer cells, and animal

biodistribution studies have been carried out in rats with

sstr-positive pancreatic tumours. The activities of these two

SST analogues were compared with that of OctreoScan.

The results showed that both TETA-D-Phe1-octreotide and

CPTA-D-Phe1-octreotide had a greater affinity for sstr and a

higher uptake in target tissue than did 111In-DTPA-D-Phe1-

octreotide. The presence of macrocyclic, bifunctional

chelating agents bound to the 64Cu-labeled analogues was

the probable cause of the performance enhancement.

Also note that 64Cu-CPTA-D-Phe1-octreotide had a greater

receptor binding affinity than TETA-D-Phe1-octreotide, per-

haps due to the smaller size and greater lipophilicity of CPTA

over TETA. However, 64Cu-TETA-D-Phe1-octreotide was

characterised by a lower nephrotoxicity than 64Cu-CPTA-D-

Phe1-octreotide, promoting further study [39].

Given the results described above, the effectiveness of
64Cu-TETA-D-Phe1-octreotide was evaluated in radiother-

apy directed at rat pancreatic cancer cells [41]. The results

showed that 64Cu-TETA-D-Phe1-octreotide was efficiently

absorbed by the tumour cells with low toxicity and rea-

sonable absorption in healthy organs. Therefore, there is a

possibility of its potential use in targeted radiotherapies.

Moreover, research has shown that dose fractionation is a

more effective means of drug administration and that the

application of two doses significantly enhanced the inhi-

bition of tumour growth [41].
64Cu-TETA-D-Phe1-octreotide was also evaluated for its

use in the diagnosis of neuroendocrine tumours by PET

imaging [42]. Eight patients participated in the study: five

with carcinoid tumours and three with islet cell tumours.

PET imaging was performed using the copper radionuclide

bound to new SST analogues or OctreoScan (as a refer-

ence). For two of the patients, better images were acquired

with the 64Cu-TETA-D-Phe1-octreotide. In another study

carried out on patients with neuroendocrine cancers, PET

imaging with a 64Cu-SST analogue yielded better results

than visualisation by scintigraphy with OctreoScan [43].

Unfortunately, it was also observed that the blood clear-

ance of 64Cu-TETA-D-Phe1-octreotide was weak while the

tumour clearance was rapid [44].
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It was asserted above that small modifications to the

peptide chain of a SST analogue can influence SST receptor

affinity. The insertion of tyrosine instead of phenylalanine in

the third position, or modification of the C-terminus,

increased the degree of interaction between the SST ana-

logue and the sstr [45–47]. This was shown in experiments

performed with two SST analogues attached to 64Cu, TETA-

Tyr3-octreotate (Fig. 6a), and TETA-octreotide (Fig. 5b) in

rat and mouse animal models with SST receptor-positive

pancreatic tumours [48]. Furthermore, primate imaging

studies were performed by PET on a male baboon. In vivo

and in vitro results showed a high affinity between sstr and
64Cu-TETA-Tyr3-octreotate. The uptake of radionuclide by

the cancer cells was twice that of 64Cu-TETA-D-Phe1-oc-

treotide, while elimination from the bloodstreamwas similar

for both analogues. Therefore, 64Cu-TETA-Tyr3-octreotate

is a promising radiopharmaceutical for the diagnosis of

cancer with SST receptors. The increased uptake in target

tissues would result in a lower dose administered to the

patient, thereby reducing drug toxicity [48].
64Cu-TETA-Tyr3-octreotate was also found to induce

tumour regression when used as a radiotherapeutic agent in

baboon and male Lewis rats with pancreatic tumours [49].

Moreover, no lethal toxicity was observed even after

multiple doses. However, significant differences in

biodistribution were observed between rat and baboon

models. Therefore, 64Cu-TETA-Tyr3-octreotate may not be

suitable for use in targeted radiotherapies in humans [49].

Anderson and co-workers [44] published a study com-

paring four SST analogues conjugated to 64Cu complexes,

TETA-octreotide (Fig. 6b), TETA-Tyr3-octreotide, TETA-

Tyr3-octreotate, and TETA-octreotate (Fig. 7a–c). The

study determined which modification, amino acid substitu-

tion at the third position (phenyloanaline by tyrosine) or a

change at the C-terminus (substitution of Thr-ol by Thr-

OH), has a greater influence on the binding affinity of 64Cu-

TETA-Tyr3-octreotate for sstr. In vitro studies showed that

all of the analogues bound receptors with high affinity.

However, the highest binding efficiency was observed with
64Cu-TETA-octreotate and 64Cu-TETA-Tyr3-octreotate,

while 64Cu-TETA-D-Phe1-octreotide exhibited the lowest

binding efficiency. Therefore, C-terminus modification

seemed to be more important for determining binding

affinity than substitution at the third position.

Rat biodistribution studies showed the highest uptake of
64Cu-TETA-Tyr3-octreotate and 64Cu-TETA-Tyr3-oc-

treotide by the adrenals, which supports the hypothesis that

tyrosine is responsible for biological activity. The highest

uptake of 64Cu-TETA-Tyr3-octreotate was observed in the

pituitary gland and pancreas. 64Cu-TETA-octreotate and
64Cu-TETA-Tyr3-octreotide showed similar activities,

while 64Cu-TETA-D-Phe1-octreotide showed the lowest

degree of activity. Therefore, in this case, C-terminus

modification and substitution at the third position had

similar influences. Based on these conflicting results, it is

difficult to clearly identify which of these modifications are

more influential on binding affinity and bioactivity. Nev-

ertheless, the best results were generally observed with
64Cu-TETA-Tyr3-octreotate, making it the most promising

agent for targeted radiotherapies [44].

A new chelating agent, CBTE-2A (Fig. 8), has also been

evaluated in conjunction with Tyr3-octreotate for its pos-

sible use in PET imaging [50]. The results were compared

with those of 64Cu-TETA-Tyr3-octreotate (Fig. 7a).

Blood and liver clearance data, acquired in a tumour-

bearing rat model, showed that CBTE-2A is a better

complexing agent for the copper radionuclide than was

TETA. In addition, 64Cu-CB-TE2A-Tyr3-octreotate

showed greater accumulation in pathological cells, thereby

increasing the sensitivity of tumour detection by PET [50].
64Cu-CB-TE2A-Tyr3-octreotate is also a promising agent

for targeted radiotherapy [51]. Despite having a similar

binding affinity for sstr as 64Cu-CB-TE2A-Tyr3-octreotate

and 64Cu-DOTA-Tyr3-octreotate, 64Cu-CB-TE2A-Tyr3-oc-

treotate is more effectively internalised in a human col-

orectal cell line. This is likely due to the fact that DOTA is a

weaker chelating agent than TE2A, which allows 64Cu to

more easily dissociate before internalisation [51].

It has furthermore been shown that insertion of a

phosphonate group into the chelating motif increases the

thermodynamic stability [52] of the conjugated complex.

Therefore, a new chelating agent, CB-TE1A1P, was syn-

thesised and conjugated to Tyr3-octreotate (Fig. 9) for

in vitro and in vivo studies [53].
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Of these two new chelating agents, CB-TE1A1P was

easier to radiolabel because it requires heating to only

40 �C for 60 min, while the radiolabelling of CBTE-2A is

performed at 95 �C. Both analogues showed similar bind-

ing affinities for sstr2 in a tumour-bearing rat model,

although 64Cu-CB-TE1A1P-Tyr3-octreotate exhibited a

more suitable biodistribution for tumour detection by PET.

Therefore, CB-TE1A1P is a promising chelator for use in

copper-based radiopharmaceuticals [53].

Pfeifer and co-workers [54–56] evaluated the possibility

of using 64Cu-DOTA-Tyr3-octreotate (Fig. 10) for PET

detection of neuroendocrine tumours. The results were then

compared with the results of single-photon emission

computed tomography (SPECT) using OctreoScan.

Imaging 64Cu-DOTA-Tyr3-octreotate yielded images

with greater quality and a higher tumour-to-background

ratio than OctreoScan. In the first study, a lower radiation
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burden was observed and additional lesions were identified

in six of fourteen patients [54]. The second study showed

that in 35 of 100 cases, PET utilizing a copper radiophar-

maceutical allowed the visualisation of foci in organs not

seen in SPECT utilizing gold standard [55]. In the third

cited article, the authors describe a study of 112 patients

with NETs [56]; once again, 64Cu-Tyr3-octreotate yielded

better results than OctreoScan. In 84 of the patients, more

lesions were observed in PET images acquired with the

copper radiopharmaceutical. The accuracy and diagnostic

sensitivity were also greater with 64Cu-Tyr3-octreotate than

with 111In-DTPA-octreotide. In summary, the authors

concluded that 64Cu-Tyr3-octreotate could be a suit-

able replacement for OctreoScan [55].
64Cu-Tyr3-octreotate was also compared with 68Ga-

DOTA-Tyr3-octreotide in studies conducted with 59

patients presenting neuroendocrine tumours [57]. 64Cu-

DOTA-Tyr3-octreotate showed 42 lesions not found in

patients diagnosed with 68Ga-DOTA-Tyr3-octreotide, but

diagnosis with 68Ga revealed 26 lesions not observed in

PET images obtained with the copper SST analogue. The

detection sensitivities for both analogues were identical.

However, the authors concluded that 64Cu-Tyr3-octreotate

was more favourable and easier to use in a clinical setting

[57].

Peterson and coworkers [58] reported the design and

synthesis of a new bifunctional ligand, MeCoSAR, and its

conjugation to Tyr3-octreotate. The resulting SST analogue

was radiolabelled with 64Cu (Fig. 11), and its in vitro and

in vivo properties in A427-7 tumour-bearing Balb/c mice

were compared against those of 64Cu-DOTA-Tyr3-octreo-

tate. 64Cu-SAR-Tyr3-octreotate demonstrated a high

selectivity for tumour cells presenting sstr2. Both radio-

pharmaceuticals showed good biodistribution and high-
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quality PET imaging. However, 64Cu-SAR-Tyr3-octreotate

accumulated less in non-target organs than did 64Cu-

DOTA-Tyr3-octreotate, making the former a more

promising agent for imaging and therapy [58].
64Cu-DOTA-Tyr3-octreotate was also evaluated in a

mouse pheochromocytoma model to determine cellular

uptake, tumour binding, and functional in vivo imaging [59].

Two new SST analogues, 64Cu-CB-TE1A1P-DBCO-

Tyr3-octreotate and 64Cu-CB-TE1K1P-PEG4-DBCO-Tyr
3-

octreotate (Fig. 12), were examined following conjugation

with copper chelators by strain-promoted click chemistry

[60]. In vitro and in vivo studies were performed in

tumour-bearing female mice with colon cancer and the

results compared with those of 64Cu-CB-TE1A1P-Tyr3-

octreotate. Both complexes exhibited a high degree of

tumour-to-background contrast and tumour-specific uptake

in PET/CT imaging, although better results were obtained

with 64Cu-CB-TE1A1P-Tyr3-octreotate [60].

Tyr3-octreotate was also conjugated to two commer-

cially available chelating agents, p-SCN-Bn-NOTA and

NODAGA, and radiolabelled with 64Cu [61] (Fig. 13).

NODAGA was connected directly to Tyr3-octreotate, while

p-SCN-Bn-NOTA was conjugated via b-Ala and PEG8

linkages (Fig. 13). The results obtained from in vitro and

in vivo studies were compared with those of 64Cu-

CBTE2A-Tyr3-octreotate and indicated that 64Cu-

NODAGA-Tyr3-octreotate had the higher binding affinity.

The length of the linker was demonstrably important, as
64Cu-NOTA-PEG8-Tyr

3-octreotate had the lowest degree

of uptake and internalisation in cells with sstr2. Both of

these variables were greater with the smaller b-Ala linker

or with no linker. Tumour cells showed similar uptake

levels of 64Cu-NODAGA-Tyr3-octreotate, 64Cu-NOTA- b-
Ala -Tyr3-octreotate, and 64Cu-CBTE2A-Tyr3-octreotate.

In general, in vivo studies yielded comparable results for
64Cu-NODAGA-Tyr3-octreotate and 64Cu-CBTE2A-Tyr3-

octreotate. The least favourable results were obtained with
64Cu-NOTA-PEG8-Tyr

3-octreotate. Therefore, direct con-

jugation of the chelating agent to the SST analogue is the

best way of designing new radiopharmaceuticals.
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Fig. 13 Structures of:

a NODAGA, b NOTA-b-Ala,
c NOTA-PEG8 [61]
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Somatostatin antagonists with copper
radionuclides

SST antagonists conjugated with radioisotopes became a

promising tool in nuclear medicine after Mihaela Ginj and

co-workers [56] showed that they are better than agonists

for the in vivo targeting of tumours with sstr2 and sstr3 in

tumour-bearing mouse models. This was a surprising result

because antagonists do not internalise in tumour cells and

antagonise the normal effects of receptor coupling to

adenylyl cyclase [2, 62]. Initially, studies were performed

with SST antagonists complexed with 111In, but radio-

copper analogues were evaluated after the promising

results described in the previous chapter. The first clinical

application of SST antagonists was the use of 111In ana-

logues in five patients with metastatic thyroid cancer in

2011 [63]. Since then, SST antagonists have become

attractive agents for the diagnosis and treatment of cancer.

In 2008, the biological activity of 64Cu-CB-TE2A-sstr2-

ANT, where ANT is Phe-4-NO2-c(D-Cys-Tyr-D-Trp-Lys-

Thr-Cys)-D-Tyr-NH2 (Fig. 14), was assessed in in vitro and

in vivo studies in a tumour-bearing rat model [64].

The activity of 64Cu-CB-TE2A-sstr2-ANT, an antago-

nist, was compared against that of 64Cu-CB-TE2A-Tyr3-

octreotate, an agonist. The antagonist showed less inter-

nalisation than the agonist. 64Cu-CB-TE2A-sstr2-ANT

boasted rapid blood clearance, but was slower than the

agonist to clear the liver and kidneys. Tumour-to-blood and

tumour-to-muscle ratios were both greater for 64Cu-CB-

TE2A-sstr2-ANT and excellent PET images were obtained

4 h after injection. Thus, 64Cu-CB-TE2A-sstr2-ANT is an

attractive and promising agent for use in nuclear medicine

[64].

Fani and co-workers [65] analysed a new SST antago-

nist LM3 (p-Cl-Phe-c(D-Cys-Tyr-D-4-amino-Phe(car-

bamoyl)-Lys-Thr-Cys)-D-Tyr-NH2) (Fig. 15) conjugated to

two macrocyclic chelators, CB-TE2A (Fig. 8) and

NODAGA (Fig. 13a), and a 64Cu radionuclide.

Their study determined the relative influence of chelat-

ing agents and radionuclides in in vitro and in vivo studies.

The results showed that, similar to agonists, changes within

these two factors can have a large influence on the binding

affinities and pharmacokinetics of antagonists. The inter-

nalisation levels of 64Cu-CB-TE2A-LM3 and 64Cu-

NODAGA-LM3 in tumour cells presenting sstr2 were

significant but still lower than those of agonists. 64Cu-

NODAGA-LM3 is relatively hydrophilic and carries no

charge. It therefore exhibited faster clearance and lower

kidney uptake than 64Cu-CB-TE2A-LM3. The tumour-to-

normal tissue ratio was also much higher with 64Cu-

NODAGA-LM3. Both complexes, however, exhibited

favourable pharmacokinetics and high image contrast [65].

Conclusions

In presented review we demonstrated that SST agonists and

antagonists in connection with radio-copper complexes, are

promising tools for PRRT. Both investigated groups of

SST analogues have yielded results confirming theirs

suitability for clinical applications. We described herein

results obtained for fourteen agonists and two antagonists

of SST receptors. Some of them may be considered as

alternatives to OctreoScan, which is called as the gold

standard for imaging and therapy of patients with neu-

roendocrine tumours. However, there remains a great deal

of unexplored opportunities, because until recently radio-

pharmaceuticals containing copper radioisotopes were not

accepted for regular use in medicine.
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Fig. 14 Structure of CB-TE2A-sstr-ANT (phenyloalanine moiety is

modified) [64]
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